1
|
Yang M, Kong X, Zhou C, Kuang R, Wu X, Liu C, He H, Xu Z, Wei Y. Genomic insights into the domestication and genetic basis of yield in papaya. HORTICULTURE RESEARCH 2025; 12:uhaf045. [PMID: 40236729 PMCID: PMC11997427 DOI: 10.1093/hr/uhaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/25/2025] [Indexed: 04/17/2025]
Abstract
Papaya (Carica papaya L.) is an important tropical and subtropical fruit crop, and understanding its genome is essential for breeding. In this study, we assembled a high-quality genome of 344.17 Mb for the newly cultivated papaya 'Zihui', which contains 22 250 protein-coding genes. By integrating 201 resequenced papaya genomes, we identified four distinct papaya groups and a 34 Mb genomic region with strong domestication selection signals. Within these regions, two key genes associated with papaya yield were discovered: Cp_zihui06549, encoding a leucine-rich receptor-like protein kinase, and Cp_zihui06768, encoding the accumulation of photosystem one 1 (APO1) protein. Heterologous expression of Cp_zihui06549 in tomato confirmed that the total number of fruits in transgenic lines more than doubled compared to wild-type plants, resulting in a significant yield increase. Furthermore, we constructed a pan-genome of papaya and obtained a 77.41 Mb nonreference sequence containing 1543 genes. Within this pan-genome, 2483 variable genes, we detected, including four genes annotated as the 'terpene synthase activity' Gene Ontology term, which were lost in cultivars during domestication. Finally, gene retention analyses were performed using gene presence and absence variation data and differentially expressed genes across various tissues and organs. This study provides valuable insights into the genes and loci associated with phenotypes and domestication processes, laying a solid foundation for future papaya breeding efforts.
Collapse
Affiliation(s)
- Min Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, No. 80, Dafeng 2nd Street, Tianhe District, Guangzhou 510640, China
| | - Xiangdong Kong
- JiguangGene Biotechnology Co., Ltd., No. 9, Huida Road, Pukou District, Nanjing 210031, China
| | - Chenping Zhou
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, No. 80, Dafeng 2nd Street, Tianhe District, Guangzhou 510640, China
| | - Ruibin Kuang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, No. 80, Dafeng 2nd Street, Tianhe District, Guangzhou 510640, China
| | - Xiaming Wu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, No. 80, Dafeng 2nd Street, Tianhe District, Guangzhou 510640, China
| | - Chuanhe Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, No. 80, Dafeng 2nd Street, Tianhe District, Guangzhou 510640, China
| | - Han He
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, No. 80, Dafeng 2nd Street, Tianhe District, Guangzhou 510640, China
| | - Ze Xu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, No. 80, Dafeng 2nd Street, Tianhe District, Guangzhou 510640, China
| | - Yuerong Wei
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, No. 80, Dafeng 2nd Street, Tianhe District, Guangzhou 510640, China
| |
Collapse
|
2
|
Yang M, Zhou C, Yang H, Kuang R, Liu K, Huang B, Wei Y. Comparative transcriptomics and genomic analyses reveal differential gene expression related to Colletotrichum brevisporum resistance in papaya ( Carica papaya L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1038598. [PMID: 36618670 PMCID: PMC9816866 DOI: 10.3389/fpls.2022.1038598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Colletotrichum brevisporum is an important causal pathogen of anthracnose that seriously affects the fruit quality and yield of papaya (Carica papaya L.). Although many genes and biological processes involved in anthracnose resistance have been reported in other species, the molecular mechanisms involved in the response or resistance to anthracnose in post-harvest papaya fruits remain unclear. In this study, we compared transcriptome changes in the post-harvest fruits of the anthracnose-susceptible papaya cultivar Y61 and the anthracnose-resistant cultivar G20 following C. brevisporum inoculation. More differentially expressed genes (DEGs) and differentially expressed long non-coding RNAs (DElnRNAs) were identified in G20 than in Y61, especially at 24 h post-inoculation (hpi), suggesting a prompt activation of defense responses in G20 in the first 24 h after C. brevisporum inoculation. These DEGs were mainly enriched in plant-pathogen interaction, phenylpropanoid biosynthesis/metabolism, and peroxisome and flavonoid biosynthesis pathways in both cultivars. However, in the first 24 hpi, the number of DEGs related to anthracnose resistance was greater in G20 than in Y61, and changes in their expression levels were faster in G20 than in Y61. We also identified a candidate anthracnose-resistant gene cluster, which consisted of 12 genes, 11 in G20 and Y61, in response to C. brevisporum inoculation. Moreover, 529 resistance gene analogs were identified in papaya genome, most of which responded to C. brevisporum inoculation and were genetically different between papaya cultivars and wild-type populations. The total expression dose of the resistance gene analogs may help papaya resist C. brevisporum infection. This study revealed the mechanisms underlying different anthracnose resistance between the anthracnose-resistant and anthracnose-susceptible cultivars based on gene expression, and identified some potential anthracnose resistance-related candidate genes/major regulatory factors. Our findings provided potential targets for developing novel genetic strategies to overcome anthracnose in papaya.
Collapse
Affiliation(s)
- Min Yang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chenping Zhou
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hu Yang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ruibin Kuang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Bingxiong Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuerong Wei
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
3
|
Carrasco B, Arévalo B, Perez-Diaz R, Rodríguez-Alvarez Y, Gebauer M, Maldonado JE, García-Gonzáles R, Chong-Pérez B, Pico-Mendoza J, Meisel LA, Ming R, Silva H. Descriptive Genomic Analysis and Sequence Genotyping of the Two Papaya Species (Vasconcellea pubescens and Vasconcellea chilensis) Using GBS Tools. PLANTS 2022; 11:plants11162151. [PMID: 36015454 PMCID: PMC9414553 DOI: 10.3390/plants11162151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
A genotyping by sequencing (GBS) approach was used to analyze the organization of genetic diversity in V. pubescens and V. chilensis. GBS identified 4675 and 4451 SNPs/INDELs in two papaya species. The cultivated orchards of V. pubescens exhibited scarce genetic diversity and low but significant genetic differentiation. The neutrality test yielded a negative and significant result, suggesting that V. pubescens suffered a selective sweep or a rapid expansion after a bottleneck during domestication. In contrast, V. chilensis exhibited a high level of genetic diversity. The genetic differentiation among the populations was slight, but it was possible to distinguish the two genetic groups. The neutrality test indicated no evidence that natural selection and genetic drift affect the natural population of V. chilensis. Using the Carica papaya genome as a reference, we identified critical SNPs/INDELs associated with putative genes. Most of the identified genes are related to stress responses (salt and nematode) and vegetative and reproductive development. These results will be helpful for future breeding and conservation programs of the Caricaceae family.
Collapse
Affiliation(s)
- Basilio Carrasco
- Centro de Estudios en Alimentos Procesados (CEAP), Talca 3480094, Chile
| | - Bárbara Arévalo
- Centro de Estudios en Alimentos Procesados (CEAP), Talca 3480094, Chile
| | | | - Yohaily Rodríguez-Alvarez
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Marlene Gebauer
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Jonathan E Maldonado
- Laboratorio de Genómica Funcional y Bioinformática, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile
- Laboratorio de Multiómica Vegetal y Bioinformática, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | | | - Borys Chong-Pérez
- Sociedad de Investigación y Servicios, BioTECNOS Ltda., San Javier 3660000, Chile
| | - José Pico-Mendoza
- Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| | - Lee A Meisel
- Laboratorio de Genética Molecular Vegetal, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago 7830490, Chile
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Herman Silva
- Laboratorio de Genómica Funcional y Bioinformática, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile
| |
Collapse
|