1
|
Wang D, Pu Y, Gao X, Zeng L, Li H. Potential Functions and Causal Associations of GNLY in Primary Open-Angle Glaucoma: Integration of Blood-Derived Proteome, Transcriptome, and Experimental Verification. J Inflamm Res 2025; 18:367-380. [PMID: 39802509 PMCID: PMC11725236 DOI: 10.2147/jir.s497525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Genome-wide association studies (GWAS) have identified multiple genetic loci associated with primary open-angle glaucoma (POAG). However, the mechanisms by which these loci contribute to POAG progression remain unclear. This study aimed to identify potential causative genes involved in the development of POAG. Methods We utilized multi-dimensional high-throughput data, integrating proteome-wide association study(PWAS), transcriptome-wide association study (TWAS), and summary data-based Mendelian randomization (SMR) analysis. This approach enabled the identification of genes influencing POAG risk by affecting gene expression and protein concentrations in the bloodstream. The key gene was validated through enzyme-linked immunosorbent assay (ELISA) analysis. Results PWAS identified 86 genes associated with altered blood protein levels in POAG patients. Of these, eight genes (SFTPD, CSK, COL18A1, TCN2, GZMK, RAB2A, TEK, and GNLY) were identified as likely causative for POAG (P SMR < 0.05). TWAS revealed that GNLY was significantly associated with POAG at the gene expression level. GNLY-interacting genes were found to play roles in immune dysregulation, inflammation, and apoptosis. Clinical and cell-based validation confirmed reduced GNLY expression in POAG groups. Conclusion This study reveals GNLY as a significant potential therapeutic target for managing primary open-angle glaucoma.
Collapse
Affiliation(s)
- Dangdang Wang
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Yanyu Pu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Xi Gao
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Lihong Zeng
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Hong Li
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| |
Collapse
|
2
|
Arumugam T, Adimulam T, Gokul A, Ramsuran V. Variation within the non-coding genome influences genetic and epigenetic regulation of the human leukocyte antigen genes. Front Immunol 2024; 15:1422834. [PMID: 39355248 PMCID: PMC11442197 DOI: 10.3389/fimmu.2024.1422834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Variation within the non-coding genome may influence the regulation and expression of important genes involved in immune control such as the human leukocyte antigen (HLA) system. Class I and Class II HLA molecules are essential for peptide presentation which is required for T lymphocyte activation. Single nucleotide polymorphisms within non-coding regions of HLA Class I and Class II genes may influence the expression of these genes by affecting the binding of transcription factors and chromatin modeling molecules. Furthermore, an interplay between genetic and epigenetic factors may also influence HLA expression. Epigenetic factors such as DNA methylation and non-coding RNA, regulate gene expression without changing the DNA sequence. However, genetic variation may promote or allow genes to escape regulation by epigenetic factors, resulting in altered expression. The HLA system is central to most diseases, therefore, understanding the role of genetics and epigenetics on HLA regulation will tremendously impact healthcare. The knowledge gained from these studies may lead to novel and cost-effective diagnostic approaches and therapeutic interventions. This review discusses the role of non-coding variants on HLA regulation. Furthermore, we discuss the interplay between genetic and epigenetic factors on the regulation of HLA by evaluating literature based on polymorphisms within DNA methylation and miRNA regulatory sites within class I and Class II HLA genes. We also provide insight into the importance of the HLA non-coding genome on disease, discuss ethnic-specific differences across the HLA region and provide guidelines for future HLA studies.
Collapse
Affiliation(s)
- Thilona Arumugam
- School of Laboratory Medicine, Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Theolan Adimulam
- School of Laboratory Medicine, Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Anmol Gokul
- School of Laboratory Medicine, Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine, Medical Science, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| |
Collapse
|
3
|
Wu C, Liu H, Zuo Q, Jiang A, Wang C, Lv N, Lin R, Wang Y, Zong K, Wei Y, Huang Q, Li Q, Yang P, Zhao R, Liu J. Identifying novel risk genes in intracranial aneurysm by integrating human proteomes and genetics. Brain 2024; 147:2817-2825. [PMID: 39084678 DOI: 10.1093/brain/awae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 08/02/2024] Open
Abstract
Genome-wide association studies (GWAS) have become increasingly popular for detecting numerous loci associated with intracranial aneurysm (IA), but how these loci function remains unclear. In this study, we employed an integrative analytical pipeline to efficiently transform genetic associations and identify novel genes for IA. Using multidimensional high-throughput data, we integrated proteome-wide association studies (PWAS), transcriptome-wide association studies (TWAS), Mendelian randomization (MR) and Bayesian co-localization analyses to prioritize genes that can increase IA risk by altering their expression and protein abundances in the brain and blood. Moreover, single-cell RNA sequencing (scRNA-seq) of the circle of Willis was performed to enrich filtered genes in cells, and gene set enrichment analysis (GSEA) was conducted for each gene using bulk RNA-seq data for IA. No significant genes with cis-regulated plasma protein levels were proven to be associated with IA. The protein abundances of five genes in the brain were found to be associated with IA. According to cellular enrichment analysis, these five genes were expressed mainly in the endothelium, fibroblasts and vascular smooth muscle cells. Only three genes, CNNM2, GPRIN3 and UFL1, passed MR and Bayesian co-localization analyses. While UFL1 was not validated in confirmation PWAS as it was not profiled, it was validated in TWAS. GSEA suggested these three genes are associated with the cell cycle. In addition, the protein abundance of CNNM2 was found to be associated with IA rupture (based on PWAS, MR and co-localization analyses). Our findings indicated that CNNM2, GPRIN3 and UFL1 (CNNM2 correlated with IA rupture) are potential IA risk genes that may provide a broad hint for future research on possible mechanisms and therapeutic targets for IA.
Collapse
Affiliation(s)
- Congyan Wu
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Hanchen Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Qiao Zuo
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Chuanchuan Wang
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Nan Lv
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Ruyue Lin
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Yonghui Wang
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Kang Zong
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Yanpeng Wei
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Qinghai Huang
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Qiang Li
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Pengfei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Rui Zhao
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| |
Collapse
|
4
|
Wu Y, Song J, Liu M, Ma H, Zhang J. Integrating GWAS and proteome data to identify novel drug targets for MU. Sci Rep 2023; 13:10437. [PMID: 37369724 DOI: 10.1038/s41598-023-37177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Mouth ulcers have been associated with numerous loci in genome wide association studies (GWAS). Nonetheless, it remains unclear what mechanisms are involved in the pathogenesis of mouth ulcers at these loci, as well as what the most effective ulcer drugs are. Thus, we aimed to screen hub genes responsible for mouth ulcer pathogenesis. We conducted an imputed/in-silico proteome-wide association study to discover candidate genes that impact the development of mouth ulcers and affect the expression and concentration of associated proteins in the bloodstream. The integrative analysis revealed that 35 genes play a significant role in the development of mouth ulcers, both in terms of their protein and transcriptional levels. Following this analysis, the researchers identified 6 key genes, namely BTN3A3, IL12B, BPI, FAM213A, PLXNB2, and IL22RA2, which were related to the onset of mouth ulcers. By combining with multidimensional data, six genes were found to correlate with mouth ulcer pathogenesis, which can be useful for further biological and therapeutic research.
Collapse
Affiliation(s)
- Yadong Wu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, China
| | - Jukun Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, China.
| | - Manyi Liu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Hong Ma
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, China.
| | - Junmei Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, 550002, China.
| |
Collapse
|
5
|
Richard MA, Yang W, Sok P, Li M, Carmichael SL, von Behren J, Reynolds P, Fisher PG, Collins RT, Hobbs CA, Luke B, Shaw GM, Lupo PJ. Differential newborn DNA methylation among individuals with complex congenital heart defects and childhood lymphoma. Birth Defects Res 2022; 114:1434-1439. [PMID: 36226634 DOI: 10.1002/bdr2.2105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/07/2022] [Accepted: 09/25/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND There is emerging evidence that children with complex congenital heart defects (CHDs) are at increased risk for childhood lymphoma, but the mechanisms underlying this association are unclear. Thus, we sought to evaluate the role of DNA methylation patterns on "CHD-lymphoma" associations. METHODS From >3 million live births (1988-2004) in California registry linkages, we obtained newborn dried bloodspots from eight children with CHD-lymphoma through the California BioBank. We performed case-control epigenome-wide association analyses (EWAS) using two comparison groups with reciprocal discovery and validation to identify differential methylation associated with CHD-lymphoma. RESULTS After correction for multiple testing at the discovery and validation stages, individuals with CHD-lymphoma had differential newborn methylation at six sites relative to two comparison groups. Our top finding was significant in both EWAS and indicates PPFIA1 cg25574765 was hypomethylated among individuals with CHD-lymphoma (mean beta = 0.04) relative to both unaffected individuals (mean beta = 0.93, p = 1.5 × 10-12 ) and individuals with complex CHD (mean beta = 0.95, p = 3.8 × 10-8 ). PPFIA1 encodes a ubiquitously expressed liprin protein in one of the most commonly amplified regions in many cancers (11q13). Further, cg25574765 is a proposed marker of pre-eclampsia, a maternal CHD risk factor that has not been fully evaluated for lymphoma risk in offspring, and the tumor microenvironment that may drive immune cell malignancies. CONCLUSIONS We identified associations between molecular changes present in the genome at birth and risk of childhood lymphoma among those with CHD. Our findings also highlight novel perinatal exposures that may underlie methylation changes in CHD predisposing to lymphoma.
Collapse
Affiliation(s)
- Melissa A Richard
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Yang
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| | - Pagna Sok
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Ming Li
- Department of Epidemiology and Biostatistics, Indiana University, Bloomington, Indiana, USA
| | - Suzan L Carmichael
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| | - Julie von Behren
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Peggy Reynolds
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Paul G Fisher
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
- Department of Neurology, Stanford University School of Medicine, Palo Alto, California, USA
| | - R Thomas Collins
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| | - Charlotte A Hobbs
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Barbara Luke
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| | - Philip J Lupo
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Zhang S, Xu X, Yu M, Wang M, Jin P. Efficacy and Safety of Minimally Invasive Transcatheter Closure of Congenital Heart Disease under the Guidance of Transesophageal Ultrasound: A Randomized Controlled Trial. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2969979. [PMID: 35872962 PMCID: PMC9303110 DOI: 10.1155/2022/2969979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
Abstract
Objective To investigate the efficacy of minimally invasive transcatheter closure of congenital heart disease (CHD) under the guidance of transesophageal ultrasound. Methods A total of 100 patients with CHD treated in our hospital from February 2019 to April 2020 were enrolled in the group. The patients were randomly divided into control group and research group. The control group received minimally invasive transcatheter closure under the guidance of X-ray, and the research group received minimally invasive transcatheter closure under the guidance of transesophageal ultrasound. The operative results, the intraoperative- and postoperative-related indexes, and the incidence of early postoperative complications and follow-up results were compared. Results First of all, we compared the results of the two groups: 48 cases of success, 2 cases of difficulty in the research group, 35 cases of success, 11 cases of difficulty, and 4 cases of failure in the control group. The success rate in the research group was higher than that in the control group (P < 0.05). Secondly, we compare the relevant indicators in the process of operation. The operation time, cardiopulmonary bypass time, upper and lower cavity obstruction time, and blood transfusion volume in the research group were lower than those in the control group (P < 0.05). In terms of postoperative-related indexes, the ventilator-assisted time, 24 h postoperative drainage, ICU time, and postoperative hospital stay in the research group were all lower than those in the control group (P < 0.05). The incidence of early postoperative complications in the research group was significantly lower than that in the control group such as secondary pleural hemostasis, pulmonary infection, pleural effusion, subcutaneous emphysema, poor incision healing, phrenic nerve loss, and right lower limb numbness (P < 0.05). All patients were followed up for 6 months, and the cardiac function of both groups returned to normal. There was no significant difference in the incidence of postoperative residual shunt and new tricuspid regurgitation. There was no significant difference in the data (P > 0.05). Considering abnormal ECG events, the incidence of abnormal ECG events (complete right bundle branch block, incomplete right bundle branch block, second- and third-degree block, left anterior branch block) in the research group was significantly lower than that in the control group (P < 0.05). Conclusion Minimally invasive transcatheter closure of CHD under the guidance of transesophageal ultrasound has the advantages of less trauma, less blood loss, short hospital stay, simple operation, less postoperative complications, and remarkable therapeutic effect. Minimally invasive transcatheter closure under the guidance of transesophageal ultrasound has the advantage of adapting to a wide range of syndromes and can be used for the closure of CHD in children. According to different types of CHD, registering the corresponding occlusive pathway can improve the success rate of operation. Through postoperative reexamination and regular follow-up, it is proved that minimally invasive transcatheter closure under the guidance of transesophageal ultrasound is safe, effective, and feasible.
Collapse
Affiliation(s)
- Shuangyin Zhang
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xu Xu
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Min Yu
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Min Wang
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Ping Jin
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou 730030, China
| |
Collapse
|
7
|
Wu BS, Chen SF, Huang SY, Ou YN, Deng YT, Chen SD, Dong Q, Yu JT. Identifying causal genes for stroke via integrating the proteome and transcriptome from brain and blood. J Transl Med 2022; 20:181. [PMID: 35449099 PMCID: PMC9022281 DOI: 10.1186/s12967-022-03377-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/03/2022] [Indexed: 11/22/2022] Open
Abstract
Background Genome-wide association studies (GWAS) have revealed numerous loci associated with stroke. However, the underlying mechanisms at these loci in the pathogenesis of stroke and effective stroke drug targets are elusive. Therefore, we aimed to identify causal genes in the pathogenesis of stroke and its subtypes. Methods Utilizing multidimensional high-throughput data generated, we integrated proteome-wide association study (PWAS), transcriptome-wide association study (TWAS), Mendelian randomization (MR), and Bayesian colocalization analysis to prioritize genes that contribute to stroke and its subtypes risk via affecting their expression and protein abundance in brain and blood. Results Our integrative analysis revealed that ICA1L was associated with small-vessel stroke (SVS), according to robust evidence at both protein and transcriptional levels based on brain-derived data. We also identified NBEAL1 that was causally related to SVS via its cis-regulated brain expression level. In blood, we identified 5 genes (MMP12, SCARF1, ABO, F11, and CKAP2) that had causal relationships with stroke and stroke subtypes. Conclusions Together, via using an integrative analysis to deal with multidimensional data, we prioritized causal genes in the pathogenesis of SVS, which offered hints for future biological and therapeutic studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03377-9.
Collapse
Affiliation(s)
- Bang-Sheng Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shu-Fen Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shu-Yi Huang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yue-Ting Deng
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
8
|
Lyu C, Huang M, Liu N, Chen Z, Lupo PJ, Tycko B, Witte JS, Hobbs CA, Li M. Detecting methylation quantitative trait loci using a methylation random field method. Brief Bioinform 2021; 22:bbab323. [PMID: 34414410 PMCID: PMC8575051 DOI: 10.1093/bib/bbab323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/24/2021] [Indexed: 11/13/2022] Open
Abstract
DNA methylation may be regulated by genetic variants within a genomic region, referred to as methylation quantitative trait loci (mQTLs). The changes of methylation levels can further lead to alterations of gene expression, and influence the risk of various complex human diseases. Detecting mQTLs may provide insights into the underlying mechanism of how genotypic variations may influence the disease risk. In this article, we propose a methylation random field (MRF) method to detect mQTLs by testing the association between the methylation level of a CpG site and a set of genetic variants within a genomic region. The proposed MRF has two major advantages over existing approaches. First, it uses a beta distribution to characterize the bimodal and interval properties of the methylation trait at a CpG site. Second, it considers multiple common and rare genetic variants within a genomic region to identify mQTLs. Through simulations, we demonstrated that the MRF had improved power over other existing methods in detecting rare variants of relatively large effect, especially when the sample size is small. We further applied our method to a study of congenital heart defects with 83 cardiac tissue samples and identified two mQTL regions, MRPS10 and PSORS1C1, which were colocalized with expression QTL in cardiac tissue. In conclusion, the proposed MRF is a useful tool to identify novel mQTLs, especially for studies with limited sample sizes.
Collapse
Affiliation(s)
- Chen Lyu
- Department of Epidemiology and Biostatistics, Indiana University, Bloomington, IN, USA
| | - Manyan Huang
- Department of Epidemiology and Biostatistics, Indiana University, Bloomington, IN, USA
| | - Nianjun Liu
- Department of Epidemiology and Biostatistics, Indiana University, Bloomington, IN, USA
| | - Zhongxue Chen
- Department of Epidemiology and Biostatistics, Indiana University, Bloomington, IN, USA
| | - Philip J Lupo
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | - John S Witte
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | | | - Ming Li
- Department of Epidemiology and Biostatistics, Indiana University, Bloomington, IN, USA
| |
Collapse
|