1
|
Bailey E, Finno CJ, Cullen JN, Kalbfleisch T, Petersen JL. Analyses of whole-genome sequences from 185 North American Thoroughbred horses, spanning 5 generations. Sci Rep 2024; 14:22930. [PMID: 39358442 PMCID: PMC11447028 DOI: 10.1038/s41598-024-73645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Whole genome sequences (WGS) of 185 North American Thoroughbred horses were compared to quantify the number and frequency of variants, diversity of mitotypes, and autosomal runs of homozygosity (ROH). Of the samples, 82 horses were born between 1965 and 1986 (Group 1); the remaining 103, selected to maximize pedigree diversity, were born between 2000 and 2020 (Group 2). Over 14.3 million autosomal variants were identified with 4.5-5.0 million found per horse. Mitochondrial sequences associated the North American Thoroughbreds with 9 of 17 clades previously identified among diverse breeds. Individual coefficients of inbreeding, estimated from ROH, averaged 0.266 (Group 1) and 0.283 (Group 2). When SNP arrays were simulated using subsets of WGS markers, the arrays over-estimated lengths of ROH. WGS-based estimates of inbreeding were highly correlated (r > 0.98) with SNP array-based estimates, but only moderately correlated (r = 0.40) with inbreeding based on 5-generation pedigrees. On average, Group 1 horses had more heterozygous variants (P < 0.001), more total variants (P < 0.001), and lower individual inbreeding (FROH; P < 0.001) than horses in Group 2. However, the distribution of numbers of variants, allele frequency, and extent of ROH overlapped among all horses such that it was not possible to identify the group of origin of any single horse using these measures. Consequently, the Thoroughbred population would be better monitored by investigating changes in specific variants, rather than relying on broad measures of diversity. The WGS for these 185 horses is publicly available for comparison to other populations and as a foundation for modeling changes in population structure, breeding practices, or the appearance of deleterious variants.
Collapse
Affiliation(s)
- Ernie Bailey
- University of Kentucky, Maxwell H. Gluck Equine Research Center, Lexington, KY, 40546, USA
| | - Carrie J Finno
- University of California-Davis, Population Health and Reproduction, Davis, CA, 95616, USA
| | - Jonah N Cullen
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Ted Kalbfleisch
- University of Kentucky, Maxwell H. Gluck Equine Research Center, Lexington, KY, 40546, USA.
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, 68583-0908, USA.
| |
Collapse
|
2
|
Medica AJ, Lambourne S, Aitken RJ. Predicting the Outcome of Equine Artificial Inseminations Using Chilled Semen. Animals (Basel) 2023; 13:ani13071203. [PMID: 37048459 PMCID: PMC10093274 DOI: 10.3390/ani13071203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
This study aimed to determine whether an analysis of stallion ejaculate could accurately predict the likelihood of pregnancy resulting from artificial insemination in mares. This study involved 46 inseminations of 41 mares, using 7 standardbred stallions over a 5-week period at an Australian pacing stud. Semen quality was assessed immediately after collection and again after chilling at ~5 °C for 24 h. The assessment involved evaluating ejaculate volume, sperm concentration, and motility parameters using an iSperm® Equine portable device. After the initial evaluation, a subpopulation of cells was subjected to a migration assay through a 5 µm polycarbonate filter within a Samson™ isolation chamber over a 15 min period. The cells were assessed for their concentration, motility parameters, and ability to reduce the membrane impermeant tetrazolium salt WST-1. The data, combined with the stallion and mare's ages, were used to predict the likelihood of pregnancy, as confirmed by rectal ultrasound sonography performed 14 days post ovulation. The criteria used to predict pregnancy were optimized for each individual stallion, resulting in an overall accuracy of 87.9% if analyzed pre-chilling and 95% if analyzed post-chilling. This study suggests that an analysis of stallion ejaculate can be used to predict the likelihood of pregnancy resulting from artificial insemination in mares with a high level of accuracy.
Collapse
Affiliation(s)
- Ashlee Jade Medica
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Sarah Lambourne
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Robert John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
3
|
Karlau A, Molina A, Antonini A, Peyrás SD. The influence of foreign lineages in the genetic component of reproductive traits in Criollo Argentino mares: a 30-year study. Livest Sci 2023. [DOI: 10.1016/j.livsci.2022.105153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Aitken RJ, Lambourne S, Medica AJ. Predicting the outcome of Thoroughbred stallion matings on the basis of dismount semen sample analyses. Reproduction 2022; 165:281-288. [PMID: 36538652 PMCID: PMC9874971 DOI: 10.1530/rep-22-0309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
In brief A capacity to predict the likelihood of pregnancy following natural matings would be of considerable benefit to the Thoroughbred horse breeding industry. In this article, we describe a strategy for achieving this outcome through the analysis of dismount samples, that achieved an overall accuracy of 94.6%. Abstract The purpose of this study was to determine whether the analysis of dismount semen samples from Thoroughbred stallions could be used to predict whether a given mating would result in a pregnancy. The analysis was based on 143 matings of 141 mares by a cohort of 7 Thoroughbred stallions over a 4-week period at an Australian Stud. The criteria of semen quality utilized in this analysis involved a preliminary assessment of the raw dismount sample in terms of semen volume, sperm number, and sperm movement characteristics using an iSperm® Equine portable device. Following this initial assessment, a subpopulation of progressively motile spermatozoa was isolated by virtue of the cells ability to migrate across a 5 µm polycarbonate filter in a Samson™ isolation chamber over a 15-minute period. These isolated cells were again evaluated for their number and quality of movement using the iSperm® system and, in addition, assessed for their ability to reduce WST-1, a membrane impermeant tetrazolium salt. These data were then combined with additional information describing the ages of the animals used in this study, their historical breeding records, and mating frequency during the breeding season. The total data set was then used to predict the occurrence of pregnancy, as confirmed by ultrasound at ~14 days post mating. The criteria used to predict fertility in the ensuing multivariate discriminant analysis were optimized for each individual stallion. Using this strategy, we were able to successfully predict the outcome of a cover with an overall accuracy of 94.6%.
Collapse
Affiliation(s)
- Robert John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW, Australia,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia,Correspondence should be addressed to R J Aitken;
| | - Sarah Lambourne
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Ashlee Jade Medica
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
5
|
Cardinali I, Giontella A, Tommasi A, Silvestrelli M, Lancioni H. Unlocking Horse Y Chromosome Diversity. Genes (Basel) 2022; 13:genes13122272. [PMID: 36553539 PMCID: PMC9777570 DOI: 10.3390/genes13122272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
The present equine genetic variation mirrors the deep influence of intensive breeding programs during the last 200 years. Here, we provide a comprehensive current state of knowledge on the trends and prospects on the variation in the equine male-specific region of the Y chromosome (MSY), which was assembled for the first time in 2018. In comparison with the other 12 mammalian species, horses are now the most represented, with 56 documented MSY genes. However, in contrast to the high variability in mitochondrial DNA observed in many horse breeds from different geographic areas, modern horse populations demonstrate extremely low genetic Y-chromosome diversity. The selective pressures employed by breeders using pedigree data (which are not always error-free) as a predictive tool represent the main cause of this lack of variation in the Y-chromosome. Nevertheless, the detailed phylogenies obtained by recent fine-scaled Y-chromosomal genotyping in many horse breeds worldwide have contributed to addressing the genealogical, forensic, and population questions leading to the reappraisal of the Y-chromosome as a powerful genetic marker to avoid the loss of biodiversity as a result of selective breeding practices, and to better understand the historical development of horse breeds.
Collapse
Affiliation(s)
- Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
- Correspondence: (I.C.); (A.G.)
| | - Andrea Giontella
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
- Correspondence: (I.C.); (A.G.)
| | - Anna Tommasi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | | | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
6
|
de Witt AA, Fosgate GT, Schulman ML. The association between the endometrial biopsy grade and selected epidemiological and reproductive variables in a population of subfertile mares. EQUINE VET EDUC 2022. [DOI: 10.1111/eve.13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anika A. de Witt
- Faculty of Veterinary Science University of Pretoria Onderstepoort South Africa
| | - Geoffrey T. Fosgate
- Production Animal Studies Faculty of Veterinary Science University of Pretoria Onderstepoort South Africa
| | - Martin L. Schulman
- Section of Reproduction Faculty of Veterinary Science University of Pretoria Onderstepoort South Africa
| |
Collapse
|
7
|
Laseca N, Demyda-Peyrás S, Valera M, Ramón M, Escribano B, Perdomo-González DI, Molina A. A genome-wide association study of mare fertility in the Pura Raza Español horse. Animal 2022; 16:100476. [PMID: 35247706 DOI: 10.1016/j.animal.2022.100476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Despite the economic importance of fertility for the horse industry, few efforts have been made to achieve a better understanding of the genetic mechanisms underlying its control. This is probably due to the difficulty of obtaining reliable phenotypes and the complexity of modelling the environmental and management factors. This work is novel in that we propose to use reproductive efficiency (RE) as an indicator of mare fertility. To achieve this, we performed a genome-wide association study in the Pura Raza Español horse aimed at identifying genomic variants, regions, and candidate genes associated with fertility in mares. The dataset included 819 animals genotyped with the Affymetrix Axiom™ Equine 670 K single-nucleotide polymorphisms (SNPs) Genotyping Array and the deregressed breeding values for RE trait, obtained using a ssBLUP model, employed as pseudo-phenotypic data. Our results showed 28 SNPs potentially associated with RE, which explained 87.19% of the genetic variance and 6.61% of the phenotypic variance. Those results were further validated in BayesB, showing a correlation between observed and predicted RE of 0.57. In addition, 15 candidate genes (HTRA3, SPIRE1, APOE, ERCC1, FOXA3, NECTIN-2, KLC3, RSPH6A, PDPK1, MEIOB, PAQR4, NM3, PKD1, PRSS21, IFT140) previously related to fertility in mammals were associated with the markers and genomic regions significantly associated with RE. To our knowledge, this is the first genome-wide association study performed on mare fertility.
Collapse
Affiliation(s)
- N Laseca
- Departamento de Genética. Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, CN-IV km 396, 14071 Córdoba, España.
| | - S Demyda-Peyrás
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 s/n, La Plata 1900, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) La Plata, La Plata 1900, Argentina
| | - M Valera
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica. Universidad de Sevilla, Ctra. Utrera, Km 1, Sevilla, Spain
| | - M Ramón
- Centro Regional de Selección y Reproducción Animal (CERSYRA), Av. del Vino, 10, 13300 Valdepeñas, Ciudad Real, Spain
| | - B Escribano
- Departamento de Fisiología, Universidad de Córdoba, Campus de Rabanales, CN-IV km 396, 14071 Córdoba, Spain
| | - D I Perdomo-González
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica. Universidad de Sevilla, Ctra. Utrera, Km 1, Sevilla, Spain
| | - A Molina
- Departamento de Genética. Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, CN-IV km 396, 14071 Córdoba, España
| |
Collapse
|
8
|
Laseca N, Molina A, Ramón M, Valera M, Azcona F, Encina A, Demyda-Peyrás S. Fine-Scale Analysis of Runs of Homozygosity Islands Affecting Fertility in Mares. Front Vet Sci 2022; 9:754028. [PMID: 35252415 PMCID: PMC8891756 DOI: 10.3389/fvets.2022.754028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
The loss of genetic variability in livestock populations bred under strict selection processes is a growing concern, as it may lead to increased inbreeding values and lower fertility, as a consequence of the “inbreeding depression” effect. This is particularly important in horses, where inbreeding levels tend to rise as individuals become more and more closely related. In this study, we evaluated the effect of increased inbreeding levels on mare fertility by combining an SNP-based genomic approach using runs of homozygosity and the estimation of genetic breeding values for reproductive traits in a large population of Pura Raza Española mares. Our results showed a negative correlation between whole-genome homozygosity and fertility estimated breeding values (EBVs) at the genome level (ρ = −0.144). However, the analysis at chromosome level revealed a wide variability, with some chromosomes showing higher correlations than others. Interestingly, the correlation was stronger (−0.241) when we repeated the analysis in a reduced dataset including the 10% most and least fertile individuals, where the latter showed an increase in average inbreeding values (FROH) of around 30%. We also found 41 genomic regions (ROHi, runs of homozygosity islands) where homozygosity increased 100-fold, 13 of which were significantly associated with fertility after cross-validation. These regions encompassed 17 candidate genes previously related to oocyte and embryo development in several species. Overall, we demonstrated the relationship between increased homozygosis at the genomic level and fertility in mares. Our findings may help to deal with the occurrence of inbreeding depression, as well as further our understanding of the mechanisms underlying fertility in mares.
Collapse
Affiliation(s)
- Nora Laseca
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Antonio Molina
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Manuel Ramón
- Cersyra de Valdepeñas, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal Castilla La Mancha, Tomelloso, Spain
| | - Mercedes Valera
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Sevilla, Spain
| | - Florencia Azcona
- IGEVET (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ana Encina
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Sevilla, Spain
- Asociación Nacional de Criadores de Caballos de Pura Raza Española, Sevilla, Spain
| | - Sebastián Demyda-Peyrás
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET LA PLATA), La Plata, Argentina
- *Correspondence: Sebastián Demyda-Peyrás
| |
Collapse
|
9
|
Castaneda C, Juras R, Kjöllerström J, Hernandez Aviles C, Teague SR, Love CC, Cothran EG, Varner DD, Raudsepp T. Thoroughbred stallion fertility is significantly associated with FKBP6 genotype but not with inbreeding or the contribution of a leading sire. Anim Genet 2021; 52:813-823. [PMID: 34610162 DOI: 10.1111/age.13142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/12/2022]
Abstract
This is a follow-up study to validate the previously detected association of the FKBP6 gene with stallion subfertility. Using a select cohort of 150 Thoroughbred stallions with detailed breeding records, we confirm significant association (P < 0.0001) between low per-cycle pregnancy rates (≤50%) and a combined A/A-A/A genotype of SNPs chr13:11 353 372G>A and chr13:11 353 436A>C in FKBP6 exon 5. We also show that stallion subfertility and the combined genotype A/A-A/A are not associated with the level of genetic diversity based on 12 autosomal microsatellite markers, or with pedigree-based inbreeding rate, or the extent of contribution of a leading Thoroughbred sire, Northern Dancer, in a stallion's pedigree. We develop a TaqMan allelic discrimination assay for the two SNPs to facilitate accurate and high-throughput genotyping. We determine allele, genotype and combined genotype frequencies of FKBP6 exon 5 SNPs in a global cohort of 518 Thoroughbreds (76% stallions or geldings and 24% mares) and show that the frequency of the A/A-A/A genotype is 4%. Because there is no similar association between the FKBP6 exon 5 genotype and stallion subfertility in Hanoverians, we suggest that the two SNPs are not causative but rather tagging a breed-specific haplotype with genetic variants unique to Thoroughbreds. Further WGS-based research is needed to identify the molecular causes underlying the observed genotype-phenotype association in Thoroughbred stallions.
Collapse
Affiliation(s)
- C Castaneda
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - R Juras
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - J Kjöllerström
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - C Hernandez Aviles
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - S R Teague
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - C C Love
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - E G Cothran
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - D D Varner
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - T Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
10
|
Wang Z, Zhou B, Zhang T, Yan X, Yu Y, Li J, Mei B, Wang Z, Zhang Y, Wang R, Lv Q, Liu Z, Zhao Y, Du C, Su R. Assessing Genetic Diversity and Estimating the Inbreeding Effect on Economic Traits of Inner Mongolia White Cashmere Goats Through Pedigree Analysis. Front Vet Sci 2021; 8:665872. [PMID: 34239910 PMCID: PMC8258104 DOI: 10.3389/fvets.2021.665872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The purpose of this study was to discover the population structure and genetic diversity of Inner Mongolia White Cashmere goats (IMCGs) and demonstrate the effect of inbreeding on the live body weight (LBW), cashmere yield (CY), fiber length (FL), and fiber diameter (FD) of IMCGs. Materials and Methods: All data were collected from pedigree information and production performance records of IMCGs from 1983 to 2019. The population structure and genetic diversity were analyzed by Endog 4.8 software. Inbreeding coefficients were obtained by the pedigree package in R. Then, a linear regression model was used to analyze how inbreeding influences economic traits in IMCGs. Four levels of inbreeding coefficients (Fi) were classified in this study, including Fi = 0, 0< Fi ≤ 6.25, 6.25< Fi ≤ 12.5 and Fi≥12.5. Variance analysis was performed to determine whether inbreeding levels had a significant effect on economic traits in IMCGs. Results: The proportions of rams and dams in IMCGs for breeding were relatively small, with values of 0.8 and 20.5%, respectively. The proportion of inbred animals in the entire population was high, with values up to 68.6%; however, the average inbreeding coefficient and relatedness coefficient were 4.50 and 8.48%, respectively. To date, the population has experienced 12 generations. The average generation interval obtained in the present study was 4.11 ± 0.01 years. The ram-to-son pathway was lowest (3.97 years), and the ewe-to-daughter pathway was highest (4.24 years). It was discovered that the LBW, CY, and FL increased by 3.88 kg, 208.7 g, and 1.151 cm, respectively, with every 1% increase in the inbreeding coefficient, and the FD decreased by 0.819 μm with every 1% increase in the inbreeding coefficient. Additionally, multiple comparison analysis indicated that when the inbreeding coefficient was higher than 6.25%, the LBW showed an obvious decreasing trend. The threshold value of inbreeding depression in the CY is 12.5%. However, inbreeding depression has not been observed in the FL and FD. Conclusion: Pedigree completeness needs to be further strengthened. The degree of inbreeding in this flock should be properly controlled when designing breeding programs.
Collapse
Affiliation(s)
- Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Bohan Zhou
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Tao Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Bigvet Co., Ltd., Hohhot, China
| | - Xiaochun Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yongsheng Yu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jinquan Li
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction in Inner Mongolia Autonomous Region, Hohhot, China.,Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Agriculture University, Hohhot, China
| | - Bujun Mei
- Department of Agriculture, Hetao College, Hetao University, Bayannaoer, China
| | - Zhixin Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Qi Lv
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Liu
- Inner Mongolia Bigvet Co., Ltd., Hohhot, China
| | | | - Chen Du
- Reproductive Medicine Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
11
|
Terán E, Azcona F, Ramón M, Molina A, Dorado J, Hidalgo M, Ross P, Goszczynski D, Demyda-Peyrás S. Sperm morphometry is affected by increased inbreeding in the Retinta cattle breed: A molecular approach. Mol Reprod Dev 2021; 88:416-426. [PMID: 34009693 DOI: 10.1002/mrd.23475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/02/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022]
Abstract
The effect of inbreeding depression on sperm motility is well documented, but its influence on sperm morphometry has been scarcely examined to date. Here, we combined the use of computer-assisted sperm morphometry analysis (CASMA) with a SNP-based genomic approach to determine and characterize the effect of inbreeding on the sperm shape of a highly inbred cattle population. We determined seven morphometric parameters on frozen-thawed sperm samples of 57 Retinta bulls: length (L, µm), width (W, µm), area (A, µm2 ), perimeter (P, µm), ellipticity (ELI; L/W), elongation (L-W)/(L + W) and perimeter-to-area shape factor (p2a; P2 /4 × π × A). The comparison of highly inbred (HI) and lowly inbreed (LI) individuals based on runs of homozygosity (ROH) inbreeding values (F ROH ) showed no differences between groups. An additional two-step unsupervised sperm subpopulation analysis based on morphometric parameters showed significant differences in the abundance of different sperm subpopulations between groups (p < 0.05). This analysis revealed that HI bulls harbored a higher percentage of narrow-head sperm as opposed to the higher percentage of large- and round-headed sperm detected in LI. A further genomic characterization revealed 23 regions differentially affected by inbreeding in both groups, detecting six genes (SPAG6, ARMC3, PARK7, VAMP3, DYNLRB2, and PHF7) previously related to different spermatogenesis-associated processes.
Collapse
Affiliation(s)
- Ester Terán
- IGEVET - Instituto de Genética Veterinaria, UNLP - CONICET, Facultad de Ciencias Veterinarias Universidad Nacional de la Plata, La Plata, Buenos Aires, Argentina.,Departamento de Producción Animal, Facultad de Ciencias Veterinarias, UNLP - CONICET, Facultad de Ciencias Veterinarias Universidad Nacional de la Plata, La Plata, Buenos Aires, Argentina
| | - Florencia Azcona
- IGEVET - Instituto de Genética Veterinaria, UNLP - CONICET, Facultad de Ciencias Veterinarias Universidad Nacional de la Plata, La Plata, Buenos Aires, Argentina
| | - Manuel Ramón
- CERSYRA-Centro Regional de Selección y Reproducción Animal de Castilla-La Mancha, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Valdepeñas, España
| | - Antonio Molina
- Departamento de Genética, Universidad de Córdoba, Córdoba, España
| | - Jesús Dorado
- Grupo de Reproducción Veterinaria, Departamento de Medicina y Cirugía animal, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, España
| | - Manuel Hidalgo
- Grupo de Reproducción Veterinaria, Departamento de Medicina y Cirugía animal, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, España
| | - Pablo Ross
- Department of Animal Science, University of California at Davis, Davis, California, USA
| | - Daniel Goszczynski
- Department of Animal Science, University of California at Davis, Davis, California, USA
| | - Sebastián Demyda-Peyrás
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, UNLP - CONICET, Facultad de Ciencias Veterinarias Universidad Nacional de la Plata, La Plata, Buenos Aires, Argentina
| |
Collapse
|
12
|
Abstract
The equid family contains only one single extant genus, Equus, including seven living species grouped into horses on the one hand and zebras and asses on the other. In contrast, the equine fossil record shows that an extraordinarily richer diversity existed in the past and provides multiple examples of a highly dynamic evolution punctuated by several waves of explosive radiations and extinctions, cross-continental migrations, and local adaptations. In recent years, genomic technologies have provided new analytical solutions that have enhanced our understanding of equine evolution, including the species radiation within Equus; the extinction dynamics of several lineages; and the domestication history of two individual species, the horse and the donkey. Here, we provide an overview of these recent developments and suggest areas for further research.
Collapse
Affiliation(s)
- Pablo Librado
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France;
| | - Ludovic Orlando
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France;
| |
Collapse
|