1
|
Zheng Y, Cai Z, Wang Z, Maruza TM, Zhang G. The Genetics and Breeding of Heat Stress Tolerance in Wheat: Advances and Prospects. PLANTS (BASEL, SWITZERLAND) 2025; 14:148. [PMID: 39861500 PMCID: PMC11768744 DOI: 10.3390/plants14020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/27/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025]
Abstract
Heat stress is one of the major concerns for wheat production worldwide. Morphological parameters such as germination, leaf area, shoot, and root growth are affected by heat stress, with affected physiological parameters including photosynthesis, respiration, and water relation. Heat stress also leads to the generation of reactive oxygen species that disrupt the membrane systems of thylakoids, chloroplasts, and the plasma membrane. The deactivation of the photosystems, reduction in photosynthesis, and inactivation of Rubisco affect the production of photo-assimilates and their allocation, consequently resulting in reduced grain yield and quality. The development of thermo-tolerant wheat varieties is the most efficient and fundamental approach for coping with global warming. This review provides a comprehensive overview of various aspects related to heat stress tolerance in wheat, including damages caused by heat stress, mechanisms of heat stress tolerance, genes or QTLs regulating heat stress tolerance, and the methodologies of breeding wheat cultivars with high heat stress tolerance. Such insights are essential for developing thermo-tolerant wheat cultivars with high yield potential in response to an increasingly warmer environment.
Collapse
Affiliation(s)
| | | | | | | | - Guoping Zhang
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (Z.C.); (Z.W.); (T.M.M.)
| |
Collapse
|
2
|
Fu C, Zhou Y, Liu A, Chen R, Yin L, Li C, Mao H. Genome-wide association study for seedling heat tolerance under two temperature conditions in bread wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2024; 24:430. [PMID: 38773371 PMCID: PMC11107014 DOI: 10.1186/s12870-024-05116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND As the greenhouse effect intensifies, global temperatures are steadily increasing, posing a challenge to bread wheat (Triticum aestivum L.) production. It is imperative to comprehend the mechanism of high temperature tolerance in wheat and implement breeding programs to identify and develop heat-tolerant wheat germplasm and cultivars. RESULTS To identify quantitative trait loci (QTL) related to heat stress tolerance (HST) at seedling stage in wheat, a panel of 253 wheat accessions which were re-sequenced used to conduct genome-wide association studies (GWAS) using the factored spectrally transformed linear mixed models (FaST-LMM). For most accessions, the growth of seedlings was found to be inhibited under heat stress. Analysis of the phenotypic data revealed that under heat stress conditions, the main root length, total root length, and shoot length of seedlings decreased by 47.46%, 49.29%, and 15.19%, respectively, compared to those in normal conditions. However, 17 varieties were identified as heat stress tolerant germplasm. Through GWAS analysis, a total of 115 QTLs were detected under both heat stress and normal conditions. Furthermore, 15 stable QTL-clusters associated with heat response were identified. By combining gene expression, haplotype analysis, and gene annotation information within the physical intervals of the 15 QTL-clusters, two novel candidate genes, TraesCS4B03G0152700/TaWRKY74-B and TraesCS4B03G0501400/TaSnRK3.15-B, were responsive to temperature and identified as potential regulators of HST in wheat at the seedling stage. CONCLUSIONS This study conducted a detailed genetic analysis and successfully identified two genes potentially associated with HST in wheat at the seedling stage, laying a foundation to further dissect the regulatory mechanism underlying HST in wheat under high temperature conditions. Our finding could serve as genomic landmarks for wheat breeding aimed at improving adaptation to heat stress in the face of climate change.
Collapse
Affiliation(s)
- Chao Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ankui Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rui Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Yin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cong Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Halder T, Stroeher E, Liu H, Chen Y, Yan G, Siddique KHM. Protein biomarkers for root length and root dry mass on chromosomes 4A and 7A in wheat. J Proteomics 2024; 291:105044. [PMID: 37931703 DOI: 10.1016/j.jprot.2023.105044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023]
Abstract
Improving the wheat (Triticum aestivum L.) root system is important for enhancing grain yield and climate resilience. Total root length (RL) and root dry mass (RM) significantly contribute to water and nutrient acquisition directly impacting grain yield and stress tolerance. This study used label-free quantitative proteomics to identify proteins associated with RL and RM in wheat near-isogenic lines (NILs). NIL pair 6 had 113 and NIL pair 9 had 30 differentially abundant proteins (DAPs). Three of identified DAPs located within the targeted genomic regions (GRs) of NIL pairs 6 (qDT.4A.1) and 9 (QHtscc.ksu-7A), showed consistent gene expressions at the protein and mRNA transcription (qRT-PCR) levels for asparagine synthetase (TraesCS4A02G109900), signal recognition particle 19 kDa protein (TraesCS7A02G333600) and 3,4-dihydroxy-2-butanone 4-phosphate synthase (TraesCS7A02G415600). This study discovered, for the first time, the involvement of these proteins as candidate biomarkers for increased RL and RM in wheat. However, further functional validation is required to ascertain their practical applicability in wheat root breeding. SIGNIFICANCE OF THE STUDY: Climate change has impacted global demand for wheat (Triticum aestivum L.). Root traits such as total root length (RL) and root dry mass (RM) are crucial for water and nutrient uptake and tolerance to abiotic stresses such as drought, salinity, and nutrient imbalance in wheat. Improving RL and RM could significantly enhance wheat grain yield and climate resilience. However, breeding for these traits has been limited by lack of appropriate root phenotyping methods, advanced genotypes, and the complex nature of the wheat genome. In this study, we used a semi-hydroponic root phenotyping system to collect accurate root data, near-isogenic lines (NILs; isolines with similar genetic backgrounds but contrasting target genomic regions (GRs)) and label-free quantitative proteomics to explore the molecular mechanisms underlying high RL and RM in wheat. We identified differentially abundant proteins (DAPs) and their molecular pathways in NIL pairs 6 (GR: qDT.4A.1) and 9 (GR: QHtscc.ksu-7A), providing a foundation for further molecular investigations. Furthermore, we identified three DAPs within the target GRs of the NIL pairs with differential expression at the transcript level, as confirmed by qRT-PCR analysis which could serve as candidate protein biomarkers for RL and RM improvement.
Collapse
Affiliation(s)
- Tanushree Halder
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Department of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Elke Stroeher
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Yinglong Chen
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
4
|
TS A, Srivastava A, Tomar BS, Behera TK, Krishna H, Jain PK, Pandey R, Singh B, Gupta R, Mangal M. Genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and QTL mapping. FRONTIERS IN PLANT SCIENCE 2023; 14:1232800. [PMID: 37692444 PMCID: PMC10491018 DOI: 10.3389/fpls.2023.1232800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
High temperatures present a formidable challenge to the cultivation of hot pepper, profoundly impacting not only vegetative growth but also leading to flower and fruit abscission, thereby causing a significant reduction in yield. To unravel the intricate genetic mechanisms governing heat tolerance in hot pepper, an F2 population was developed through the crossing of two distinct genotypes exhibiting contrasting heat tolerance characteristics: DLS-161-1 (heat tolerant) and DChBL-240 (heat susceptible). The F2 population, along with the parental lines, was subjected to comprehensive phenotyping encompassing diverse morphological, physiological, and biochemical heat-related traits under high temperature conditions (with maximum temperature ranging from 31 to 46.5°C and minimum temperature from 15.4 to 30.5°C). Leveraging the Illumina Nova Seq-6000 platform, Double digest restriction-site associated DNA sequencing (ddRAD-seq) was employed to generate 67.215 Gb data, with subsequent alignment of 218.93 million processed reads against the reference genome of Capsicum annuum. Subsequent variant calling and ordering resulted in 5806 polymorphic SNP markers grouped into 12 LGs. Further QTL analysis identified 64 QTLs with LOD values ranging from 2.517 to 11.170 and explained phenotypic variance ranging from 4.05 to 19.39%. Among them, 21 QTLs, explaining more than 10% phenotypic variance, were identified as major QTLs controlling 9 morphological, 3 physiological, and 2 biochemical traits. Interestingly, several QTLs governing distinct parameters were found to be colocalized, suggesting either a profound correlation between the QTLs regulating these traits or their significant genomic proximity. In addition to the QTLs, we also identified 368380 SSR loci within the identified QTL regions, dinucleotides being the most abundant type (211,381). These findings provide valuable insights into the genetics of heat tolerance in hot peppers. The identified QTLs and SSR markers offer opportunities to develop heat-tolerant varieties, ensuring better crop performance under high-temperature conditions.
Collapse
Affiliation(s)
- Aruna TS
- Division of Vegetable Science, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Arpita Srivastava
- Division of Vegetable Science, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Bhoopal Singh Tomar
- Division of Vegetable Science, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Tusar Kanti Behera
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research (IIVR), Indian Council of Agricultural Research (ICAR), Varanasi, India
| | - Hari Krishna
- Division of Genetics, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Pradeep Kumar Jain
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Renu Pandey
- Division of Plant Physiology, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Bhupinder Singh
- Division of Environment Science, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Ruchi Gupta
- Department of Computer Sciences, Jamia Milia Islamia, New Delhi, India
| | - Manisha Mangal
- Division of Vegetable Science, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| |
Collapse
|
5
|
Wang X, Zhang J, Mao W, Guan P, Wang Y, Chen Y, Liu W, Guo W, Yao Y, Hu Z, Xin M, Ni Z, Sun Q, Peng H. Association mapping identifies loci and candidate genes for grain-related traits in spring wheat in response to heat stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111676. [PMID: 36933836 DOI: 10.1016/j.plantsci.2023.111676] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/05/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Heat stress is a limiting factor in wheat production along with global warming. Development of heat-tolerant wheat varieties and generation of suitable pre-breeding materials are the major goals in current wheat breeding programs. Our understanding on the genetic basis of thermotolerance remains sparse. In this study, we genotyped a collection of 211 core spring wheat accessions and conducted field trials to evaluate the grain-related traits under heat stress and non-stress conditions in two different locations for three consecutive years. Based on SNP datasets and grain-related traits, we performed genome-wide association study (GWAS) to detect stable loci related to thermotolerance. Thirty-three quantitative trait loci (QTL) were identified, nine of them are the same loci as previous studies, and 24 are potentially novel loci. Functional candidate genes at these QTL are predicted and proved to be relevant to heat stress and grain-related traits such as TaELF3-A1 (1A) for earliness per se (Eps), TaHSFA1-B1 (5B) influencing heat tolerance and TaVIN2-A1 (6A) for grain size. Functional markers of TaELF3-A1 were detected and converted to KASP markers, with their function and genetic diversity being analyzed in the natural populations. In addition, our results unveiled favor alleles controlling agronomic traits and/or heat stress tolerance. In summary, we provide insights into heritable correlation between yield and heat stress tolerance, which will accelerate the development of new cultivars with high and stable yield of wheat in the future.
Collapse
Affiliation(s)
- Xiaobo Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jinbo Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China; Institute of Crop Germplasm Resource, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Weiwei Mao
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Panfeng Guan
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yongfa Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wangqing Liu
- Crop Research Institute of Ningxia Academy of Agriculture and Forestry Sciences, Ningxia, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Mehvish A, Aziz A, Bukhari B, Qayyum H, Mahmood Z, Baber M, Sajjad M, Pang X, Wang F. Identification of Single-Nucleotide Polymorphisms (SNPs) Associated with Heat Tolerance at the Reproductive Stage in Synthetic Hexaploid Wheats Using GWAS. PLANTS (BASEL, SWITZERLAND) 2023; 12:1610. [PMID: 37111833 PMCID: PMC10142051 DOI: 10.3390/plants12081610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
The projected rise in global ambient temperature by 3-5 °C by the end of this century, along with unpredicted heat waves during critical crop growth stages, can drastically reduce grain yield and will pose a great food security challenge. It is therefore important to identify wheat genetic resources able to withstand high temperatures, discover genes underpinning resilience to higher temperatures, and deploy such genetic resources in wheat breeding to develop heat-tolerant cultivars. In this study, 180 accessions of synthetic hexaploid wheats (SHWs) were evaluated under normal and late wheat growing seasons (to expose them to higher temperatures) at three locations (Islamabad, Bahawalpur, and Tando Jam), and data were collected on 11 morphological and yield-related traits. The diversity panel was genotyped with a 50 K SNP array to conduct genome-wide association studies (GWASs) for heat tolerance in SHW. A known heat-tolerance locus, TaHST1, was profiled to identify different haplotypes of this locus in SHWs and their association with grain yield and related traits in SHWs. There was a 36% decrease in grain yield (GY), a 23% decrease in thousand-grain weight (TKW), and an 18% decrease in grains per spike (GpS) across three locations in the population due to the heat stress conditions. GWASs identified 143 quantitative trait nucleotides (QTNs) distributed over all 21 chromosomes in the SHWs. Out of these, 52 QTNs were associated with morphological and yield-related traits under heat stress, while 15 of them were pleiotropically associated with multiple traits. The heat shock protein (HSP) framework of the wheat genome was then aligned with the QTNs identified in this study. Seventeen QTNs were in proximity to HSPs on chr2B, chr3D, chr5A, chr5B, chr6D, and chr7D. It is likely that QTNs on the D genome and those in proximity to HSPs may carry novel alleles for heat-tolerance genes. The analysis of TaHST1 indicated that 15 haplotypes were present in the SHWs for this locus, while hap1 showed the highest frequency of 25% (33 SHWs). These haplotypes were significantly associated with yield-related traits in the SHWs. New alleles associated with yield-related traits in SHWs could be an excellent reservoir for breeding deployment.
Collapse
Affiliation(s)
- Ambreen Mehvish
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Abdul Aziz
- International Maize and Wheat Improvement Center (CIMMYT) Pakistan Office, National Agriculture Research Center (NARC), Park Road, Islamabad 44000, Pakistan
| | - Birra Bukhari
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Humaira Qayyum
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zahid Mahmood
- Institute of Crop Sciences, National Agriculture Research Center (NARC), Park Road, Islamabad 44000, Pakistan
| | - Muhammad Baber
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, Comsats University, Islamabad 45550, Pakistan
| | - Xuequn Pang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fenglan Wang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| |
Collapse
|
7
|
Harris PJ, Burrell MM, Emes MJ, Tetlow IJ. Effects of Post Anthesis High Temperature Stress on Carbon Partitioning and Starch Biosynthesis in a Spring Wheat (Triticum aestivum L.) Adapted to Moderate Growth Temperatures. PLANT & CELL PHYSIOLOGY 2023:pcad030. [PMID: 37026703 DOI: 10.1093/pcp/pcad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
This study investigates carbon partitioning in the developing endosperm of a European variety of spring wheat subjected to moderately elevated daytime temperatures (27°C/16°C day/night) from anthesis to grain maturity. Elevated daytime temperatures caused significant reductions in both fresh and dry weights and reduced starch content of harvested grains compared to plants grown under a 20°C/16°C day/night regime. Accelerated grain development caused by elevated temperatures was accounted for by representing plant development as thermal time (°CDPA). We examined effects of high temperature stress (HTS) on uptake and partitioning of [U-14C]-sucrose supplied to isolated endosperms. HTS caused reduced sucrose uptake into developing endosperms from the second major grain filling stage (approximately 260°CDPA) up to maturity. Enzymes involved in sucrose metabolism were unaffected by HTS, whereas key enzyme activities involved in endosperm starch deposition such as ADP-glucose pyrophosphorylase and soluble isoforms of starch synthase were sensitive to HTS throughout grain development. HTS caused a decrease in other major carbon sinks such as evolved CO2, ethanol-soluble material, cell walls and protein. Despite reductions in labelling of carbon pools caused by HTS, the relative proportions of sucrose taken up by endosperm cells allocated to each cellular pool remain unchanged, except for evolved CO2, which increased under HTS and may reflect enhanced respiratory activity. The results of this study show that moderate temperature increases in some temperate wheat cultivars can cause significant yield reductions chiefly through three effects: reduced sucrose uptake by the endosperm, reduced starch synthesis, and increased partitioning of carbon into evolved CO2.
Collapse
Affiliation(s)
- P J Harris
- Department of Molecular and Cellular Biology, College of Biological Sciences, Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| | - M M Burrell
- Department of Molecular and Cellular Biology, College of Biological Sciences, Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| | - M J Emes
- Department of Molecular and Cellular Biology, College of Biological Sciences, Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| | - I J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Sciences, Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| |
Collapse
|
8
|
Yang B, Chen N, Dang Y, Wang Y, Wen H, Zheng J, Zheng X, Zhao J, Lu J, Qiao L. Identification and validation of quantitative trait loci for chlorophyll content of flag leaf in wheat under different phosphorus treatments. FRONTIERS IN PLANT SCIENCE 2022; 13:1019012. [PMID: 36466250 PMCID: PMC9714299 DOI: 10.3389/fpls.2022.1019012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
In wheat, the leaf chlorophyll content in flag leaves is closely related to the degree of phosphorus stress. Identifying major genes/loci associated with chlorophyll content in flag leaves under different phosphorus conditions is critical for breeding wheat varieties resistant to low phosphorus (P). Under normal, medium, and low phosphorus conditions, the chlorophyll content of flag leaves was investigated by a double haploid (DH) population derived from a cross between two popular wheat varieties Jinmai 47 and Jinmai 84, at different grain filling stages. Chlorophyll content of the DH population and parents decreased gradually during the S1 to the S3 stages and rapidly at the S4 stage. At the S4 stage, the chlorophyll content of the DH population under low phosphorus conditions was significantly lower than under normal phosphate conditions. Using a wheat 15K single-nucleotide polymorphism (SNP) panel, a total of 157 QTLs were found to be associated with chlorophyll content in flag leaf and were identified under three phosphorus conditions. The phenotypic variation explained (PVE) ranged from 3.07 to 31.66%. Under three different phosphorus conditions, 36, 30, and 48 QTLs for chlorophyll content were identified, respectively. Six major QTLs Qchl.saw-2B.1, Qchl.saw-3B.1, Qchl.saw-4D.1, Qchl.saw-4D.2, Qchl.saw-5A.9 and Qchl.saw-6A.4 could be detected under multiple phosphorus conditions in which Qchl.saw-4D.1, Qchl.saw-4D.2, and Qchl.saw-6A.4 were revealed to be novel major QTLs. Moreover, the closely linked SNP markers of Qchl.saw-4D.1 and Qchl.saw-4D.2 were validated as KASP markers in a DH population sharing the common parent Jinmai 84, showed extreme significance (P <0.01) in more than three environments under different phosphorus conditions, which has the potential to be utilized in molecular marker-assisted breeding for low phosphorus tolerance in wheat.
Collapse
Affiliation(s)
- Bin Yang
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Nan Chen
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
- College of Agronomy, Shanxi Agricultural University, Taiyuan, China
| | - Yifei Dang
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
- College of Agronomy, Shanxi Agricultural University, Taiyuan, China
| | - Yuzhi Wang
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Hongwei Wen
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Jun Zheng
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Xingwei Zheng
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Jiajia Zhao
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Jinxiu Lu
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Ling Qiao
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| |
Collapse
|
9
|
Hussain B, Akpınar BA, Alaux M, Algharib AM, Sehgal D, Ali Z, Aradottir GI, Batley J, Bellec A, Bentley AR, Cagirici HB, Cattivelli L, Choulet F, Cockram J, Desiderio F, Devaux P, Dogramaci M, Dorado G, Dreisigacker S, Edwards D, El-Hassouni K, Eversole K, Fahima T, Figueroa M, Gálvez S, Gill KS, Govta L, Gul A, Hensel G, Hernandez P, Crespo-Herrera LA, Ibrahim A, Kilian B, Korzun V, Krugman T, Li Y, Liu S, Mahmoud AF, Morgounov A, Muslu T, Naseer F, Ordon F, Paux E, Perovic D, Reddy GVP, Reif JC, Reynolds M, Roychowdhury R, Rudd J, Sen TZ, Sukumaran S, Ozdemir BS, Tiwari VK, Ullah N, Unver T, Yazar S, Appels R, Budak H. Capturing Wheat Phenotypes at the Genome Level. FRONTIERS IN PLANT SCIENCE 2022; 13:851079. [PMID: 35860541 PMCID: PMC9289626 DOI: 10.3389/fpls.2022.851079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world's most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public-private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence.
Collapse
Affiliation(s)
- Babar Hussain
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | | | - Michael Alaux
- Université Paris-Saclay, INRAE, URGI, Versailles, France
| | - Ahmed M. Algharib
- Department of Environment and Bio-Agriculture, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Gudbjorg I. Aradottir
- Department of Pathology, The National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Arnaud Bellec
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Alison R. Bentley
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Halise B. Cagirici
- Crop Improvement and Genetics Research, USDA, Agricultural Research Service, Albany, CA, United States
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Fred Choulet
- French National Research Institute for Agriculture, Food and the Environment, INRAE, GDEC, Clermont-Ferrand, France
| | - James Cockram
- The John Bingham Laboratory, The National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Francesca Desiderio
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Pierre Devaux
- Research & Innovation, Florimond Desprez Group, Cappelle-en-Pévèle, France
| | - Munevver Dogramaci
- USDA, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Gabriel Dorado
- Department of Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Córdoba, Spain
| | | | - David Edwards
- University of Western Australia, Perth, WA, Australia
| | - Khaoula El-Hassouni
- State Plant Breeding Institute, The University of Hohenheim, Stuttgart, Germany
| | - Kellye Eversole
- International Wheat Genome Sequencing Consortium (IWGSC), Bethesda, MD, United States
| | - Tzion Fahima
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT, Australia
| | - Sergio Gálvez
- Department of Languages and Computer Science, ETSI Informática, Campus de Teatinos, Universidad de Málaga, Andalucía Tech, Málaga, Spain
| | - Kulvinder S. Gill
- Department of Crop Science, Washington State University, Pullman, WA, United States
| | - Liubov Govta
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Goetz Hensel
- Center of Plant Genome Engineering, Heinrich-Heine-Universität, Düsseldorf, Germany
- Division of Molecular Biology, Centre of Region Haná for Biotechnological and Agriculture Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
| | - Pilar Hernandez
- Institute for Sustainable Agriculture (IAS-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | | | - Amir Ibrahim
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | | | | | - Tamar Krugman
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Yinghui Li
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Shuyu Liu
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | - Amer F. Mahmoud
- Department of Plant Pathology, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Alexey Morgounov
- Food and Agriculture Organization of the United Nations, Riyadh, Saudi Arabia
| | - Tugdem Muslu
- Molecular Biology, Genetics and Bioengineering, Sabanci University, Istanbul, Turkey
| | - Faiza Naseer
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Etienne Paux
- French National Research Institute for Agriculture, Food and the Environment, INRAE, GDEC, Clermont-Ferrand, France
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Gadi V. P. Reddy
- USDA-Agricultural Research Service, Southern Insect Management Research Unit, Stoneville, MS, United States
| | - Jochen Christoph Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Rajib Roychowdhury
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Jackie Rudd
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | - Taner Z. Sen
- Crop Improvement and Genetics Research, USDA, Agricultural Research Service, Albany, CA, United States
| | | | | | | | - Naimat Ullah
- Institute of Biological Sciences (IBS), Gomal University, D. I. Khan, Pakistan
| | - Turgay Unver
- Ficus Biotechnology, Ostim Teknopark, Ankara, Turkey
| | - Selami Yazar
- General Directorate of Research, Ministry of Agriculture, Ankara, Turkey
| | | | - Hikmet Budak
- Montana BioAgriculture, Inc., Missoula, MT, United States
| |
Collapse
|
10
|
Telfer P, Edwards J, Taylor J, Able JA, Kuchel H. A multi-environment framework to evaluate the adaptation of wheat (Triticum aestivum) to heat stress. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1191-1208. [PMID: 35050395 PMCID: PMC9033731 DOI: 10.1007/s00122-021-04024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Assessing adaptation to abiotic stresses such as high temperature conditions across multiple environments presents opportunities for breeders to target selection for broad adaptation and specific adaptation. Adaptation of wheat to heat stress is an important component of adaptation in variable climates such as the cereal producing areas of Australia. However, in variable climates stress conditions may not be present in every season or are present to varying degrees, at different times during the season. Such conditions complicate plant breeders' ability to select for adaptation to abiotic stress. This study presents a framework for the assessment of the genetic basis of adaptation to heat stress conditions with improved relevance to breeders' selection objectives. The framework was applied here with the evaluation of 1225 doubled haploid lines from five populations across six environments (three environments selected for contrasting temperature stress conditions during anthesis and grain fill periods, over two consecutive seasons), using regionally best practice planting times to evaluate the role of heat stress conditions in genotype adaptation. Temperature co-variates were determined for each genotype, in each environment, for the anthesis and grain fill periods. Genome-wide QTL analysis identified performance QTL for stable effects across all environments, and QTL that illustrated responsiveness to heat stress conditions across the sampled environments. A total of 199 QTL were identified, including 60 performance QTL, and 139 responsiveness QTL. Of the identified QTL, 99 occurred independent of the 21 anthesis date QTL identified. Assessing adaptation to heat stress conditions as the combination of performance and responsiveness offers breeders opportunities to select for grain yield stability across a range of environments, as well as genotypes with higher relative yield in stress conditions.
Collapse
Affiliation(s)
- Paul Telfer
- Australian Grain Technologies, 20 Leitch Road, Roseworthy, SA, 5371, Australia.
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1 Glen Osmond, Adelaide, SA, 5064, Australia.
| | - James Edwards
- Australian Grain Technologies, 20 Leitch Road, Roseworthy, SA, 5371, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1 Glen Osmond, Adelaide, SA, 5064, Australia
| | - Julian Taylor
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1 Glen Osmond, Adelaide, SA, 5064, Australia
| | - Jason A Able
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1 Glen Osmond, Adelaide, SA, 5064, Australia
| | - Haydn Kuchel
- Australian Grain Technologies, 20 Leitch Road, Roseworthy, SA, 5371, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1 Glen Osmond, Adelaide, SA, 5064, Australia
| |
Collapse
|
11
|
Ahmed HGMD, Zeng Y, Iqbal M, Rashid MAR, Raza H, Ullah A, Ali M, Yar MM, Shah AN. Genome-wide association mapping of bread wheat genotypes for sustainable food security and yield potential under limited water conditions. PLoS One 2022; 17:e0263263. [PMID: 35358203 PMCID: PMC8970394 DOI: 10.1371/journal.pone.0263263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Determining the genetic basis of yield and water deficient tolerance in wheat is vital for wheat breeding programs. Herein, a genome-wide association study (GWAS) was performed for water deficient and yield-related attributes on wheat genotypes with high-density Illumina 90K Infinium SNP array. Major yield and drought-related attributes were phenotyped on a panel of Pakistani and foreign accessions grown in non-stressed and water deficient stressed environments during two crop cycles. Among all accessions, highly significant variations were shown in studied environments for examined characters. Water deficient conditions, reduced the wheat yield and had strong and positive correlation among relative water content and grain yield per plant. Population structure analyses based on 90,000 SNP data, classify the accessions into 4 sub-populations. Marker-trait association analyses (MTA) revealed that 134 significant SNPs were linked with yield and drought tolerance attributes. Pleotropic loci RAC875_s117925_244 and RAC875_c16333_340 located on chromosome 5A and 2A respectively, were significantly linked with relative water contents (RWC), cell membrane thermo-stability (CMT), grain per spike (GPS), spikelet per spike (SPS) and grain yield per plant (GYP). The markers Ra_c58279_684, BobWhite_c23828_341 and IAAV3414 located on chromosomes 2A, 6B and 7B respectively, showed pleotropic effects for RWC, GPS and GYP under both environments. The current experiment not only validated several MTAs reported in other studies but also discovered novel MTAs which significant under drought-stressed conditions. A total of 171 candidate genes were recognized that could be cloned and functionally characterized for the respective associated traits. For RWC and CMT, total 11 and 3 associated SNPs were mapped on coding DNA sequence (CDS) of the identified candidate genes. Isolation and characterization of the candidate genes herein mapped SNPs will be useful in discovering novel genes underpinning drought tolerance in bread wheat to fulfill the wheat demand and sustainable food security under limited water conditions.
Collapse
Affiliation(s)
- Hafiz Ghulam Muhu-Din Ahmed
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Muhammad Iqbal
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Humayun Raza
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Aziz Ullah
- Department of Plant Breeding and Genetics, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Ali
- Department of Environmental Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Majid Yar
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| |
Collapse
|
12
|
Yang B, Wen X, Wen H, Feng Y, Zhao J, Wu B, Zheng X, Yang C, Yang S, Qiao L, Zheng J. Identification of Genetic Loci Affecting Flag Leaf Chlorophyll in Wheat Grown under Different Water Regimes. Front Genet 2022; 13:832898. [PMID: 35368684 PMCID: PMC8965356 DOI: 10.3389/fgene.2022.832898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Chlorophyll content of the flag leaf is an important trait for drought resistance in wheat under drought stress. Understanding the regulatory mechanism of flag leaf chlorophyll content could accelerate breeding for drought resistance. In this study, we constructed a recombinant inbred line (RIL) population from a cross of drought-sensitive variety DH118 and drought-resistant variety Jinmai 919, and analyzed the chlorophyll contents of flag leaves in six experimental locations/years using the Wheat90K single-nucleotide polymorphism array. A total of 29 quantitative trait loci (QTLs) controlling flag leaf chlorophyll were detected with contributions to phenotypic variation ranging from 4.67 to 23.25%. Twelve QTLs were detected under irrigated conditions and 18 were detected under dryland (drought) conditions. Most of the QTLs detected under the different water regimes were different. Four major QTLs (Qchl.saw-3B.2, Qchl.saw-5A.2, Qchl.saw-5A.3, and Qchl.saw-5B.2) were detected in the RIL population. Qchl.saw-3B.2, possibly more suitable for marker-assisted selection of genotypes adapted to irrigated conditions, was validated by a tightly linked kompetitive allele specific PCR (KASP) marker in a doubled haploid population derived from a different cross. Qchl.saw-5A.3, a novel stably expressed QTL, was detected in the dryland environments and explained up to 23.25% of the phenotypic variation, and has potential for marker-assisted breeding of genotypes adapted to dryland conditions. The stable and major QTLs identified here add valuable information for understanding the genetic mechanism underlying chlorophyll content and provide a basis for molecular marker–assisted breeding.
Collapse
Affiliation(s)
- Bin Yang
- Institute of Wheat Research, Shanxi Agricultural University/ State Key Laboratory of Sustainable Dryland Agriculture, Linfen, China
- College of Agricultural Economics and Management, Shanxi Agricultural University, Taiyuan, China
| | - Xiaojie Wen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongwei Wen
- Institute of Wheat Research, Shanxi Agricultural University/ State Key Laboratory of Sustainable Dryland Agriculture, Linfen, China
| | - Yanru Feng
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, Bonn, Germany
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Jiajia Zhao
- Institute of Wheat Research, Shanxi Agricultural University/ State Key Laboratory of Sustainable Dryland Agriculture, Linfen, China
| | - Bangbang Wu
- Institute of Wheat Research, Shanxi Agricultural University/ State Key Laboratory of Sustainable Dryland Agriculture, Linfen, China
| | - Xingwei Zheng
- Institute of Wheat Research, Shanxi Agricultural University/ State Key Laboratory of Sustainable Dryland Agriculture, Linfen, China
| | - Chenkang Yang
- Institute of Wheat Research, Shanxi Agricultural University/ State Key Laboratory of Sustainable Dryland Agriculture, Linfen, China
| | - Sanwei Yang
- College of Agricultural Economics and Management, Shanxi Agricultural University, Taiyuan, China
- *Correspondence: Sanwei Yang, ; Ling Qiao, ; Jun Zheng,
| | - Ling Qiao
- Institute of Wheat Research, Shanxi Agricultural University/ State Key Laboratory of Sustainable Dryland Agriculture, Linfen, China
- *Correspondence: Sanwei Yang, ; Ling Qiao, ; Jun Zheng,
| | - Jun Zheng
- Institute of Wheat Research, Shanxi Agricultural University/ State Key Laboratory of Sustainable Dryland Agriculture, Linfen, China
- *Correspondence: Sanwei Yang, ; Ling Qiao, ; Jun Zheng,
| |
Collapse
|
13
|
Yadav MR, Choudhary M, Singh J, Lal MK, Jha PK, Udawat P, Gupta NK, Rajput VD, Garg NK, Maheshwari C, Hasan M, Gupta S, Jatwa TK, Kumar R, Yadav AK, Prasad PVV. Impacts, Tolerance, Adaptation, and Mitigation of Heat Stress on Wheat under Changing Climates. Int J Mol Sci 2022; 23:2838. [PMID: 35269980 PMCID: PMC8911405 DOI: 10.3390/ijms23052838] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Heat stress (HS) is one of the major abiotic stresses affecting the production and quality of wheat. Rising temperatures are particularly threatening to wheat production. A detailed overview of morpho-physio-biochemical responses of wheat to HS is critical to identify various tolerance mechanisms and their use in identifying strategies to safeguard wheat production under changing climates. The development of thermotolerant wheat cultivars using conventional or molecular breeding and transgenic approaches is promising. Over the last decade, different omics approaches have revolutionized the way plant breeders and biotechnologists investigate underlying stress tolerance mechanisms and cellular homeostasis. Therefore, developing genomics, transcriptomics, proteomics, and metabolomics data sets and a deeper understanding of HS tolerance mechanisms of different wheat cultivars are needed. The most reliable method to improve plant resilience to HS must include agronomic management strategies, such as the adoption of climate-smart cultivation practices and use of osmoprotectants and cultured soil microbes. However, looking at the complex nature of HS, the adoption of a holistic approach integrating outcomes of breeding, physiological, agronomical, and biotechnological options is required. Our review aims to provide insights concerning morpho-physiological and molecular impacts, tolerance mechanisms, and adaptation strategies of HS in wheat. This review will help scientific communities in the identification, development, and promotion of thermotolerant wheat cultivars and management strategies to minimize negative impacts of HS.
Collapse
Affiliation(s)
- Malu Ram Yadav
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Mukesh Choudhary
- School of Agriculture and Environment, The University of Western Australia, Perth 6009, Australia;
| | - Jogendra Singh
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla 171001, India;
| | - Prakash Kumar Jha
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS 66506, USA;
| | - Pushpika Udawat
- Janardan Rai Nagar Rajasthan Vidyapeeth, Udaipur 313001, India;
| | - Narendra Kumar Gupta
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia;
| | - Nitin Kumar Garg
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Chirag Maheshwari
- Division of Biochemistry, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Muzaffar Hasan
- Division of Agro Produce Processing, Central Institute of Agricultural Engineering, Bhopal 462038, India;
| | - Sunita Gupta
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Tarun Kumar Jatwa
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Rakesh Kumar
- Division of Agronomy, Indian Council of Agricultural Research, National Dairy Research Institute, Karnal 132001, India;
| | - Arvind Kumar Yadav
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - P. V. Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS 66506, USA;
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
14
|
Sun L, Wen J, Peng H, Yao Y, Hu Z, Ni Z, Sun Q, Xin M. The genetic and molecular basis for improving heat stress tolerance in wheat. ABIOTECH 2022; 3:25-39. [PMID: 36304198 PMCID: PMC9590529 DOI: 10.1007/s42994-021-00064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/09/2021] [Indexed: 12/04/2022]
Abstract
Wheat production requires at least ~ 2.4% increase per year rate by 2050 globally to meet food demands. However, heat stress results in serious yield loss of wheat worldwide. Correspondingly, wheat has evolved genetic basis and molecular mechanisms to protect themselves from heat-induced damage. Thus, it is very urgent to understand the underlying genetic basis and molecular mechanisms responsive to elevated temperatures to provide important strategies for heat-tolerant varieties breeding. In this review, we focused on the impact of heat stress on morphology variation at adult stage in wheat breeding programs. We also summarize the recent studies of genetic and molecular factors regulating heat tolerance, including identification of heat stress tolerance related QTLs/genes, and the regulation pathway in response to heat stress. In addition, we discuss the potential ways to improve heat tolerance by developing new technologies such as genome editing. This review of wheat responses to heat stress may shed light on the understanding heat-responsive mechanisms, although the regulatory network of heat tolerance is still ambiguous in wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00064-z.
Collapse
Affiliation(s)
- Lv Sun
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Jingjing Wen
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Huiru Peng
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Yingyin Yao
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Zhaorong Hu
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Qixin Sun
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Mingming Xin
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| |
Collapse
|
15
|
Lal MK, Tiwari RK, Gahlaut V, Mangal V, Kumar A, Singh MP, Paul V, Kumar S, Singh B, Zinta G. Physiological and molecular insights on wheat responses to heat stress. PLANT CELL REPORTS 2022; 41:501-518. [PMID: 34542670 DOI: 10.1007/s00299-021-02784-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/07/2021] [Indexed: 05/25/2023]
Abstract
Increasing temperature is a key component of global climate change, affecting crop growth and productivity worldwide. Wheat is a major cereal crop grown in various parts of the globe, which is affected severely by heat stress. The morphological parameters affected include germination, seedling establishment, source-sink activity, leaf area, shoot and root growth. The physiological parameters such as photosynthesis, respiration, leaf senescence, water and nutrient relation are also affected by heat. At the cellular level, heat stress leads to the generation of reactive oxygen species that disrupt the membrane system of thylakoid, chloroplast and plasma membrane. The deactivation of the photosystem, reduction in photosynthesis and inactivation of rubisco affect the production of photoassimilates and their allocation. This ultimately affects anthesis, grain filling, size, number and maturity of wheat grains, which hamper crop productivity. The interplay of various systems comprising antioxidants and hormones plays a crucial role in imparting heat stress tolerance in wheat. Thus, implementation of various omics technologies could foster in-depth insights on heat stress effects, eventually devising heat stress mitigation strategies by conventional and modern breeding to develop heat-tolerant wheat varieties. This review provides an integrative view of heat stress responses in wheat and also discusses approaches to develop heat-tolerant wheat varieties.
Collapse
Affiliation(s)
- Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vijay Gahlaut
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Madan Pal Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vijay Paul
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sudhir Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India.
| | - Gaurav Zinta
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
16
|
Abstract
On the world stage, the increase in temperatures due to global warming is already a reality that has become one of the main challenges faced by the scientific community. Since agriculture is highly dependent on climatic conditions, it may suffer a great impact in the short term if no measures are taken to adapt and mitigate the agricultural system. Plant responses to abiotic stresses have been the subject of research by numerous groups worldwide. Initially, these studies were concentrated on model plants, and, later, they expanded their studies in several economically important crops such as rice, corn, soybeans, coffee, and others. However, agronomic evaluations for the launching of cultivars and the classical genetic improvement process focus, above all, on productivity, historically leaving factors such as tolerance to abiotic stresses in the background. Considering the importance of the impact that abiotic stresses can have on agriculture in the short term, new strategies are currently being sought and adopted in breeding programs to understand the physiological, biochemical, and molecular responses to environmental disturbances in plants of agronomic interest, thus ensuring the world food security. Moreover, integration of these approaches is bringing new insights on breeding. We will discuss how water deficit, high temperatures, and salinity exert effects on plants.
Collapse
|
17
|
Shahid S, Ali Q, Ali S, Al-Misned FA, Maqbool S. Water Deficit Stress Tolerance Potential of Newly Developed Wheat Genotypes for Better Yield Based on Agronomic Traits and Stress Tolerance Indices: Physio-Biochemical Responses, Lipid Peroxidation and Antioxidative Defense Mechanism. PLANTS 2022; 11:plants11030466. [PMID: 35161446 PMCID: PMC8839292 DOI: 10.3390/plants11030466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022]
Abstract
Changing environmental conditions, fresh water shortages for irrigation and the rapid increase in world population have created the problems of food insecurity and malnutrition. Different strategies, including the development of water stress-tolerant, high-yielding genotypes through breeding are used to fulfil the world food demand. The present study was conducted for the selection of high-yielding, drought-tolerant wheat genotypes, considering different morpho-physio-biochemical, agronomic and yield attributes in relation to the stress tolerance indices (STI). The experiment was carried out in field in a split-plot arrangement. Water deficit stress was maintained based on the number of irrigations. All genotypes showed a differential decreasing trend in different agronomic traits. However, the increasing or decreasing trend in leaf photosynthetic pigments, non-enzymatic and enzymatic antioxidants under limited water supply also found to be genotype-specific. Genotypes MP1, MP3, MP5, MP8 and MP10 performed better regarding the yield performance under water deficit stress, which was associated with their better maintenance of water relations, photosynthetic pigments and antioxidative defense mechanisms. In conclusion, the physio-biochemical mechanisms should also be considered as the part of breeding programs for the selection of stress-tolerant genotypes, along with agronomic traits, in wheat.
Collapse
Affiliation(s)
- Sumreena Shahid
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
| | - Qasim Ali
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
- Correspondence: (Q.A.); (S.A.)
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
- Correspondence: (Q.A.); (S.A.)
| | - Fahad A. Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Saliha Maqbool
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN 55108, USA;
| |
Collapse
|
18
|
Ahmed HGMD, Naeem M, Zeng Y, Rashid MAR, Ullah A, Saeed A, Qadeer A. Genome-wide association mapping for high temperature tolerance in wheat through 90k SNP array using physiological and yield traits. PLoS One 2022; 17:e0262569. [PMID: 35030233 PMCID: PMC8759701 DOI: 10.1371/journal.pone.0262569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023] Open
Abstract
Dissecting the genetic basis of physiological and yield traits against tolerance to heat stress is an essential in wheat breeding programs to boost up the wheat yield for sustainable food security. Herein, a genome-wide association study (GWAS) was performed to reveal the genetic basis of heat tolerance using high-density Illumina 90K Infinium SNPs array through physiological and yield indices. These indices were phenotyped on a diverse panel of foreign and domestic genotypes of Pakistan, grown in normal and heat-stressed environments. Based on STRUCTURE analysis, the studied germplasm clustered into four sub-population. Highly significant variations with a range of moderate (58.3%) to high (77.8%) heritability was observed under both conditions. Strong positive correlation existed among physiological and yield related attributes. A total of 320 significant (-log10 P ≥ 3) marker-trait associations (MTAs) were identified for the observed characters. Out of them 169 and 151 MTAs were recorded in normal and heat stress environments, respectively. Among the MTA loci, three (RAC875_c103017_302, Tdurum_contig42087_1199, and Tdurum_contig46877_488 on chromosomes 4B, 6B, and 7B respectively), two (BobWhite_c836_422 and BS00010616_51) and three (Kukri_rep_c87210_361, D_GA8KES401BNLTU_253 and Tdurum_contig1015_131) on chromosomes 5A, 1B, and 3D at the positions 243.59cM, 77.82cM and 292.51cM) showed pleiotropic effects in studied traits under normal, heat-stressed and both conditions respectively. The present study not only authenticated the numerous previously reported MTAs for examined attributes but also revealed novel MTAs under heat-stressed conditions. Identified SNPs will be beneficial in determining the novel genes in wheat to develop the heat tolerant and best yielded genotypes to fulfill the wheat requirement for the growing population.
Collapse
Affiliation(s)
- Hafiz Ghulam Muhu-Din Ahmed
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Muhammad Naeem
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | | | - Aziz Ullah
- Department of Plant Breeding and Genetics, University of Sargodha, Sargodha, Pakistan
| | - Amjad Saeed
- Department of Forestry Range and Wildlife Management, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdul Qadeer
- Soil Fertility and Plant Nutrition Laboratory, Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
19
|
Genomics Associated Interventions for Heat Stress Tolerance in Cool Season Adapted Grain Legumes. Int J Mol Sci 2021; 23:ijms23010399. [PMID: 35008831 PMCID: PMC8745526 DOI: 10.3390/ijms23010399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Cool season grain legumes occupy an important place among the agricultural crops and essentially provide multiple benefits including food supply, nutrition security, soil fertility improvement and revenue for farmers all over the world. However, owing to climate change, the average temperature is steadily rising, which negatively affects crop performance and limits their yield. Terminal heat stress that mainly occurred during grain development phases severely harms grain quality and weight in legumes adapted to the cool season, such as lentils, faba beans, chickpeas, field peas, etc. Although, traditional breeding approaches with advanced screening procedures have been employed to identify heat tolerant legume cultivars. Unfortunately, traditional breeding pipelines alone are no longer enough to meet global demands. Genomics-assisted interventions including new-generation sequencing technologies and genotyping platforms have facilitated the development of high-resolution molecular maps, QTL/gene discovery and marker-assisted introgression, thereby improving the efficiency in legumes breeding to develop stress-resilient varieties. Based on the current scenario, we attempted to review the intervention of genomics to decipher different components of tolerance to heat stress and future possibilities of using newly developed genomics-based interventions in cool season adapted grain legumes.
Collapse
|
20
|
Rane J, Singh AK, Kumar M, Boraiah KM, Meena KK, Pradhan A, Prasad PVV. The Adaptation and Tolerance of Major Cereals and Legumes to Important Abiotic Stresses. Int J Mol Sci 2021; 22:12970. [PMID: 34884769 PMCID: PMC8657814 DOI: 10.3390/ijms222312970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 01/02/2023] Open
Abstract
Abiotic stresses, including drought, extreme temperatures, salinity, and waterlogging, are the major constraints in crop production. These abiotic stresses are likely to be amplified by climate change with varying temporal and spatial dimensions across the globe. The knowledge about the effects of abiotic stressors on major cereal and legume crops is essential for effective management in unfavorable agro-ecologies. These crops are critical components of cropping systems and the daily diets of millions across the globe. Major cereals like rice, wheat, and maize are highly vulnerable to abiotic stresses, while many grain legumes are grown in abiotic stress-prone areas. Despite extensive investigations, abiotic stress tolerance in crop plants is not fully understood. Current insights into the abiotic stress responses of plants have shown the potential to improve crop tolerance to abiotic stresses. Studies aimed at stress tolerance mechanisms have resulted in the elucidation of traits associated with tolerance in plants, in addition to the molecular control of stress-responsive genes. Some of these studies have paved the way for new opportunities to address the molecular basis of stress responses in plants and identify novel traits and associated genes for the genetic improvement of crop plants. The present review examines the responses of crops under abiotic stresses in terms of changes in morphology, physiology, and biochemistry, focusing on major cereals and legume crops. It also explores emerging opportunities to accelerate our efforts to identify desired traits and genes associated with stress tolerance.
Collapse
Affiliation(s)
- Jagadish Rane
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Ajay Kumar Singh
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Mahesh Kumar
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Karnar M. Boraiah
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Kamlesh K. Meena
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Aliza Pradhan
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
21
|
Ben Mariem S, Soba D, Zhou B, Loladze I, Morales F, Aranjuelo I. Climate Change, Crop Yields, and Grain Quality of C 3 Cereals: A Meta-Analysis of [CO 2], Temperature, and Drought Effects. PLANTS (BASEL, SWITZERLAND) 2021; 10:1052. [PMID: 34074065 PMCID: PMC8225050 DOI: 10.3390/plants10061052] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Cereal yield and grain quality may be impaired by environmental factors associated with climate change. Major factors, including elevated CO2 concentration ([CO2]), elevated temperature, and drought stress, have been identified as affecting C3 crop production and quality. A meta-analysis of existing literature was performed to study the impact of these three environmental factors on the yield and nutritional traits of C3 cereals. Elevated [CO2] stimulates grain production (through larger grain numbers) and starch accumulation but negatively affects nutritional traits such as protein and mineral content. In contrast to [CO2], increased temperature and drought cause significant grain yield loss, with stronger effects observed from the latter. Elevated temperature decreases grain yield by decreasing the thousand grain weight (TGW). Nutritional quality is also negatively influenced by the changing climate, which will impact human health. Similar to drought, heat stress decreases starch content but increases grain protein and mineral concentrations. Despite the positive effect of elevated [CO2], increases to grain yield seem to be counterbalanced by heat and drought stress. Regarding grain nutritional value and within the three environmental factors, the increase in [CO2] is possibly the more detrimental to face because it will affect cereal quality independently of the region.
Collapse
Affiliation(s)
- Sinda Ben Mariem
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain; (S.B.M.); (D.S.); (F.M.)
| | - David Soba
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain; (S.B.M.); (D.S.); (F.M.)
| | - Bangwei Zhou
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun 130024, China;
| | - Irakli Loladze
- Bryan Medical Center, Bryan College of Health Sciences, Lincoln, NE 68506, USA;
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain; (S.B.M.); (D.S.); (F.M.)
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain; (S.B.M.); (D.S.); (F.M.)
| |
Collapse
|
22
|
Ben Mariem S, Soba D, Zhou B, Loladze I, Morales F, Aranjuelo I. Climate Change, Crop Yields, and Grain Quality of C 3 Cereals: A Meta-Analysis of [CO 2], Temperature, and Drought Effects. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10061052. [PMID: 34074065 DOI: 10.3390/plants10061052`] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 05/26/2023]
Abstract
Cereal yield and grain quality may be impaired by environmental factors associated with climate change. Major factors, including elevated CO2 concentration ([CO2]), elevated temperature, and drought stress, have been identified as affecting C3 crop production and quality. A meta-analysis of existing literature was performed to study the impact of these three environmental factors on the yield and nutritional traits of C3 cereals. Elevated [CO2] stimulates grain production (through larger grain numbers) and starch accumulation but negatively affects nutritional traits such as protein and mineral content. In contrast to [CO2], increased temperature and drought cause significant grain yield loss, with stronger effects observed from the latter. Elevated temperature decreases grain yield by decreasing the thousand grain weight (TGW). Nutritional quality is also negatively influenced by the changing climate, which will impact human health. Similar to drought, heat stress decreases starch content but increases grain protein and mineral concentrations. Despite the positive effect of elevated [CO2], increases to grain yield seem to be counterbalanced by heat and drought stress. Regarding grain nutritional value and within the three environmental factors, the increase in [CO2] is possibly the more detrimental to face because it will affect cereal quality independently of the region.
Collapse
Affiliation(s)
- Sinda Ben Mariem
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - David Soba
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Bangwei Zhou
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun 130024, China
| | - Irakli Loladze
- Bryan Medical Center, Bryan College of Health Sciences, Lincoln, NE 68506, USA
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain
| |
Collapse
|
23
|
Telfer P, Edwards J, Norman A, Bennett D, Smith A, Able JA, Kuchel H. Genetic analysis of wheat (Triticum aestivum) adaptation to heat stress. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1387-1407. [PMID: 33675373 DOI: 10.1007/s00122-021-03778-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Adaptation to abiotic stresses such as high-temperature conditions should be considered as its independent components of total performance and responsiveness. Understanding and identifying improved adaptation to abiotic stresses such as heat stress has been the focus of a number of studies in recent decades. However, confusing and potentially misleading terminology has made progress difficult and hard to apply within breeding programs selecting for improved adaption to heat stress conditions. This study proposes that adaption to heat stress (and other abiotic stresses) be considered as the combination of total performance and responsiveness to heat stress. In this study, 1413 doubled haploid lines from seven populations were screened through a controlled environment assay, subjecting plants to three consecutive eight hour days of an air temperature of 36 °C and a wind speed of 40 km h-1, 10 days after the end of anthesis. QTL mapping identified a total of 96 QTL for grain yield determining traits and anthesis date with nine correlating to responsiveness, 72 for total performance and 15 for anthesis date. Responsiveness QTL were found both collocated with other performance QTL as well as independently. A sound understanding of genomic regions associated with total performance and responsiveness will be important for breeders. Genomic regions of total performance, those that show higher performance that is stable under both stressed and non-stressed conditions, potentially offer significant opportunities to breeders. We propose this as a definition and selection target that has not previously been defined for heat stress adaptation.
Collapse
Affiliation(s)
- Paul Telfer
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1 Glen Osmond, Adelaide, SA, 5064, Australia.
- Australian Grain Technologies, 20 Leitch Rd, Roseworthy, SA, 5371, Australia.
| | - James Edwards
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1 Glen Osmond, Adelaide, SA, 5064, Australia
- Australian Grain Technologies, 20 Leitch Rd, Roseworthy, SA, 5371, Australia
| | - Adam Norman
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1 Glen Osmond, Adelaide, SA, 5064, Australia
- Australian Grain Technologies, 20 Leitch Rd, Roseworthy, SA, 5371, Australia
| | - Dion Bennett
- Australian Grain Technologies, 100 Byfield St, Northam, WA, 6401, Australia
| | - Alison Smith
- Centre for Bioinformatics and Biometrics, National Institute for Applied Statistics Research Australia, School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jason A Able
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1 Glen Osmond, Adelaide, SA, 5064, Australia
| | - Haydn Kuchel
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1 Glen Osmond, Adelaide, SA, 5064, Australia
- Australian Grain Technologies, 20 Leitch Rd, Roseworthy, SA, 5371, Australia
| |
Collapse
|
24
|
Halder T, Liu H, Chen Y, Yan G, Siddique KHM. Identification of Candidate Genes for Root Traits Using Genotype-Phenotype Association Analysis of Near-Isogenic Lines in Hexaploid Wheat ( Triticum aestivum L.). Int J Mol Sci 2021; 22:3579. [PMID: 33808237 PMCID: PMC8038026 DOI: 10.3390/ijms22073579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/09/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Global wheat (Triticum aestivum L.) production is constrained by different biotic and abiotic stresses, which are increasing with climate change. An improved root system is essential for adaptability and sustainable wheat production. In this study, 10 pairs of near-isogenic lines (NILs)-targeting four genomic regions (GRs) on chromosome arms 4BS, 4BL, 4AS, and 7AL of hexaploid wheat-were used to phenotype root traits in a semi-hydroponic system. Seven of the 10 NIL pairs significantly differed between their isolines for 11 root traits. The NIL pairs targeting qDSI.4B.1 GR varied the most, followed by the NIL pair targeting qDT.4A.1 and QHtscc.ksu-7A GRs. For pairs 5-7 targeting qDT.4A.1 GR, pair 6 significantly differed in the most root traits. Of the 4 NIL pairs targeting qDSI.4B.1 GR, pairs 2 and 4 significantly differed in 3 and 4 root traits, respectively. Pairs 9 and 10 targeting QHtscc.ksu-7A GR significantly differed in 1 and 4 root traits, respectively. Using the wheat 90K Illumina iSelect array, we identified 15 putative candidate genes associated with different root traits in the contrasting isolines, in which two UDP-glycosyltransferase (UGT)-encoding genes, TraesCS4A02G185300 and TraesCS4A02G442700, and a leucine-rich repeat receptor-like protein kinase (LRR-RLK)-encoding gene, TraesCS4A02G330900, also showed important functions for root trait control in other crops. This study characterized, for the first time, that these GRs control root traits in wheat, and identified candidate genes, although the candidate genes will need further confirmation and validation for marker-assisted wheat breeding.
Collapse
Affiliation(s)
- Tanushree Halder
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (H.L.); (Y.C.); (G.Y.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (H.L.); (Y.C.); (G.Y.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Yinglong Chen
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (H.L.); (Y.C.); (G.Y.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (H.L.); (Y.C.); (G.Y.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Kadambot H. M. Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (H.L.); (Y.C.); (G.Y.)
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
25
|
Evaluation of Physiological and Morphological Traits for Improving Spring Wheat Adaptation to Terminal Heat Stress. PLANTS 2021; 10:plants10030455. [PMID: 33670853 PMCID: PMC7997430 DOI: 10.3390/plants10030455] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/23/2022]
Abstract
Wheat crop experiences high temperature stress during flowering and grain-filling stages, which is termed as “terminal heat stress”. Characterizing genotypes for adaptive traits could increase their selection for better performance under terminal heat stress. The present study evaluated the morpho-physiological traits of two spring wheat cultivars (Millet-11, Punjab-11) and two advanced lines (V-07096, V-10110) exposed to terminal heat stress under late sowing. Early maturing Millet-11 was used as heat-tolerant control. Late sowing reduced spike length (13%), number of grains per spike (10%), 1000-grain weight (13%) and biological yield (15–20%) compared to timely sowing. Nonetheless, higher number of productive tillers per plant (19–20%) and grain yield (9%) were recorded under late sowing. Advanced lines and genotype Punjab-11 had delayed maturity and better agronomic performance than early maturing heat-tolerant Millet-11. Advanced lines expressed reduced canopy temperature during grain filling and high leaf chlorophyll a (20%) and b (71–125%) contents during anthesis under late sowing. All wheat genotypes expressed improved stem water-soluble carbohydrates under terminal heat stress that were highest for heat-tolerant Millet-11 genotype during anthesis. Improved grain yield was associated with the highest chlorophyll contents showing stay green characteristics with maintenance of high photosynthetic rates and cooler canopies under late sowing. The results revealed that advanced lines and Punjab-11 with heat adaptive traits could be promising source for further use in the selection of heat-tolerant wheat genotypes.
Collapse
|
26
|
Discerning molecular diversity and association mapping for phenological, physiological and yield traits under high temperature stress in chickpea (Cicer arietinum L.). J Genet 2021. [DOI: 10.1007/s12041-020-01254-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Zhang Y, Liu H, Yan G. Characterization of near-isogenic lines confirmed QTL and revealed candidate genes for plant height and yield-related traits in common wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:4. [PMID: 37309530 PMCID: PMC10231565 DOI: 10.1007/s11032-020-01196-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/14/2020] [Indexed: 06/13/2023]
Abstract
Plant height (PH) is closely associated with yield-related traits and environmental adaptation. Seven pairs of near-isogenic lines (NILs) targeting four QTL on 3AL, 4BL, 4AS, and 7AL wheat chromosome arms were assessed for PH and four yield-related traits including yield per plant (Y/P), grain number per spike (G/S), thousand kernel weight (TKW), and biomass per plant (B/P). Significant differences were observed in the NIL pairs for the measured traits. NIL pairs targeting the 3AL QTL differed significantly in PH, G/S, and TKW; NILs targeting the 4BL QTL differed significantly in PH, Y/P, and B/P; NIL pairs targeting the 4AS QTL differed significantly in all the traits; and NIL pairs targeting the 7AL QTL differed significantly in PH. A 90 K SNP genotyping assay of the NILs detected nineteen SNPs associated with fourteen functional genes. Among them, eight candidate genes are related to Rht proteins, four genes are related to hormone pathways and two genes are related to carbohydrate synthesis and transport. By searching the interval marker physical positions, it was found that the four targeted QTL in this study overlapped with eight previously reported QTL for PH, TKW, biomass, and yield. Correlation analysis revealed that PH significantly and positively correlated with B/P and G/S. The SNP and candidate gene information is potentially useful for marker-assisted selection in breeding programs, and the four targeted QTL are proved to be critical genomic regions controlling the investigated agronomic traits, which can be further fine mapped to identify the underlying genes. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-020-01196-8.
Collapse
Affiliation(s)
- Yunxiao Zhang
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Hui Liu
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| |
Collapse
|
28
|
Wang X, Guan P, Xin M, Wang Y, Chen X, Zhao A, Liu M, Li H, Zhang M, Lu L, Zhang J, Ni Z, Yao Y, Hu Z, Peng H, Sun Q. Genome-wide association study identifies QTL for thousand grain weight in winter wheat under normal- and late-sown stressed environments. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:143-157. [PMID: 33030571 DOI: 10.1007/s00122-020-03687-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/16/2020] [Indexed: 05/27/2023]
Abstract
GWAS identified stable loci for TGW and stress tolerance in winter wheat based on two sowing conditions, which will provide opportunities for developing new cultivars with high yield and yield stability. Wheat is an important food crop widely cultivated in the world. Breeding new varieties with high yields and superior adaptability is the main goal of modern wheat breeding program. In order to determine the marker-trait associations (MATs), a set of 688 diverse winter wheat accessions were subjected to genome-wide association study (GWAS) using the wheat 90K array. Field trials under normal-sown (NS) and late-sown (LS) conditions were conducted for thousand grain weight (TGW) and stress susceptibility index (SSI) at three different sites across two consecutive years. A total of 179 (NS) and 158 (LS) MATs corresponded with TGW; of these, 16 and 6 stable MATs for TGWNS and TGWLS were identified on chromosomes 1B, 2B, 3A, 3B, 5A, 5B, 5D, 6B, and 7D across at least three environments. Notably, a QTL hot spot controlling TGW under NS and LS conditions was found on chromosome 5A (140-142 cM). Moreover, 8 of 228 stable MATs on chromosomes 4B, 5A, and 5D for SSI were detected. A haplotype block associated with TGW and SSI was located on chromosome 5A at 91 cM, nearby the vernalization gene VRN-A1. Additionally, analysis of wheat varieties from the different eras revealed that the grain weight and stress tolerance are not improved concurrently. Overall, our results provide promising alleles controlling grain weight and stress tolerance (particularly for thermotolerance) for wheat breeders, which can be used in marker-assisted selection for improving grain yield and yield stability in wheat.
Collapse
Affiliation(s)
- Xiaobo Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Panfeng Guan
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yongfa Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiyong Chen
- Hebei Crop Genetic Breeding Laboratory, Institute of Cereal and Oil Crops of Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Aiju Zhao
- Hebei Crop Genetic Breeding Laboratory, Institute of Cereal and Oil Crops of Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Manshuang Liu
- Agronomy College, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongxia Li
- Agronomy College, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingyi Zhang
- Institute of Wheat, Shanxi Academy of Agricultural Sciences, Linfen, 041000, China
| | - Lahu Lu
- Institute of Wheat, Shanxi Academy of Agricultural Sciences, Linfen, 041000, China
| | - Jinbo Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
29
|
Khan A, Ahmad M, Ahmed M, Iftikhar Hussain M. Rising Atmospheric Temperature Impact on Wheat and Thermotolerance Strategies. PLANTS 2020; 10:plants10010043. [PMID: 33375473 PMCID: PMC7823633 DOI: 10.3390/plants10010043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Temperature across the globe is increasing continuously at the rate of 0.15–0.17 °C per decade since the industrial revolution. It is influencing agricultural crop productivity. Therefore, thermotolerance strategies are needed to have sustainability in crop yield under higher temperature. However, improving thermotolerance in the crop is a challenging task for crop scientists. Therefore, this review work was conducted with the aim of providing information on the wheat response in three research areas, i.e., physiology, breeding, and advances in genetics, which could assist the researchers in improving thermotolerance. The optimum temperature for wheat growth at the heading, anthesis, and grain filling duration is 16 ± 2.3 °C, 23 ± 1.75 °C, and 26 ± 1.53 °C, respectively. The high temperature adversely influences the crop phenology, growth, and development. The pre-anthesis high temperature retards the pollen viability, seed formation, and embryo development. The post-anthesis high temperature declines the starch granules accumulation, stem reserve carbohydrates, and translocation of photosynthates into grains. A high temperature above 40 °C inhibits the photosynthesis by damaging the photosystem-II, electron transport chain, and photosystem-I. Our review work highlighted that genotypes which can maintain a higher accumulation of proline, glycine betaine, expression of heat shock proteins, stay green and antioxidant enzymes activity viz., catalase, peroxidase, super oxide dismutase, and glutathione reductase can tolerate high temperature efficiently through sustaining cellular physiology. Similarly, the pre-anthesis acclimation with heat treatment, inorganic fertilizer such as nitrogen, potassium nitrate and potassium chloride, mulches with rice husk, early sowing, presoaking of a 6.6 mM solution of thiourea, foliar application of 50 ppm dithiothreitol, 10 mg per kg of silicon at heading and zinc ameliorate the crop against the high temperature. Finally, it has been suggested that modern genomics and omics techniques should be used to develop thermotolerance in wheat.
Collapse
Affiliation(s)
- Adeel Khan
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan; (A.K.); (M.A.)
| | - Munir Ahmad
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan; (A.K.); (M.A.)
| | - Mukhtar Ahmed
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
- Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
- Correspondence:
| | - M. Iftikhar Hussain
- Department of Plant Biology & Soil Science, Faculty of Biology, University of Vigo, Campus As Lagoas Marcosende, 36310 Vigo, Spain;
- CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, University of Vigo, 32004 Ourense, Spain
| |
Collapse
|
30
|
Song H, Huang Y, Gu B. QTL-Seq identifies quantitative trait loci of relative electrical conductivity associated with heat tolerance in bottle gourd (Lagenaria siceraria). PLoS One 2020; 15:e0227663. [PMID: 33170849 PMCID: PMC7654804 DOI: 10.1371/journal.pone.0227663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Heat is a major abiotic stress that seriously affects watermelon (Citrullus lanatus) production. However, its effects may be mitigated through grafting watermelon to heat tolerant bottle gourd (Lagenaria siceraria) rootstocks. Understanding the genetic basis of heat tolerance and development of reliable DNA markers to indirectly select for the trait are necessary in breeding for new varieties with heat tolerance. The objectives of this study were to investigate the inheritance of heat tolerance and identify molecular markers associated with heat tolerance in bottle gourd. A segregating F2 population was developed from a cross between two heat tolerant and sensitive inbred lines. The population was phenotyped for relative electrical conductivity (REC) upon high temperature treatment which was used as an indicator for heat tolerance. QTL-seq was performed to identify regions associated with heat tolerance. We found that REC-based heat tolerance in this population exhibited recessive inheritance. Seven heat-tolerant quantitative trait loci (qHT1.1, qHT2.1, qHT2.2, qHT5.1, qHT6.1, qHT7.1, and qHT8.1) were identified with qHT2.1 being a promising major-effect QTL. In the qHT2.1 region, we identified three non-synonymous SNPs that were potentially associated with heat tolerance. These SNPs were located in the genes that may play roles in pollen sterility, intracellular transport, and signal recognition. Association of the three SNPs with heat tolerance was verified in segregating F2 populations, which could be candidate markers for marker assisted selection for heat tolerance in bottle gourd. The qHT2.1 region is an important finding that may be used for fine mapping and discovery of novel genes associated with heat tolerance in bottle gourd.
Collapse
Affiliation(s)
- Hui Song
- Key Lab of Cucurbit Vegetable Breeding, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, China
- * E-mail:
| | - Yunping Huang
- Key Lab of Cucurbit Vegetable Breeding, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, China
| | - Binquan Gu
- Key Lab of Cucurbit Vegetable Breeding, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, China
| |
Collapse
|
31
|
Kumar S, Kumari J, Bhusal N, Pradhan AK, Budhlakoti N, Mishra DC, Chauhan D, Kumar S, Singh AK, Reynolds M, Singh GP, Singh K, Sareen S. Genome-Wide Association Study Reveals Genomic Regions Associated With Ten Agronomical Traits in Wheat Under Late-Sown Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:549743. [PMID: 33042178 PMCID: PMC7527491 DOI: 10.3389/fpls.2020.549743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Poor understanding of the genetic and molecular basis of heat tolerance component traits is a major bottleneck in designing heat tolerant wheat cultivars. The impact of terminal heat stress is generally reported in the case of late sown wheat. In this study, our aim was to identify genomic regions for various agronomic traits under late sown conditions by using genome-wide association approach. An association mapping panel of 205 wheat accessions was evaluated under late sown conditions at three different locations in India. Genotyping of the association panel revealed 15,886 SNPs, out of which 11,911 SNPs with exact physical locations on the wheat reference genome were used in association analysis. A total of 69 QTLs (10 significantly associated and 59 suggestive) were identified for ten different traits including productive tiller number (17), grain yield (14), plant height (12), grain filling rate (6), grain filling duration (5), days to physiological maturity (4), grain number (3), thousand grain weight (3), harvest index (3), and biomass (2). Out of these associated QTLs, 17 were novel for traits, namely PTL (3), GY (2), GFR (6), HI (3) and GNM (3). Moreover, five consistent QTLs across environments were identified for GY (4) and TGW (1). Also, 11 multi-trait SNPs and three hot spot regions on Chr1Ds, Chr2BS, Chr2DS harboring many QTLs for many traits were identified. In addition, identification of heat tolerant germplasm lines based on favorable alleles HD2888, IC611071, IC611273, IC75240, IC321906, IC416188, and J31-170 would facilitate their targeted introgression into popular wheat cultivars. The significantly associated QTLs identified in the present study can be further validated to identify robust markers for utilization in marker-assisted selection (MAS) for development of heat tolerant wheat cultivars.
Collapse
Affiliation(s)
- Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Jyoti Kumari
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Nabin Bhusal
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | | | - Neeraj Budhlakoti
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Divya Chauhan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Suneel Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Mathew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico
| | | | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sindhu Sareen
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| |
Collapse
|
32
|
Talukder SK, Bhamidimarri S, Chekhovskiy K, Saha MC. Mapping QTL for summer dormancy related traits in tall fescue (Festuca arundinacea Schreb.). Sci Rep 2020; 10:14539. [PMID: 32884044 PMCID: PMC7471293 DOI: 10.1038/s41598-020-71488-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/14/2020] [Indexed: 11/15/2022] Open
Abstract
Summer dormancy is an important stress avoidance mechanism of cool season perennial grasses to persist well under harsh summer conditions. QTL associated with summer-dormancy related traits in tall fescue has significant breeding implications. An F1 pseudo testcross population was developed by crossing a Mediterranean (103-2) to a Continental parent (R43-64). The population was genotyped using 2,000 SSR and DArT markers. Phenotyping was done in growth chambers and in two Oklahoma, USA locations. Total length of R43-64 and 103-2 maps were 1,956 cM and 1,535 cM, respectively. Seventy-seven QTL were identified in the male and 46 in the female parent maps. The phenotypic variability explained by the QTL ranged between 9.91 and 32.67%. Among all the QTL, five summer dormancy related putative QTL were identified in R43-64 linkage groups (LGs) 4, 5, 12, 20 and 22 and two in 103-2 LGs 5 and 17. All the putative summer dormant QTL regions in male map showed pleiotropic responses and epistatic interactions with other summer dormant and stress responsive QTL regions for plant height, new leaf and dry biomass weight. The flanking markers related to the QTL reported in this study will be useful to improve tall fescue persistence in dry areas through marker-assisted breeding.
Collapse
Affiliation(s)
- Shyamal K Talukder
- Noble Research Institute, LLC., 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
- California Cooperative Rice Research Foundation, Rice Expt. Station, 955 Butte City Highway, Biggs, CA, USA
| | - Suresh Bhamidimarri
- Noble Research Institute, LLC., 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
- Corteva Agriscience, 1040 Settler Rd., Connell, WA, USA
| | | | - Malay C Saha
- Noble Research Institute, LLC., 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA.
| |
Collapse
|
33
|
Janni M, Gullì M, Maestri E, Marmiroli M, Valliyodan B, Nguyen HT, Marmiroli N. Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3780-3802. [PMID: 31970395 PMCID: PMC7316970 DOI: 10.1093/jxb/eraa034] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 01/20/2020] [Indexed: 05/21/2023]
Abstract
To ensure the food security of future generations and to address the challenge of the 'no hunger zone' proposed by the FAO (Food and Agriculture Organization), crop production must be doubled by 2050, but environmental stresses are counteracting this goal. Heat stress in particular is affecting agricultural crops more frequently and more severely. Since the discovery of the physiological, molecular, and genetic bases of heat stress responses, cultivated plants have become the subject of intense research on how they may avoid or tolerate heat stress by either using natural genetic variation or creating new variation with DNA technologies, mutational breeding, or genome editing. This review reports current understanding of the genetic and molecular bases of heat stress in crops together with recent approaches to creating heat-tolerant varieties. Research is close to a breakthrough of global relevance, breeding plants fitter to face the biggest challenge of our time.
Collapse
Affiliation(s)
- Michela Janni
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Amendola, Bari, Italy
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze, Parma, Italy
| | - Mariolina Gullì
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, Italy
| | - Elena Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, Italy
| | - Babu Valliyodan
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
- Lincoln University, Jefferson City, MO, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, Italy
- CINSA Interuniversity Consortium for Environmental Sciences, Parma/Venice, Italy
| |
Collapse
|
34
|
Gupta PK, Balyan HS, Sharma S, Kumar R. Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1569-1602. [PMID: 32253477 DOI: 10.1007/s00122-020-03583-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/13/2020] [Indexed: 05/18/2023]
Abstract
A review of the available literature on genetics of yield and its component traits, tolerance to abiotic stresses and biofortification should prove useful for future research in wheat in the genomics era. The work reviewed in this article mainly covers the available information on genetics of some important quantitative traits including yield and its components, tolerance to abiotic stresses (heat, drought, salinity and pre-harvest sprouting = PHS) and biofortification (Fe/Zn and phytate contents with HarvestPlus Program) in wheat. Major emphasis is laid on the recent literature on QTL interval mapping and genome-wide association studies, giving lists of known QTL and marker-trait associations. Candidate genes for different traits and the cloned and characterized genes for yield traits along with the molecular mechanism are also described. For each trait, an account of the present status of marker-assisted selection has also been included. The details of available results have largely been presented in the form of tables; some of these tables are included as supplementary files.
Collapse
Affiliation(s)
- Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India.
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| | - Rahul Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| |
Collapse
|
35
|
Tafesse EG, Gali KK, Lachagari VR, Bueckert R, Warkentin TD. Genome-Wide Association Mapping for Heat Stress Responsive Traits in Field Pea. Int J Mol Sci 2020; 21:E2043. [PMID: 32192061 PMCID: PMC7139655 DOI: 10.3390/ijms21062043] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
Abstract
Environmental stress hampers pea productivity. To understand the genetic basis of heat resistance, a genome-wide association study (GWAS) was conducted on six stress responsive traits of physiological and agronomic importance in pea, with an objective to identify the genetic loci associated with these traits. One hundred and thirty-five genetically diverse pea accessions from major pea growing areas of the world were phenotyped in field trials across five environments, under generally ambient (control) and heat stress conditions. Statistical analysis of phenotype indicated significant effects of genotype (G), environment (E), and G × E interaction for all traits. A total of 16,877 known high-quality SNPs were used for association analysis to determine marker-trait associations (MTA). We identified 32 MTAs that were consistent in at least three environments for association with the traits of stress resistance: six for chlorophyll concentration measured by a soil plant analysis development meter; two each for photochemical reflectance index and canopy temperature; seven for reproductive stem length; six for internode length; and nine for pod number. Forty-eight candidate genes were identified within 15 kb distance of these markers. The identified markers and candidate genes have potential for marker-assisted selection towards the development of heat resistant pea cultivars.
Collapse
Affiliation(s)
- Endale G. Tafesse
- Department of Plant Sciences, College of Agriculture and Bio-resources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (E.G.T.); (K.K.G.); (R.B.)
| | - Krishna K. Gali
- Department of Plant Sciences, College of Agriculture and Bio-resources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (E.G.T.); (K.K.G.); (R.B.)
| | | | - Rosalind Bueckert
- Department of Plant Sciences, College of Agriculture and Bio-resources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (E.G.T.); (K.K.G.); (R.B.)
| | - Thomas D. Warkentin
- Department of Plant Sciences, College of Agriculture and Bio-resources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (E.G.T.); (K.K.G.); (R.B.)
| |
Collapse
|
36
|
Wang J, Gao X, Dong J, Tian X, Wang J, Palta JA, Xu S, Fang Y, Wang Z. Over-Expression of the Heat-Responsive Wheat Gene TaHSP23.9 in Transgenic Arabidopsis Conferred Tolerance to Heat and Salt Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:243. [PMID: 32211001 PMCID: PMC7069362 DOI: 10.3389/fpls.2020.00243] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/17/2020] [Indexed: 05/09/2023]
Abstract
The small heat shock proteins (sHSP) are stress-induced proteins with molecular weights ranging from 12 to 42 kDa that act as molecular chaperones to prevent the irreversible aggregation of denaturing proteins. In this study, we cloned the heat responsive gene TaHSP23.9 from wheat (Triticum aestivum) based on TMT-labeled quantitative proteomic analysis in our previous work and examined its function in the response of transgenic Arabidopsis to heat and salt stress. Amino acid alignment and phylogenetic tree analysis showed that TaHSP23.9 contained a typically conserved structure of the alpha-crystallin domain and is closely related to OsHSP23.2 in rice. Transient expression assays demonstrated that TaHSP23.9 is located on the endoplasmic reticulum. Quantitative real-time PCR demonstrated that TaHSP23.9 was expressed much more in filling grains under normal conditions and was significantly upregulated by heat and salt stress. Transgenic Arabidopsis plants that constitutively over-expressed TaHSP23.9 had no visible differences or adverse phenotypes compared with the wild type under normal conditions but exhibited enhanced tolerance to heat and salt stress under stress conditions. In addition, we found that the expression level of TaHSP23.9 was significantly higher in the heat-tolerant wheat varieties than in the heat-sensitive varieties. Our results suggest that TaHSP23.9 may function as a protein chaperone to positively regulate plant responses to heat and salt stress and could be developed as a molecular marker for screening heat-tolerant wheat varieties.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xin Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Jun Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xinyu Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Junzhe Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Jairo A. Palta
- CSIRO Agriculture and Food, Wembley, WA, Australia
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Yan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
37
|
Lu L, Liu H, Wu Y, Yan G. Development and Characterization of Near-Isogenic Lines Revealing Candidate Genes for a Major 7AL QTL Responsible for Heat Tolerance in Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:1316. [PMID: 32983205 PMCID: PMC7485290 DOI: 10.3389/fpls.2020.01316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/11/2020] [Indexed: 05/22/2023]
Abstract
Wheat is one of the most important food crops in the world, but as a cool-season crop, it is more prone to heat stress, which severely affects crop production and grain quality. Heat tolerance in wheat is a quantitative trait, and the genes underlying reported quantitative trait loci (QTL) have rarely been identified. Near-isogenic lines (NILs) with a common genetic background but differing at a particular locus could turn quantitative traits into a Mendelian factor; therefore, they are suitable material for identifying candidate genes for targeted locus/loci. In this study, we developed and characterized NILs from two populations Cascades × Tevere and Cascades × W156 targeting a major 7AL QTL responsible for heat tolerance. Molecular marker screening and phenotyping for SPAD chlorophyll content and grain-yield-related traits confirmed four pairs of wheat NILs that contrasted for heat-stress responses. Genotyping the NILs using a 90K Infinium iSelect SNP array revealed five single nucleotide polymorphism (SNP) markers within the QTL interval that were distinguishable between the isolines. Seven candidate genes linked to the SNPs were identified as related to heat tolerance, and involved in important processes and pathways in response to heat stress. The confirmed multiple pairs of NILs and identified candidate genes in this study are valuable resources and information for further fine-mapping to clone major genes for heat tolerance.
Collapse
Affiliation(s)
- Lu Lu
- Faculty of Science, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hui Liu
- Faculty of Science, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Hui Liu, ; Guijun Yan,
| | - Yu Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guijun Yan
- Faculty of Science, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Hui Liu, ; Guijun Yan,
| |
Collapse
|
38
|
Wen J, Jiang F, Weng Y, Sun M, Shi X, Zhou Y, Yu L, Wu Z. Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC PLANT BIOLOGY 2019; 19:398. [PMID: 31510927 PMCID: PMC6739936 DOI: 10.1186/s12870-019-2008-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/30/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND High temperature is one of the major abiotic stresses in tomato and greatly reduces fruit yield and quality. Identifying high-temperature stress-responsive (HSR) genes and breeding heat-tolerant varieties is an effective way to address this issue. However, there are few reports on the fine mapping of heat-tolerance quantitative trait locus (QTL) and the identification of HSR genes in tomato. Here, we applied three heat tolerance-related physiological indexes, namely, relative electrical conductivity (REC), chlorophyll content (CC) and maximum photochemical quantum efficiency (Fv/Fm) of PSII (photosystem II), as well as the phenotypic index, the heat injury index (HII), and conventional QTL analysis combined with QTL-seq technology to comprehensively detect heat-tolerance QTLs in tomato seedlings. In addition, we integrated the QTL mapping results with RNA-seq to identify key HSR genes within the major QTLs. RESULTS A total of five major QTLs were detected: qHII-1-1, qHII-1-2, qHII-1-3, qHII-2-1 and qCC-1-5 (qREC-1-3). qHII-1-1, qHII-1-2 and qHII-1-3 were located, respectively, in the intervals of 1.43, 1.17 and 1.19 Mb on chromosome 1, while the interval of qHII-2-1 was located in the intervals of 1.87 Mb on chromosome 2. The locations observed with conventional QTL mapping and QTL-seq were consistent. qCC-1-5 and qREC-1-3 for CC and REC, respectively, were located at the same position by conventional QTL mapping. Although qCC-1-5 was not detected in QTL-seq analysis, its phenotypic variation (16.48%) and positive additive effect (0.22) were the highest among all heat tolerance QTLs. To investigate the genes involved in heat tolerance within the major QTLs in tomato, RNA-seq analysis was performed, and four candidate genes (SlCathB2, SlGST, SlUBC5, and SlARG1) associated with heat tolerance were finally detected within the major QTLs by DEG analysis, qRT-PCR screening and biological function analysis. CONCLUSIONS In conclusion, this study demonstrated that the combination of conventional QTL mapping, QTL-seq analysis and RNA-seq can rapidly identify candidate genes within major QTLs for a complex trait of interest to replace the fine-mapping process, thus greatly shortening the breeding process and improving breeding efficiency. The results have important applications for the fine mapping and identification of HSR genes and breeding for improved thermotolerance.
Collapse
Affiliation(s)
- Junqin Wen
- College of Horticulture, Nanjing Agricultural University, Weigang NO 1, Nanjing, 210095 China
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Weigang NO 1, Nanjing, 210095 China
| | - Yiqun Weng
- University of Wisconsin-Madison, Madison, USA
| | - Mintao Sun
- College of Horticulture, Nanjing Agricultural University, Weigang NO 1, Nanjing, 210095 China
| | - Xiaopu Shi
- College of Horticulture, Nanjing Agricultural University, Weigang NO 1, Nanjing, 210095 China
| | - Yanzhao Zhou
- College of Horticulture, Nanjing Agricultural University, Weigang NO 1, Nanjing, 210095 China
| | - Lu Yu
- College of Horticulture, Nanjing Agricultural University, Weigang NO 1, Nanjing, 210095 China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Weigang NO 1, Nanjing, 210095 China
| |
Collapse
|
39
|
Singh D, Singh CK, Taunk J, Jadon V, Pal M, Gaikwad K. Genome wide transcriptome analysis reveals vital role of heat responsive genes in regulatory mechanisms of lentil (Lens culinaris Medikus). Sci Rep 2019; 9:12976. [PMID: 31506558 PMCID: PMC6736890 DOI: 10.1038/s41598-019-49496-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/23/2019] [Indexed: 01/29/2023] Open
Abstract
The present study reports the role of morphological, physiological and reproductive attributes viz. membrane stability index (MSI), osmolytes accumulations, antioxidants activities and pollen germination for heat stress tolerance in contrasting genotypes. Heat stress increased proline and glycine betaine (GPX) contents, induced superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione peroxidase (GPX) activities and resulted in higher MSI in PDL-2 (tolerant) compared to JL-3 (sensitive). In vitro pollen germination of tolerant genotype was higher than sensitive one under heat stress. In vivo stressed pollens of tolerant genotype germinated well on stressed stigma of sensitive genotype, while stressed pollens of sensitive genotype did not germinate on stressed stigma of tolerant genotype. De novo transcriptome analysis of both the genotypes showed that number of contigs ranged from 90,267 to 104,424 for all the samples with N50 ranging from 1,755 to 1,844 bp under heat stress and control conditions. Based on assembled unigenes, 194,178 high-quality Single Nucleotide Polymorphisms (SNPs), 141,050 microsatellites and 7,388 Insertion-deletions (Indels) were detected. Expression of 10 genes was evaluated using quantitative Real Time Polymerase Chain Reaction (RT-qPCR). Comparison of differentially expressed genes (DEGs) under different combinations of heat stress has led to the identification of candidate DEGs and pathways. Changes in expression of physiological and pollen phenotyping related genes were also reaffirmed through transcriptome data. Cell wall and secondary metabolite pathways are found to be majorly affected under heat stress. The findings need further analysis to determine genetic mechanism involved in heat tolerance of lentil.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Jyoti Taunk
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vasudha Jadon
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Kishor Gaikwad
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| |
Collapse
|
40
|
Farokhzadeh S, Fakheri BA, Nezhad NM, Tahmasebi S, Mirsoleimani A. Mapping QTLs of flag leaf morphological and physiological traits related to aluminum tolerance in wheat ( Triticum aestivum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:975-990. [PMID: 31402821 PMCID: PMC6656840 DOI: 10.1007/s12298-019-00670-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/13/2019] [Accepted: 04/10/2019] [Indexed: 05/29/2023]
Abstract
Genetic improvement of aluminum (Al) tolerance is one of the cost-effective solutions to improve plant productivity in acidic soils around the world. This study was performed to progress our understanding of the genetic mechanisms of aluminum tolerance underlying wheat (Triticum aestivum L.) flag leaf morphological and physiological traits. A recombinant inbred line population derived from SeriM82 and Babax was used for mapping quantitative trait loci (QTL) in wheat for tolerance to Al toxicity through 477 DNA markers. Based on a single-locus analysis, 48 QTLs including 16 putative and 32 suggestive QTLs were identified for all studied traits. Individual QTL explained 4.57-11.29% of the phenotypic variance in different environments during both the crop seasons. These QTLs located unevenly throughout the wheat genome. Among them, 52.08%, 29.17%, and 18.75% were in the A, B, and D genomes, respectively. Based on two-locus analysis, 54 additive QTLs and 6 pairs of epistatic effects were detected, among which 29 additive and 5 pairs of epistatic QTLs showed significant QTL × environment interactions. The highest number of stable QTLs was identified on genome A. Determining a number of QTL clusters indicated tight linkage or pleiotropy in the inheritance of different traits. The stable and major QTLs controlling traits in this research can be applied for verification in different environments and genetic backgrounds and identifying superior allelic variations in wheat to increase the performance of selection of high yielding lines adapted to Al stress in breeding programs.
Collapse
Affiliation(s)
- Sara Farokhzadeh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Bonjar Rd, Sistan and Baluchestan Provice, Zabol, Iran
| | - Barat Ali Fakheri
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Bonjar Rd, Sistan and Baluchestan Provice, Zabol, Iran
| | - Nafiseh Mahdi Nezhad
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Bonjar Rd, Sistan and Baluchestan Provice, Zabol, Iran
| | - Sirous Tahmasebi
- Department of Seed and Plant Improvement Research, Fars Agriculture and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
| | - Abbas Mirsoleimani
- Department of Plant Production, Faculty of Agriculture and Natural Resources of Darab, Shiraz University, Darab, Iran
| |
Collapse
|
41
|
QTLian breeding for climate resilience in cereals: progress and prospects. Funct Integr Genomics 2019; 19:685-701. [PMID: 31093800 DOI: 10.1007/s10142-019-00684-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/05/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Abstract
The ever-rising population of the twenty-first century together with the prevailing challenges, such as deteriorating quality of arable land and water, has placed a big challenge for plant breeders to satisfy human needs for food under erratic weather patterns. Rice, wheat, and maize are the major staple crops consumed globally. Drought, waterlogging, heat, salinity, and mineral toxicity are the key abiotic stresses drastically affecting crop yield. Conventional plant breeding approaches towards abiotic stress tolerance have gained success to limited extent, due to the complex (multigenic) nature of these stresses. Progress in breeding climate-resilient crop plants has gained momentum in the last decade, due to improved understanding of the physiochemical and molecular basis of various stresses. A good number of genes have been characterized for adaptation to various stresses. In the era of novel molecular markers, mapping of QTLs has emerged as viable solution for breeding crops tolerant to abiotic stresses. Therefore, molecular breeding-based development and deployment of high-yielding climate-resilient crop cultivars together with climate-smart agricultural practices can pave the path to enhanced crop yields for smallholder farmers in areas vulnerable to the climate change. Advances in fine mapping and expression studies integrated with cheaper prices offer new avenues for the plant breeders engaged in climate-resilient plant breeding, and thereby, hope persists to ensure food security in the era of climate change.
Collapse
|
42
|
Hassan FSC, Solouki M, Fakheri BA, Nezhad NM, Masoudi B. Mapping QTLs for physiological and biochemical traits related to grain yield under control and terminal heat stress conditions in bread wheat ( Triticum aestivum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:1231-1243. [PMID: 30425437 PMCID: PMC6214426 DOI: 10.1007/s12298-018-0590-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/02/2018] [Accepted: 07/24/2018] [Indexed: 05/04/2023]
Abstract
In order to detect genomic regions with different effects for some of the physiological and biochemical traits of wheat, four experiments were conducted at Research Farm of Agricultural and Natural Resources Research Center of Zabol in 2015-2016 and 2016-2017 growing seasons. The experiments were carried out using four alpha lattice designs with two replications under non-stress and terminal heat stress conditions. Plant materials used in this study included 167 recombinant inbred lines and their parents ('SeriM82' and 'Babax'). Six traits including grain yield (GY), proline content (PRO), water soluble carbohydrates (WSC), maximum efficiency of photosystem II (Fv/Fm), cytoplasmic membrane stability (CMS) and chlorophyll content (CHL) were evaluated. Genetic linkage map consisted of 211 AFLP marker, 120 SSR marker and 144 DArT markers with 1864 cm length and 4.4 cm mean distance. QTL analysis was carried out using a mixed-model-based composite interval mapping (MCIM) method. By the combined analysis of normal phenotypic values, 27 additive QTLs and five pairs of epistatic effects were identified for studied traits, among which two additive and one epistatic QTL showed significant QTL × environment interactions. By the combined analysis of stress phenotypic values, a total of 26 QTLs with additive effects and 5 epistatic QTLs were detected, among which one additive and one epistatic QTL showed QTL × environment interactions. Six QTLs with major effects (QGY-2B, QGY-2D, QPro-5B, QWSC-4A, QFv/Fm-6A and QCMS-4B), which were common between two conditions could be useful for marker-assisted selection (MAS) in order to develop heat tolerant and high-performance wheat varieties.
Collapse
Affiliation(s)
- Faramarz Sohrabi Chah Hassan
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, P.O. Box 98615-538, Zabol, 9861335856 Iran
| | - Mahmood Solouki
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, P.O. Box 98615-538, Zabol, 9861335856 Iran
| | - Barat Ali Fakheri
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, P.O. Box 98615-538, Zabol, 9861335856 Iran
| | - Nafiseh Mahdi Nezhad
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, P.O. Box 98615-538, Zabol, 9861335856 Iran
| | - Bahram Masoudi
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
43
|
Maulana F, Ayalew H, Anderson JD, Kumssa TT, Huang W, Ma XF. Genome-Wide Association Mapping of Seedling Heat Tolerance in Winter Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1272. [PMID: 30233617 PMCID: PMC6131858 DOI: 10.3389/fpls.2018.01272] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/14/2018] [Indexed: 05/21/2023]
Abstract
Heat stress during the seedling stage of early-planted winter wheat (Triticum aestivum L.) is one of the most abiotic stresses of the crop restricting forage and grain production in the Southern Plains of the United States. To map quantitative trait loci (QTLs) and identify single-nucleotide polymorphism (SNP) markers associated with seedling heat tolerance, a genome-wide association mapping study (GWAS) was conducted using 200 diverse representative lines of the hard red winter wheat association mapping panel, which was established by the Triticeae Coordinated Agricultural Project (TCAP) and genotyped with the wheat iSelect 90K SNP array. The plants were initially planted under optimal temperature conditions in two growth chambers. At the three-leaf stage, one chamber was set to 40/35°C day/night as heat stress treatment, while the other chamber was kept at optimal temperature (25/20°C day/night) as control for 14 days. Data were collected on leaf chlorophyll content, shoot length, number of leaves per seedling, and seedling recovery after removal of heat stress treatment. Phenotypic variability for seedling heat tolerance among wheat lines was observed in this study. Using the mixed linear model (MLM), we detected multiple significant QTLs for seedling heat tolerance on different chromosomes. Some of the QTLs were detected on chromosomes that were previously reported to harbor QTLs for heat tolerance during the flowering stage of wheat. These results suggest that some heat tolerance QTLs are effective from the seedling to reproductive stages in wheat. However, new QTLs that have never been reported at the reproductive stage were found responding to seedling heat stress in the present study. Candidate gene analysis revealed high sequence similarities of some significant loci with candidate genes involved in plant stress responses including heat, drought, and salt stress. This study provides valuable information about the genetic basis of seedling heat tolerance in wheat. To the best of our knowledge, this is the first GWAS to map QTLs associated with seedling heat tolerance targeting early planting of dual-purpose winter wheat. The SNP markers identified in this study will be used for marker-assisted selection (MAS) of seedling heat tolerance during dual-purpose wheat breeding.
Collapse
Affiliation(s)
- Frank Maulana
- Noble Research Institute, Ardmore, OK, United States
| | | | | | | | - Wangqi Huang
- Noble Research Institute, Ardmore, OK, United States
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xue-Feng Ma
- Noble Research Institute, Ardmore, OK, United States
| |
Collapse
|
44
|
Wang J, Wang J, Lu Y, Fang Y, Gao X, Wang Z, Zheng W, Xu S. The heat responsive wheat TaRAD23 rescues developmental and thermotolerant defects of the rad23b mutant in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:23-31. [PMID: 30080608 DOI: 10.1016/j.plantsci.2018.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/30/2018] [Accepted: 04/30/2018] [Indexed: 05/24/2023]
Abstract
High temperature severely damage the growth and development of crops with climate change. To effectively screen heat responsive proteins in wheat (Triticum aestivum L.), the isobaric tandem mass tag (TMT)-labeled quantitative proteomic analysis and quantitative real-time PCR (qRT-PCR) were performed. Here, we found that a wheat RADIATION SENSITIVE 23 protein, TaRAD23, was up-regulated at both protein and RNA levels by exposing to heat stress. Sequence homology analysis indicated that the TaRAD23 is a conserved protein, which is closely related to the Arabidopsis thaliana proteins AtRAD23B and AtRAD23A. Genetic knockout of AtRAD23B, but not AtRAD23A, shows multiple developmental defects, as well as sensitivity to heat stress. Meanwhile, we observed that constitutive overexpression of TaRAD23 in rad23b fully rescued developmental and thermotolerant defects of the mutant. Furthermore, qRT-PCR analysis of heat responsive genes in rad23b and its complementary lines suggested that suppression of the heat shock transcription factor AtHSFA2 and heat responsive genes (HSP70, HSP90, HSP17.6 and HSA32) may be the cause of the weaker thermotolerance in rad23b. Taken together, the data suggest that the heat responsive TaRAD23 is a functionally highly conserved protein that plays an important role in development, as well as the regulation in heat stress response network.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Junzhe Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Yunze Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Yan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China.
| | - Xin Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Weijun Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| |
Collapse
|
45
|
Daiana ADS, Raquel LDMDR, Joao GRG, Sergio AMC, Alisson FC. Effect of heat stress on common bean under natural growing conditions in three locations in different climate zones in the state of So Paulo, Brazil. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/jpbcs2018.0726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
46
|
Tricker PJ, ElHabti A, Schmidt J, Fleury D. The physiological and genetic basis of combined drought and heat tolerance in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3195-3210. [PMID: 29562265 DOI: 10.1093/jxb/ery081] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/14/2018] [Indexed: 05/03/2023]
Abstract
Drought and heat stress cause losses in wheat productivity in major growing regions worldwide, and both the occurrence and the severity of these events are likely to increase with global climate change. Water deficits and high temperatures frequently occur simultaneously at sensitive growth stages, reducing wheat yields by reducing grain number or weight. Although genetic variation and underlying quantitative trait loci for either individual stress are known, the combination of the two stresses has rarely been studied. Complex and often antagonistic physiology means that genetic loci underlying tolerance to the combined stress are likely to differ from those for drought or heat stress tolerance alone. Here, we review what is known of the physiological traits and genetic control of drought and heat tolerance in wheat and discuss potential physiological traits to study for combined tolerance. We further place this knowledge in the context of breeding for new, more tolerant varieties and discuss opportunities and constraints. We conclude that a fine control of water relations across the growing cycle will be beneficial for combined tolerance and might be achieved through fine management of spatial and temporal gas exchange.
Collapse
Affiliation(s)
- Penny J Tricker
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Abdeljalil ElHabti
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Jessica Schmidt
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Delphine Fleury
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
47
|
Genetic improvement of heat tolerance in wheat: Recent progress in understanding the underlying molecular mechanisms. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.09.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Jha UC, Jha R, Bohra A, Parida SK, Kole PC, Thakro V, Singh D, Singh NP. Population structure and association analysis of heat stress relevant traits in chickpea ( Cicer arietinum L.). 3 Biotech 2018; 8:43. [PMID: 29354354 PMCID: PMC5750240 DOI: 10.1007/s13205-017-1057-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/19/2017] [Indexed: 12/27/2022] Open
Abstract
Understanding genetic diversity and population structure is prerequisite to broaden the cultivated base of any crop. In the current investigation, we report discovery of a total of 319 alleles by assaying 81 SSRs on 71 chickpea genotypes. The cluster analysis based on Jaccard coefficient and unweighted neighbor joining algorithm categorized all genotypes into two major clusters. Cultivars grown within the same agro-climatic zones were clustered together, whereas the remaining genotypes particularly advanced breeding lines and accessions assigned to another cluster. Population structure analysis separated the entire collection into two subpopulations (K = 2) and the clustering pattern remained in close agreement with those of distance-based methods. Importantly, we also discovered marker trait association for membrane stability index (MSI) and leaf chlorophyll content measured as SPAD chlorophyll meter reading (SCMR), the two important physiological parameters indicative of heat stress (HS) tolerance in chickpea. Association analysis using both general linear and mixed linear models of the mean phenotypic data of traits recorded in 2016 and 2017 uncovered significant association of NCPGR206 and H2L102 with the MSI trait. Likewise, SSR markers GA9, TR31 and TA113 exhibited significant association with SCMR trait. The genomic regions putatively linked with two traits may be investigated in greater detail to further improve knowledge about the genetic architecture of HS tolerance in chickpea.
Collapse
Affiliation(s)
- Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, UP 208 024 India
| | - Rintu Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, UP 208 024 India
| | - Abhishek Bohra
- Indian Institute of Pulses Research (IIPR), Kanpur, UP 208 024 India
| | - Swarup Kumar Parida
- National Institute of Plant Genome Research (NIPGR), New Delhi, 110067 India
| | - Paresh Chandra Kole
- Department of Genetics & Plant Breeding and Crop Physiology, Institute of Agriculture, Visva Bharati University, Sriniketan, Bolpur, West Bengal 731236 India
| | - Virevol Thakro
- National Institute of Plant Genome Research (NIPGR), New Delhi, 110067 India
| | - Deepak Singh
- Indian Agricultural Statistical Research Institute (IASRI), New Delhi, India
| | | |
Collapse
|
49
|
Jha UC, Jha R, Bohra A, Parida SK, Kole PC, Thakro V, Singh D, Singh NP. Population structure and association analysis of heat stress relevant traits in chickpea ( Cicer arietinum L.). 3 Biotech 2018. [PMID: 29354354 DOI: 10.1007/s1320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Understanding genetic diversity and population structure is prerequisite to broaden the cultivated base of any crop. In the current investigation, we report discovery of a total of 319 alleles by assaying 81 SSRs on 71 chickpea genotypes. The cluster analysis based on Jaccard coefficient and unweighted neighbor joining algorithm categorized all genotypes into two major clusters. Cultivars grown within the same agro-climatic zones were clustered together, whereas the remaining genotypes particularly advanced breeding lines and accessions assigned to another cluster. Population structure analysis separated the entire collection into two subpopulations (K = 2) and the clustering pattern remained in close agreement with those of distance-based methods. Importantly, we also discovered marker trait association for membrane stability index (MSI) and leaf chlorophyll content measured as SPAD chlorophyll meter reading (SCMR), the two important physiological parameters indicative of heat stress (HS) tolerance in chickpea. Association analysis using both general linear and mixed linear models of the mean phenotypic data of traits recorded in 2016 and 2017 uncovered significant association of NCPGR206 and H2L102 with the MSI trait. Likewise, SSR markers GA9, TR31 and TA113 exhibited significant association with SCMR trait. The genomic regions putatively linked with two traits may be investigated in greater detail to further improve knowledge about the genetic architecture of HS tolerance in chickpea.
Collapse
Affiliation(s)
- Uday Chand Jha
- 1Indian Institute of Pulses Research (IIPR), Kanpur, UP 208 024 India
| | - Rintu Jha
- 1Indian Institute of Pulses Research (IIPR), Kanpur, UP 208 024 India
| | - Abhishek Bohra
- 1Indian Institute of Pulses Research (IIPR), Kanpur, UP 208 024 India
| | - Swarup Kumar Parida
- 2National Institute of Plant Genome Research (NIPGR), New Delhi, 110067 India
| | - Paresh Chandra Kole
- 3Department of Genetics & Plant Breeding and Crop Physiology, Institute of Agriculture, Visva Bharati University, Sriniketan, Bolpur, West Bengal 731236 India
| | - Virevol Thakro
- 2National Institute of Plant Genome Research (NIPGR), New Delhi, 110067 India
| | - Deepak Singh
- Indian Agricultural Statistical Research Institute (IASRI), New Delhi, India
| | | |
Collapse
|
50
|
Sharma DK, Torp AM, Rosenqvist E, Ottosen CO, Andersen SB. QTLs and Potential Candidate Genes for Heat Stress Tolerance Identified from the Mapping Populations Specifically Segregating for Fv/ Fm in Wheat. FRONTIERS IN PLANT SCIENCE 2017; 8:1668. [PMID: 29021798 PMCID: PMC5623722 DOI: 10.3389/fpls.2017.01668] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/11/2017] [Indexed: 05/20/2023]
Abstract
Despite the fact that Fv/Fm (maximum quantum efficiency of photosystem II) is the most widely used parameter for a rapid non-destructive measure of stress detection in plants, there are barely any studies on the genetic understanding of this trait under heat stress. Our aim was to identify quantitative trait locus (QTL) and the potential candidate genes linked to Fv/Fm for improved photosynthesis under heat stress in wheat (Triticum aestivum L.). Three bi-parental F2 mapping populations were generated by crossing three heat tolerant male parents (origin: Afghanistan and Pakistan) selected for high Fv/Fm with a common heat susceptible female parent (origin: Germany) selected for lowest Fv/Fm out of a pool of 1274 wheat cultivars of diverse geographic origin. Parents together with 140 F2 individuals in each population were phenotyped by Fv/Fm under heat stress (40°C for 3 days) around anthesis. The Fv/Fm decreased by 6.3% in the susceptible parent, 1-2.5% in the tolerant parents and intermediately 4-6% in the mapping populations indicating a clear segregation for the trait. The three populations were genotyped with 34,955 DArTseq and 27 simple sequence repeat markers, out of which ca. 1800 polymorphic markers mapped to 27 linkage groups covering all the 21 chromosomes with a total genome length of about 5000 cM. Inclusive composite interval mapping resulted in the identification of one significant and heat-stress driven QTL in each population on day 3 of the heat treatment, two of which were located on chromosome 3B and one on chromosome 1D. These QTLs explained about 13-35% of the phenotypic variation for Fv/Fm with an additive effect of 0.002-0.003 with the positive allele for Fv/Fm originating from the heat tolerant parents. Approximate physical localization of these three QTLs revealed the presence of 12 potential candidate genes having a direct role in photosynthesis and/or heat tolerance. Besides providing an insight into the genetic control of Fv/Fm in the present study, the identified QTLs would be useful in breeding for heat tolerance in wheat.
Collapse
Affiliation(s)
- Dew Kumari Sharma
- Molecular Plant Breeding, Section for Plant and Soil Science, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Anna Maria Torp
- Molecular Plant Breeding, Section for Plant and Soil Science, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Eva Rosenqvist
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Carl-Otto Ottosen
- Plant, Food & Climate, Department of Food Science, Aarhus University, Årslev, Denmark
| | - Sven B. Andersen
- Molecular Plant Breeding, Section for Plant and Soil Science, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|