1
|
Borrego-Ruiz A, Borrego JJ. Pharmacogenomic and Pharmacomicrobiomic Aspects of Drugs of Abuse. Genes (Basel) 2025; 16:403. [PMID: 40282363 PMCID: PMC12027173 DOI: 10.3390/genes16040403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES This review examines the role of pharmacogenomics in individual responses to the pharmacotherapy of various drugs of abuse, including alcohol, cocaine, and opioids, to identify genetic variants that contribute to variability in substance use disorder treatment outcomes. In addition, it explores the pharmacomicrobiomic aspects of substance use, highlighting the impact of the gut microbiome on bioavailability, drug metabolism, pharmacodynamics, and pharmacokinetics. RESULTS Research on pharmacogenetics has identified several promising genetic variants that may contribute to the individual variability in responses to existing pharmacotherapies for substance addiction. However, the interpretation of these findings remains limited. It is estimated that genetic factors may account for 20-95% of the variability in individual drug responses. Therefore, genetic factors alone cannot fully explain the differences in drug responses, and factors such as gut microbiome diversity may also play a significant role. Drug microbial biotransformation is produced by microbial exoenzymes that convert low molecular weight organic compounds into analogous compounds by oxidation, reduction, hydrolysis, condensation, isomerization, unsaturation, or by the introduction of heteroatoms. Despite significant advances in pharmacomicrobiomics, challenges persist including the lack of standardized methodologies, inter-individual variability, limited understanding of drug biotransformation mechanisms, and the need for large-scale validation studies to develop microbiota-based biomarkers for clinical use. CONCLUSIONS Progress in the pharmacogenomics of substance use disorders has provided biological insights into the pharmacological needs associated with common genetic variants in drug-metabolizing enzymes. The gut microbiome and its metabolites play a pivotal role in various stages of drug addiction including seeking, reward, and biotransformation. Therefore, integrating pharmacogenomics with pharmacomicrobiomics will form a crucial foundation for significant advances in precision and personalized medicine.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain;
| |
Collapse
|
2
|
Agostini LDC, Silva NNT, Belo VDA, Luizon MR, Lima AA, da Silva GN. Pharmacogenetics of angiotensin-converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB) in cardiovascular diseases. Eur J Pharmacol 2024; 981:176907. [PMID: 39154825 DOI: 10.1016/j.ejphar.2024.176907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Cardiovascular diseases (CVDs) have a high mortality rate, and despite the several available therapeutic targets, non-response to antihypertensives remains a common problem. Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are important classes of drugs recommended as first-line therapy for several CVDs. However, response to ACEIs and ARBs varies among treated patients. Pharmacogenomics assesses how an individual's genetic characteristics affect their likely response to drug therapy. Currently, numerous studies suggest that genetic polymorphisms may contribute to variability in drug response. Moreover, further studies evaluating gene-gene interactions within signaling pathways in response to antihypertensives might help to unravel potential genetic predictors for antihypertensive response. This review summarizes the pharmacogenetic data for ACEIs and ARBs in patients with CVD, and discusses the potential pharmacogenetics of these classes of antihypertensives in clinical practice. However, replication studies in different populations are needed. In addition, studies that evaluate gene-gene interactions that share signaling pathways in the response to antihypertensive drugs might facilitate the discovery of genetic predictors for antihypertensive response.
Collapse
Affiliation(s)
- Lívia da Cunha Agostini
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Nayara Nascimento Toledo Silva
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Vanessa de Almeida Belo
- Departamento de Farmácia (DEFAR), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Marcelo Rizzatti Luizon
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Angelica Alves Lima
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Glenda Nicioli da Silva
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Guo J, Zhou W, Ma X, Li Y, Zhang H, Wei J, Du S, Jin T. Genetic Variability of CYP4F2, CYP2D6, CYP2E1, and ACE in the Chinese Yi Population. Biochem Genet 2024:10.1007/s10528-024-10748-y. [PMID: 38850376 DOI: 10.1007/s10528-024-10748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/17/2024] [Indexed: 06/10/2024]
Abstract
Genetic polymorphisms of very important pharmacogenes (VIP) are a significant factor contributing to inter-individual variability in drug therapy. The purpose of this study was to identify significantly different loci in the Yi population and to enrich their pharmacogenomic information. 54 VIP variants were selected from the Pharmacogenomics Knowledge Base (PharmGKB) and genotyped in 200 Yi individuals. Then, we compared their genotype distribution between the Yi population and the other 26 populations using the χ2 test. Compared with the other 26 populations, the genotype frequencies of 4 single nucleotide polymorphisms (SNPs), rs2108622 (CYP4F2), rs1065852 (CYP2D6), rs2070676 (CYP2E1), and rs4291 (ACE), had significant differences in the Yi population. For example, the TT genotype frequency of rs2108622 (8.1%) was higher than that of African populations, and the AA genotype frequency of rs1065852 (27.3%) was higher than that of other populations except East Asians. We also found that the Yi populations differed the least from East Asians and the most from Africans. Furthermore, the differences in these variants might be related to the effectiveness and toxicity risk of using warfarin, iloperidone, cisplatin cyclophosphamide, and other drugs in the Yi population. Our data complement the pharmacogenomic information of the Yi population and provide theoretical guidance for their personalized treatment.
Collapse
Affiliation(s)
- Jinping Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wenqian Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Xiaoya Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yujie Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Huan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jie Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China
- College of Life Science, Northwest University, Xi'an, 710127, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Shuli Du
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China.
- College of Life Science, Northwest University, Xi'an, 710127, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), School of Life Sciences, Ministry of Education, Northwest University, #229 North TaiBai Road, Xi'an, Shaanxi, 710069, China.
- College of Life Science, Northwest University, Xi'an, 710127, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
4
|
Ma X, Li Y, Zang X, Guo J, Zhou W, Han J, Liang J, Wan P, Yang H, Jin T. The landscape of very important pharmacogenes variants and potential clinical relevance in the Chinese Jingpo population: a comparative study with worldwide populations. Cancer Chemother Pharmacol 2024; 93:481-496. [PMID: 38300251 DOI: 10.1007/s00280-023-04638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Pharmacogenomics is a facet of personalized medicine that explores how genetic variants affect drug metabolism and adverse drug reactions. Therefore, this study aims to detect distinct pharmacogenomic variations among the Jingpo population and explore their clinical correlation with drug metabolism and toxicity. METHODS Agena MassARRAY Assay was used to genotype 57 VIP variants in 28 genes from 159 unrelated Jingpo participants. Subsequently, the chi-squared test and Bonferroni's statistical tests were utilized to conduct a comparative analysis of genotypes and allele frequencies between the Jingpo population and the other 26 populations from the 1000 Genome Project. RESULTS We discovered that the KHV (Kinh in Ho ChiMinh City, Vietnam), CHS (Southern Han Chi-nese, China) and JPT (Japanese in Tokyo, Japan) exhibited the smallest differences from the Jingpo with only 4 variants, while ESN (Esan in Nigeria) exhibited the largest differences with 30 variants. Besides, a total of six considerably different loci (rs4291 in ACE, rs20417 in PTGS2, rs1801280 and rs1799929 in NAT2, rs2115819 in ALOX5, rs1065852 in CYP2D6, p < 3.37 × 10-5) were identified in this study. According to PharmGKB, rs20417 (PTGS2), rs4291 (ACE), rs2115819 (ALOX5) and rs1065852 (CYP2D6) were found to be associated with the metabolism efficiency of non-steroidal anti-inflammatory drugs (NSAIDs), aspirin, montelukast and tamoxifen, respectively. Meanwhile, rs1801280 and rs1799929 (NAT2) were found to be related to drug poisoning with slow acetylation. CONCLUSION Our study unveils distinct pharmacogenomic variants in the Jingpo population and discovers their association with the metabolic efficiency of NSAIDs, montelukast, and tamoxifen.
Collapse
Affiliation(s)
- Xiaoya Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yujie Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xufeng Zang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jinping Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Wenqian Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Junhui Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jing Liang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Panpan Wan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Hua Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China.
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China.
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China.
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, #229 North TaiBai Road, Xi'an, 710069, Shaanxi, China.
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China.
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
5
|
da Cunha Agostini L, de Paula W, Melo AS, Silva NNT, Faria Lopes AC, de Almeida Belo V, Coura-Vital W, de Medeiros Teixeira LF, Lima AA, da Silva GN. Single nucleotide polymorphism (SNP) rs4291 of the angiotensin-converting enzyme (ACE) gene is associated with the response to losartan treatment in hypertensive patients. Mol Biol Rep 2024; 51:458. [PMID: 38551694 DOI: 10.1007/s11033-024-09437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Arterial hypertension is characterized by systolic pressure ≥ 140 mmHg and/or diastolic pressure ≥ 90 mmHg and its treatment consists of the use of antihypertensive drugs, as losartan and hydrochlorothiazide. Blood pressure is regulated by angiotensin-converting enzyme (ACE) and polymorphisms in the ACE gene are associated to a greater predisposition to hypertension and response to treatment. The aim of this study was to evaluate the association of genetic polymorphisms of ACE rs4363, rs4291 and rs4335 and the response to antihypertensive drugs in hypertensive patients from Ouro Preto/MG, Brazil. A case-control study was carried out with 87 hypertensive patients being treated with losartan and 75 with hydrochlorothiazide, who answered a questionnaire and had blood samples collected. Biochemical analyzes were performed on serum using UV/Vis spectrophotometry and identification of ACE variants rs4363, rs4291 and rs4335 was performed by real-time PCR using the TaqMan® system. Univariate logistic regression test was performed to compare categorical data in STATA 13.0 software. The results showed that there was an influence of ACE polymorphisms on the response to losartan, demonstrating that AT or TT genotypes of rs4291 were more frequent in the group of controlled AH (54.9%), indicating that these individuals are 2.8 times more likely to of being controlled AH (95% CI 1.12-6.80, p. =0.026) compared to those with AA genotype. In contrast, no influence of ACE polymorphisms on the response to hydrochlorothiazide was observed. In conclusion, the presence of the T allele of the rs4291 variant was associated to controled blood pressure when losartan was used as an antihypertensive agent. These results show the importance of pharmacogenetic studies to detect genetic characteristics, enabling therapeutic individuality and reducing costs for the healthcare system.
Collapse
Affiliation(s)
- Lívia da Cunha Agostini
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Waléria de Paula
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - André Sacramento Melo
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Ana Cláudia Faria Lopes
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Vanessa de Almeida Belo
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Departamento de Farmácia (DEFAR), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Wendel Coura-Vital
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Angélica Alves Lima
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Glenda Nicioli da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Morro do Cruzeiro, s/n, Ouro Preto, MG, CEP 35402-163, Brazil.
| |
Collapse
|
6
|
Application of Pharmacogenetics for the Use of Antiplatelet and Anticoagulant Drugs. CURRENT CARDIOVASCULAR RISK REPORTS 2023. [DOI: 10.1007/s12170-022-00713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Relevance of CYP2D6 Gene Variants in Population Genetic Differentiation. Pharmaceutics 2022; 14:pharmaceutics14112481. [PMID: 36432672 PMCID: PMC9694252 DOI: 10.3390/pharmaceutics14112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
A significant portion of the variability in complex features, such as drug response, is likely caused by human genetic diversity. One of the highly polymorphic pharmacogenes is CYP2D6, encoding an enzyme involved in the metabolism of about 25% of commonly prescribed drugs. In a directed search of the 1000 Genomes Phase III variation data, 86 single nucleotide polymorphisms (SNPs) in the CYP2D6 gene were extracted from the genotypes of 2504 individuals from 26 populations, and then used to reconstruct haplotypes. Analyses were performed using Haploview, Phase, and Arlequin softwares. Haplotype and nucleotide diversity were high in all populations, but highest in populations of African ancestry. Pairwise FST showed significant results for eleven SNPs, six of which were characteristic of African populations, while four SNPs were most common in East Asian populations. A principal component analysis of CYP2D6 haplotypes showed that African populations form one cluster, Asian populations form another cluster with East and South Asian populations separated, while European populations form the third cluster. Linkage disequilibrium showed that all African populations have three or more haplotype blocks within the CYP2D6 gene, while other world populations have one, except for Chinese Dai and Punjabi in Pakistan populations, which have two.
Collapse
|