1
|
Toker TP, Ulusoy D, Doğan B, Kasapoğlu S, Hakan F, Reddy UK, Kordrostami M, Yol E. Genomic insights into Mediterranean pepper diversity using ddRADSeq. PLoS One 2025; 20:e0318105. [PMID: 40063634 PMCID: PMC11892853 DOI: 10.1371/journal.pone.0318105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/09/2025] [Indexed: 05/13/2025] Open
Abstract
This work investigated the genetic diversity and population structure of 99 pepper lines (Capsicum annuum L.), acclimated to Mediterranean climate conditions, using double-digest restriction site-associated DNA sequencing (ddRADSeq). The aims were to understand the genetic relationships among these lines, correlate genetic clusters with botanical classifications, and provide insights into pepper domestication in the region. Obtained were 318.76 million raw sequence reads overall, averaging 3.21 million reads per sample. A total of 8475 high-quality SNPs were identified and used to assess genetic diversity and population structure. Chromosome NC_061113.1 displayed the highest amount and Chromosome NC_061118.1 the fewest of these SNPs, which were not equally spaced around the genome. Heterozygosity measures and a negative inbreeding coefficient point to the great genetic diversity seen, therefore highlighting the genetic health of the population. Different genetic clusters found by phylogenetic study and STRUCTURE analysis can be used in breeding programs to mix desired features from many genetic backgrounds. This work showed how well ddRADSeq generates high-quality SNPs for genomic research on peppers, therefore offering useful molecular tools for genomic selection and marker-assisted selection. The analysis identified significant genetic diversity and distinct genetic clusters which are valuable for breeding programs focused on crop improvement. These findings enhance our understanding of pepper domestication and provide valuable genetic resources for breeding programs aimed at improving pepper varieties.
Collapse
Affiliation(s)
- Tuğba Pelin Toker
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Turkiye
| | | | | | | | - Fidan Hakan
- Department of Plant Protection, Faculty of Agriculture, Akdeniz University, Antalya, Turkiye
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - Mojtaba Kordrostami
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Engin Yol
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Turkiye
| |
Collapse
|
2
|
Wang CS, Lin SY, Huang JH, Chang HY, Lew DK, Wang YH, Hwu KK, Huang YF. Identification of powdery mildew resistance quantitative trait loci in melon and development of resistant near-isogenic lines through marker-assisted backcrossing. BOTANICAL STUDIES 2024; 65:31. [PMID: 39495375 PMCID: PMC11534953 DOI: 10.1186/s40529-024-00435-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/01/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Melon (Cucumis melo L.), an important cucurbit crop, faces production limitations due to powdery mildew (PM). Developing resistant varieties offers a sustainable, genetics-based alternative to chemical treatments. Therefore, identifying PM resistance quantitative trait loci (QTL) and creating trait-associated markers are essential for efficient melon PM resistance improvement through marker-assisted backcrossing (MABC). RESULTS Three F2 populations, A6, B2, and C4, were generated for QTL mapping of PM resistance. Major QTL were identified on chromosome 2 in A6, chromosome 5 in B2, and chromosomes 5 and 12 in C4. A series of TaqMan® assays targeting regions on chromosomes 2, 5, and 12 were developed and validated for foreground and recombinant selection, complemented by the double digest restriction-site associated DNA genotyping system to evaluate the recurrent parent genome recovery. Three MABC programs using resistant donor parents from A6 and C4 crossed with elite susceptible recurrent parents with green and orange fruit flesh were implemented. After two to three cycles of MABC, individual QTL was successfully introgressed into elite genetic backgrounds, giving six PM resistance lines in each green- and orange-fleshed background. PM inoculation on the twelve near-isogenic lines confirmed their resistance to PM. CONCLUSIONS We have identified major PM resistance QTL for melon on chromosomes 2, 5, and 12 and have introgressed individual QTL to elite genetic backgrounds using MABC in three and a half years. This study demonstrates the power of combining high-throughput genotyping with breeding efforts and showcases the efficiency of molecular breeding.
Collapse
Affiliation(s)
- Chun-San Wang
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City, 106319, Taiwan.
| | - Ssu-Yu Lin
- Crop Genetic Resources and Biotechnology Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, No. 189, Zhongzheng Rd., Wufeng Dist., Taichung City, 413008, Taiwan
| | - Jin-Hsing Huang
- Plant Pathology Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, No. 189, Zhongzheng Rd., Wufeng Dist., Taichung City, 413008, Taiwan
| | - Hsin-Yi Chang
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City, 106319, Taiwan
| | - Di-Kuan Lew
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City, 106319, Taiwan
| | - Yu-Hua Wang
- Crop Science Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, No. 189, Zhongzheng Rd., Wufeng Dist., Taichung City, 413008, Taiwan
| | - Kae-Kang Hwu
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City, 106319, Taiwan
| | - Yung-Fen Huang
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City, 106319, Taiwan.
| |
Collapse
|
3
|
Chen X, Li H, Dong Y, Xu Y, Xu K, Zhang Q, Yao Z, Yu Q, Zhang H, Zhang Z. A wild melon reference genome provides novel insights into the domestication of a key gene responsible for melon fruit acidity. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:144. [PMID: 38809285 DOI: 10.1007/s00122-024-04647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024]
Abstract
KEY MESSAGE A wild melon reference genome elucidates the genomic basis of fruit acidity domestication. Structural variants (SVs) have been reported to impose major effects on agronomic traits, representing a significant contributor to crop domestication. However, the landscape of SVs between wild and cultivated melons is elusive and how SVs have contributed to melon domestication remains largely unexplored. Here, we report a 379-Mb chromosome-scale genome of a wild progenitor melon accession "P84", with a contig N50 of 14.9 Mb. Genome comparison identifies 10,589 SVs between P84 and four cultivated melons with 6937 not characterized in previously analysis of 25 melon genome sequences. Furthermore, the population-scale genotyping of these SVs was determined in 1175 accessions, and 18 GWAS signals including fruit acidity, fruit length, fruit weight, fruit color and sex determination were detected. Based on these genotyped SVs, we identified 3317 highly diverged SVs between wild and cultivated melons, which could be the potential SVs associated with domestication-related traits. Furthermore, we identify novel SVs affecting fruit acidity and proposed the diverged evolutionary trajectories of CmPH, a key regulator of melon fruit acidity, during domestication and selection of different populations. These results will offer valuable resources for genomic studies and genetic improvement in melon.
Collapse
Affiliation(s)
- Xinxiu Chen
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hongbo Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Shenzhen Branch, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, Guangdong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yuanhua Dong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yuanchao Xu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Shenzhen Branch, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, Guangdong, China
| | - Kuipeng Xu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiqi Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Zhiwang Yao
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qing Yu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huimin Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Zhonghua Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
4
|
Shahwar D, Khan Z, Park Y. Molecular Marker-Assisted Mapping, Candidate Gene Identification, and Breeding in Melon ( Cucumis melo L.): A Review. Int J Mol Sci 2023; 24:15490. [PMID: 37895169 PMCID: PMC10607903 DOI: 10.3390/ijms242015490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Melon (Cucumis melo L.) is an important crop that is cultivated worldwide for its fleshy fruit. Understanding the genetic basis of a plant's qualitative and quantitative traits is essential for developing consumer-favored varieties. This review presents genetic and molecular advances related to qualitative and quantitative phenotypic traits and biochemical compounds in melons. This information guides trait incorporation and the production of novel varieties with desirable horticultural and economic characteristics and yield performance. This review summarizes the quantitative trait loci, candidate genes, and development of molecular markers related to plant architecture, branching patterns, floral attributes (sex expression and male sterility), fruit attributes (shape, rind and flesh color, yield, biochemical compounds, sugar content, and netting), and seed attributes (seed coat color and size). The findings discussed in this review will enhance demand-driven breeding to produce cultivars that benefit consumers and melon breeders.
Collapse
Affiliation(s)
- Durre Shahwar
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea;
| | - Zeba Khan
- Center for Agricultural Education, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Younghoon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea;
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
5
|
Kiryushkin AS, Ilina EL, Guseva ED, Pawlowski K, Demchenko KN. Lateral Root Initiation in Cucumber ( Cucumis sativus): What Does the Expression Pattern of Rapid Alkalinization Factor 34 ( RALF34) Tell Us? Int J Mol Sci 2023; 24:ijms24098440. [PMID: 37176146 PMCID: PMC10179419 DOI: 10.3390/ijms24098440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
In Arabidopsis, the small signaling peptide (peptide hormone) RALF34 is involved in the gene regulatory network of lateral root initiation. In this study, we aimed to understand the nature of the signals induced by RALF34 in the non-model plant cucumber (Cucumis sativus), where lateral root primordia are induced in the apical meristem of the parental root. The RALF family members of cucumber were identified using phylogenetic analysis. The sequence of events involved in the initiation and development of lateral root primordia in cucumber was examined in detail. To elucidate the role of the small signaling peptide CsRALF34 and its receptor CsTHESEUS1 in the initial stages of lateral root formation in the parental root meristem in cucumber, we studied the expression patterns of both genes, as well as the localization and transport of the CsRALF34 peptide. CsRALF34 is expressed in all plant organs. CsRALF34 seems to differ from AtRALF34 in that its expression is not regulated by auxin. The expression of AtRALF34, as well as CsRALF34, is regulated in part by ethylene. CsTHESEUS1 is expressed constitutively in cucumber root tissues. Our data suggest that CsRALF34 acts in a non-cell-autonomous manner and is not involved in lateral root initiation in cucumber.
Collapse
Affiliation(s)
- Alexey S Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Elena L Ilina
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Elizaveta D Guseva
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Kirill N Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| |
Collapse
|
6
|
Zahid G, Aka Kaçar Y, Dönmez D, Küden A, Giordani T. Perspectives and recent progress of genome-wide association studies (GWAS) in fruits. Mol Biol Rep 2022; 49:5341-5352. [PMID: 35064403 DOI: 10.1007/s11033-021-07055-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Earlier next-generation sequencing technologies are being vastly used to explore, administer, and investigate the gene space with accurate profiling of nucleotide variations in the germplasm. OVERVIEW AND PROGRESS: Recently, novel advancements in high-throughput sequencing technologies allow a genotyping-by-sequencing approach that has opened up new horizons for extensive genotyping exploiting single-nucleotide-polymorphisms (SNPs). This method acts as a bridge to support and minimize a genotype to phenotype gap allowing genetic selection at the genome-wide level, named genomic selection that could facilitate the selection of traits also in the pomology sector. In addition to this, genome-wide genotyping is a prerequisite for genome-wide association studies that have been used successfully to discover the genes, which control polygenic traits including the genetic loci, associated with the trait of interest in fruit crops. AIMS AND PROSPECTS This review article emphasizes the role of genome-wide approaches to unlock and explore the genetic potential along with the detection of SNPs affecting the phenotype of fruit crops and highlights the prospects of genome-wide association studies in fruits.
Collapse
Affiliation(s)
- Ghassan Zahid
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 01330, Adana, Turkey.
| | - Yıldız Aka Kaçar
- Department of Horticulture, Faculty of Agriculture, Çukurova University, 01330, Adana, Turkey
| | - Dicle Dönmez
- Biotechnology Research and Application Center, Çukurova University, 01330, Adana, Turkey
| | - Ayzin Küden
- Department of Horticulture, Faculty of Agriculture, Çukurova University, 01330, Adana, Turkey
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| |
Collapse
|
7
|
Identification of Bacterial Wilt ( Erwinia tracheiphila) Resistances in USDA Melon Collection. PLANTS 2021; 10:plants10091972. [PMID: 34579504 PMCID: PMC8473077 DOI: 10.3390/plants10091972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022]
Abstract
Bacterial wilt (BW) caused by the Gram-negative bacterium, Erwinia tracheiphila (Et.), is an important disease in melon (Cucumis melo L.). BW-resistant commercial melon varieties are not widely available. There are also no effective pathogen-based disease management strategies as BW-infected plants ultimately die. The purpose of this study is to identify BW-resistant melon accessions in the United States Department of Agriculture (USDA) collection. We tested 118 melon accessions in two inoculation trials under controlled environments. Four-week-old seedlings of test materials were mechanically inoculated with the fluorescently (GFP) labeled or unlabeled E. tracheiphila strain, Hca1-5N. We recorded the number of days to wilting of inoculated leaf (DWIL), days to wilting of whole plant (DWWP) and days to death of the plant (DDP). We identified four melon lines with high resistance to BW inoculation based on all three parameters. Fluorescent microscopy was used to visualize the host colonization dynamics of labeled bacteria from the point of inoculation into petioles, stem and roots in resistant and susceptible melon accessions, which provides an insight into possible mechanisms of BW resistance in melon. The resistant melon lines identified from this study could be valuable resistance sources for breeding of BW resistance as well as the study of cucurbit—E. tracheiphila interactions.
Collapse
|
8
|
Demirci S, Fuentes RR, van Dooijeweert W, Aflitos S, Schijlen E, Hesselink T, de Ridder D, van Dijk ADJ, Peters S. Chasing breeding footprints through structural variations in Cucumis melo and wild relatives. G3-GENES GENOMES GENETICS 2021; 11:6044141. [PMID: 33561242 PMCID: PMC8022733 DOI: 10.1093/g3journal/jkaa038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Cucumis melo (melon or muskmelon) is an important crop in the family of the Cucurbitaceae. Melon is cross pollinated and domesticated at several locations throughout the breeding history, resulting in highly diverse genetic structure in the germplasm. Yet, the relations among the groups and cultivars are still incomplete. We shed light on the melonbreeding history, analyzing structural variations ranging from 50 bp up to 100 kb, identified from whole genome sequences of 100 selected melon accessions and wild relatives. Phylogenetic trees based on SV types completely resolve cultivars and wild accessions into two monophyletic groups and clustering of cultivars largely correlates with their geographic origin. Taking into account morphology, we found six mis-categorized cultivars. Unique inversions are more often shared between cultivars, carrying advantageous genes and do not directly originate from wild species. Approximately 60% of the inversion breaks carry a long poly A/T motif, and following observations in other plant species, suggest that inversions in melon likely resulted from meiotic recombination events. We show that resistance genes in the linkage V region are expanded in the cultivar genomes compared to wild relatives. Furthermore, particular agronomic traits such as fruit ripening, fragrance, and stress response are specifically selected for in the melon subspecies. These results represent distinctive footprints of selective breeding that shaped today's melon. The sequences and genomic relations between land races, wild relatives, and cultivars will serve the community to identify genetic diversity, optimize experimental designs, and enhance crop development.
Collapse
Affiliation(s)
- Sevgin Demirci
- Bioinformatics Group, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.,Department of Bioscience, Wageningen Plant Research, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.,Keygene N.V., 6708 PW Wageningen, the Netherlands
| | - Roven Rommel Fuentes
- Bioinformatics Group, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Willem van Dooijeweert
- Centre for Genetic Resources, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Saulo Aflitos
- Bejo Zaden B.V., 1749 CZ Warmenhuizen, the Netherlands
| | - Elio Schijlen
- Department of Bioscience, Wageningen Plant Research, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Thamara Hesselink
- Department of Bioscience, Wageningen Plant Research, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.,Biometris, Wageningen University & Research, 6708PB Wageningen, the Netherlands
| | - Sander Peters
- Department of Bioscience, Wageningen Plant Research, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|
9
|
Swanepoel I, Roberts A, Brauns C, Chaliha DR, Papa V, Palmer RD, Vaccarezza M. Trimethylamine N-oxide (TMAO): a new attractive target to decrease cardiovascular risk. Postgrad Med J 2021; 98:723-727. [PMID: 33790031 DOI: 10.1136/postgradmedj-2021-139839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease (CVD) is one of the greatest disease burdens and takes the lives of many each year. There are many risk factors both modifiable and non-modifiable which contribute to the onset and progression of the disease. Trimethylamine N-oxide (TMAO) in recent years has been found to have a correlation with CVD onset. Those with increased levels of the metabolite have a markedly increased risk of future development of cardiometabolic disorders.This literature review aimed to critique past studies undertaken to find a consensus of the significance of the interrelationship between TMAO and cardiovascular risk. A definite link between TMAO levels and a CVD outcome was found. The majority of the literature stated the relationship with evidence; however, there is still some uncertainty as to why and how the correlation occurs. Further study needs to be done to further dissect and understand the relationship between TMAO and CVD risk.
Collapse
Affiliation(s)
- Ione Swanepoel
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - April Roberts
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Chelsea Brauns
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Devahuti R Chaliha
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Veronica Papa
- Sport Sciences and Wellness, University of Naples Parthenope, Naples, Campania, Italy.,FAPAB Research Center, Avola, Siracusa, Italy
| | - Raymond D Palmer
- Longevity Experts, Helium-3 Biotech, South Perth, Western Australia, Australia
| | - Mauro Vaccarezza
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia, Australia .,Curtin Medical School, Curtin Health Innovation Research Institute, Bentley, Perth, Western Australia, Australia
| |
Collapse
|
10
|
Lian Q, Fu Q, Xu Y, Hu Z, Zheng J, Zhang A, He Y, Wang C, Xu C, Chen B, Garcia-Mas J, Zhao G, Wang H. QTLs and candidate genes analyses for fruit size under domestication and differentiation in melon (Cucumis melo L.) based on high resolution maps. BMC PLANT BIOLOGY 2021; 21:126. [PMID: 33658004 PMCID: PMC7931605 DOI: 10.1186/s12870-021-02904-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Melon is a very important horticultural crop produced worldwide with high phenotypic diversity. Fruit size is among the most important domestication and differentiation traits in melon. The molecular mechanisms of fruit size in melon are largely unknown. RESULTS Two high-density genetic maps were constructed by whole-genome resequencing with two F2 segregating populations (WAP and MAP) derived from two crosses (cultivated agrestis × wild agrestis and cultivated melo × cultivated agrestis). We obtained 1,871,671 and 1,976,589 high quality SNPs that show differences between parents in WAP and MAP. A total of 5138 and 5839 recombination events generated 954 bins in WAP and 1027 bins in MAP with the average size of 321.3 Kb and 301.4 Kb respectively. All bins were mapped onto 12 linkage groups in WAP and MAP. The total lengths of two linkage maps were 904.4 cM (WAP) and 874.5 cM (MAP), covering 86.6% and 87.4% of the melon genome. Two loci for fruit size were identified on chromosome 11 in WAP and chromosome 5 in MAP, respectively. An auxin response factor and a YABBY transcription factor were inferred to be the candidate genes for both loci. CONCLUSION The high-resolution genetic maps and QTLs analyses for fruit size described here will provide a better understanding the genetic basis of domestication and differentiation, and provide a valuable tool for map-based cloning and molecular marker assisted breeding.
Collapse
Affiliation(s)
- Qun Lian
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Qiushi Fu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Yongyang Xu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Zhicheng Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Jing Zheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Aiai Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Yuhua He
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Changsheng Wang
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200000, China
| | - Chuanqiang Xu
- Shenyang Agricultural University, College of Horticulture, Shenyang, 110866, China
| | - Benxue Chen
- Design Gollege, Zhoukou Normal University, Zhoukou, 466000, China
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Guangwei Zhao
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| | - Huaisong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| |
Collapse
|
11
|
Zarid M, García-Carpintero V, Esteras C, Esteva J, Bueso MC, Cañizares J, Picó MB, Monforte AJ, Fernández-Trujillo JP. Transcriptomic analysis of a near-isogenic line of melon with high fruit flesh firmness during ripening. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:754-777. [PMID: 32713003 DOI: 10.1002/jsfa.10688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND A near-isogenic line (NIL) of melon (SC10-2) with introgression in linkage group X was studied from harvest (at firm-ripe stage of maturity) until day 18 of postharvest storage at 20.5 °C together with its parental control ('Piel de Sapo', PS). RESULTS SC10-2 showed higher flesh firmness and whole fruit hardness but lower juiciness than its parental. SC10-2 showed a decrease in respiration rate accompanied by a decrease in ethylene production during ripening, both of which fell to a greater extent than in PS. The introgression affected 11 volatile organic compounds (VOCs), the levels of which during ripening were generally higher in SC10-2 than in PS. Transcriptomic analysis from RNA-Seq revealed differentially expressed genes (DEGs) associated with the effects studied. For example, 909 DEGs were exclusive to the introgression, and only 23 DEGs were exclusive to postharvest ripening time. Major functions of the DEGs associated with introgression or ripening time were identified by cluster analysis. About 37 genes directly and/or indirectly affected the delay in ripening of SC10-2 compared with PS in general and, more particularly, the physiological and quality traits measured and, probably, the differential non-climacteric response. Of the former genes, we studied in more detail at least five that mapped in the introgression in linkage group (LG) X, and 32 outside it. CONCLUSION There is an apparent control of textural changes, VOCs and fruit ripening by an expression quantitative trait locus located in LG X together with a direct control on them due to genes presented in the introgression (CmTrpD, CmNADH1, CmTCP15, CmGDSL esterase/lipase, and CmHK4-like) and CmNAC18. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mohamed Zarid
- Department of Agronomical Engineering, Regional Campus of International Excellence 'Campus Mare Nostrum' (CMN), Technical University of Cartagena (UPCT), Cartagena, Spain
| | - Victor García-Carpintero
- Centro de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Ciudad Politécnica de la Innovación, Universitat Politècnica de València (UPV), Valencia, Spain
| | - Cristina Esteras
- Centro de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Ciudad Politécnica de la Innovación, Universitat Politècnica de València (UPV), Valencia, Spain
| | - Juan Esteva
- Department of Agronomical Engineering, Regional Campus of International Excellence 'Campus Mare Nostrum' (CMN), Technical University of Cartagena (UPCT), Cartagena, Spain
| | - María C Bueso
- Department of Applied Mathematics and Statistics, CMN, UPCT, Cartagena, Spain
| | - Joaquín Cañizares
- Centro de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Ciudad Politécnica de la Innovación, Universitat Politècnica de València (UPV), Valencia, Spain
| | - María B Picó
- Centro de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Ciudad Politécnica de la Innovación, Universitat Politècnica de València (UPV), Valencia, Spain
| | - Antonio J Monforte
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC/Universidad Politécnica de Valencia (UPV), Ciudad Politécnica de la Innovación, Valencia, Spain
| | - J Pablo Fernández-Trujillo
- Department of Agronomical Engineering, Regional Campus of International Excellence 'Campus Mare Nostrum' (CMN), Technical University of Cartagena (UPCT), Cartagena, Spain
- Institute of Plant Biotechnology, CMN, UPCT, Cartagena, Spain
| |
Collapse
|
12
|
Comparative genomics of muskmelon reveals a potential role for retrotransposons in the modification of gene expression. Commun Biol 2020; 3:432. [PMID: 32792560 PMCID: PMC7426833 DOI: 10.1038/s42003-020-01172-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/24/2020] [Indexed: 11/08/2022] Open
Abstract
Melon exhibits substantial natural variation especially in fruit ripening physiology, including both climacteric (ethylene-producing) and non-climacteric types. However, genomic mechanisms underlying such variation are not yet fully understood. Here, we report an Oxford Nanopore-based high-grade genome reference in the semi-climacteric cultivar Harukei-3 (378 Mb + 33,829 protein-coding genes), with an update of tissue-wide RNA-seq atlas in the Melonet-DB database. Comparison between Harukei-3 and DHL92, the first published melon genome, enabled identification of 24,758 one-to-one orthologue gene pairs, whereas others were candidates of copy number variation or presence/absence polymorphisms (PAPs). Further comparison based on 10 melon genome assemblies identified genome-wide PAPs of 415 retrotransposon Gag-like sequences. Of these, 160 showed fruit ripening-inducible expression, with 59.4% of the neighboring genes showing similar expression patterns (r > 0.8). Our results suggest that retrotransposons contributed to the modification of gene expression during diversification of melon genomes, and may affect fruit ripening-inducible gene expression.
Collapse
|
13
|
Yang J, Deng G, Lian J, Garraway J, Niu Y, Hu Z, Yu J, Zhang M. The Chromosome-Scale Genome of Melon Dissects Genetic Architecture of Important Agronomic Traits. iScience 2020; 23:101422. [PMID: 32798971 PMCID: PMC7452659 DOI: 10.1016/j.isci.2020.101422] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/05/2020] [Accepted: 07/26/2020] [Indexed: 12/29/2022] Open
Abstract
Comparative and evolutionary genomics analyses are the powerful tools to provide mechanistic insights into important agronomic traits. Here, we completed a chromosome-scale assembly of the "neglected" but vital melon subspecies Cucumis melo ssp. agrestis using single-molecule real-time sequencing, Hi-C, and an ultra-dense genetic map. Comparative genomics analyses identified two targeted genes, UDP-sugar pyrophosphorylase and α-galactosidase, that were selected during evolution for specific phloem transport of oligosaccharides in Cucurbitaceae. Association analysis of transcriptome and the DNA methylation patterns revealed the epigenetic regulation of sucrose accumulation in developing fruits. We constructed the melon recombinant inbred lines to uncover Alkaline/Neutral Invertase (CINV), Sucrose-Phosphatase 2 (SPP2), α-galactosidase, and β-galactosidase loci related to sucrose accumulation and an LRR receptor-like serine/threonine-protein kinase associated with gummy stem blight resistance. This study provides essential genomic resources enabling functional genomics studies and the genomics-informed breeding pipelines for improving the fruit quality and disease resistance traits.
Collapse
Affiliation(s)
- Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Guancong Deng
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Jinmin Lian
- Biozeron Shenzhen, Inc., Shenzhen 518081, China
| | - Jenella Garraway
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | | | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Jingquan Yu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China.
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China.
| |
Collapse
|
14
|
Teh CK, Ong AL, Mayes S, Massawe F, Appleton DR. Major QTLs for Trunk Height and Correlated Agronomic Traits Provide Insights into Multiple Trait Integration in Oil Palm Breeding. Genes (Basel) 2020; 11:genes11070826. [PMID: 32708151 PMCID: PMC7397176 DOI: 10.3390/genes11070826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 11/26/2022] Open
Abstract
Superior oil yield is always the top priority of the oil palm industry. Short trunk height (THT) and compactness traits have become increasingly important to improve harvesting efficiency since the industry started to suffer yield losses due to labor shortages. Breeding populations with low THT and short frond length (FL) are actually available, such as Dumpy AVROS pisifera (DAV) and Gunung Melayu dura (GM). However, multiple trait stacking still remains a challenge for oil palm breeding, which usually requires 12–20 years to complete a breeding cycle. In this study, yield and height increment in the GM × GM (GM-3341) and the GM × DAV (GM-DAV-3461) crossing programs were evaluated and palms with good yield and smaller height increment were identified. In the GM-3341 family, non-linear THT growth between THT_2008 (seven years old) and THT_2014 (13 years old) was revealed by a moderate correlation, suggesting that inter-palm competition becomes increasingly important. In total, 19 quantitative trait loci (QTLs) for THT_2008 (8), oil per palm (O/P) (7) and FL (4) were localized on the GM-3341 linkage map, with an average mapping interval of 2.01 cM. Three major QTLs for THT_2008, O/P and FL are co-located on chromosome 11 and reflect the correlation of THT_2008 with O/P and FL. Multiple trait selection for high O/P and low THT (based on the cumulative effects of positive alleles per trait) identified one palm from 100 palms, but with a large starting population of 1000–1500 seedling per cross, this low frequency could be easily compensated for during breeding selection.
Collapse
Affiliation(s)
- Chee-Keng Teh
- Biotechnology & Breeding Department, Sime Darby Plantation R&D Centre, Serdang 43400, Selangor State, Malaysia; (A.-L.O.); (D.R.A.)
- School of Biosciences, University of Nottingham Malaysia, Semenyih 43500, Selangor State, Malaysia;
- Correspondence:
| | - Ai-Ling Ong
- Biotechnology & Breeding Department, Sime Darby Plantation R&D Centre, Serdang 43400, Selangor State, Malaysia; (A.-L.O.); (D.R.A.)
- School of Biosciences, University of Nottingham Malaysia, Semenyih 43500, Selangor State, Malaysia;
| | - Sean Mayes
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK;
| | - Festo Massawe
- School of Biosciences, University of Nottingham Malaysia, Semenyih 43500, Selangor State, Malaysia;
| | - David Ross Appleton
- Biotechnology & Breeding Department, Sime Darby Plantation R&D Centre, Serdang 43400, Selangor State, Malaysia; (A.-L.O.); (D.R.A.)
| |
Collapse
|
15
|
Long-read bitter gourd ( Momordica charantia) genome and the genomic architecture of nonclassic domestication. Proc Natl Acad Sci U S A 2020; 117:14543-14551. [PMID: 32461376 DOI: 10.1073/pnas.1921016117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genetic architecture of quantitative traits is determined by both Mendelian and polygenic factors, yet classic examples of plant domestication focused on selective sweep of newly mutated Mendelian genes. Here we report the chromosome-level genome assembly and the genomic investigation of a nonclassic domestication example, bitter gourd (Momordica charantia), an important Asian vegetable and medicinal plant of the family Cucurbitaceae. Population resequencing revealed the divergence between wild and South Asian cultivars about 6,000 y ago, followed by the separation of the Southeast Asian cultivars about 800 y ago, with the latter exhibiting more extreme trait divergence from wild progenitors and stronger signs of selection on fruit traits. Unlike some crops where the largest phenotypic changes and traces of selection happened between wild and cultivar groups, in bitter gourd large differences exist between two regional cultivar groups, likely reflecting the distinct consumer preferences in different countries. Despite breeding efforts toward increasing female flower proportion, a gynoecy locus exhibits complex patterns of balanced polymorphism among haplogroups, with potential signs of selective sweep within haplogroups likely reflecting artificial selection and introgression from cultivars back to wild accessions. Our study highlights the importance to investigate such nonclassic example of domestication showing signs of balancing selection and polygenic trait architecture in addition to classic selective sweep in Mendelian factors.
Collapse
|
16
|
Delabre M, El-Mabrouk N, Huber KT, Lafond M, Moulton V, Noutahi E, Castellanos MS. Evolution through segmental duplications and losses: a Super-Reconciliation approach. Algorithms Mol Biol 2020; 15:12. [PMID: 32508979 PMCID: PMC7249433 DOI: 10.1186/s13015-020-00171-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/05/2020] [Indexed: 02/02/2023] Open
Abstract
The classical gene and species tree reconciliation, used to infer the history of gene gain and loss explaining the evolution of gene families, assumes an independent evolution for each family. While this assumption is reasonable for genes that are far apart in the genome, it is not appropriate for genes grouped into syntenic blocks, which are more plausibly the result of a concerted evolution. Here, we introduce the Super-Reconciliation problem which consists in inferring a history of segmental duplication and loss events (involving a set of neighboring genes) leading to a set of present-day syntenies from a single ancestral one. In other words, we extend the traditional Duplication-Loss reconciliation problem of a single gene tree, to a set of trees, accounting for segmental duplications and losses. Existency of a Super-Reconciliation depends on individual gene tree consistency. In addition, ignoring rearrangements implies that existency also depends on gene order consistency. We first show that the problem of reconstructing a most parsimonious Super-Reconciliation, if any, is NP-hard and give an exact exponential-time algorithm to solve it. Alternatively, we show that accounting for rearrangements in the evolutionary model, but still only minimizing segmental duplication and loss events, leads to an exact polynomial-time algorithm. We finally assess time efficiency of the former exponential time algorithm for the Duplication-Loss model on simulated datasets, and give a proof of concept on the opioid receptor genes.
Collapse
|
17
|
A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nat Genet 2019; 51:1607-1615. [DOI: 10.1038/s41588-019-0522-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/24/2019] [Indexed: 11/08/2022]
|
18
|
Zhang H, Li X, Yu H, Zhang Y, Li M, Wang H, Wang D, Wang H, Fu Q, Liu M, Ji C, Ma L, Tang J, Li S, Miao J, Zheng H, Yi H. A High-Quality Melon Genome Assembly Provides Insights into Genetic Basis of Fruit Trait Improvement. iScience 2019; 22:16-27. [PMID: 31739171 PMCID: PMC6864349 DOI: 10.1016/j.isci.2019.10.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/23/2019] [Accepted: 10/24/2019] [Indexed: 01/28/2023] Open
Abstract
Accurate reference genomes have become indispensable tools for characterization of genetic and functional variations. Here we generated a high-quality assembly of the melon Payzawat using a combination of short-read sequencing, single-molecule real-time sequencing, Hi-C, and a high-density genetic map. The final 12 chromosome-level scaffolds cover ∼94.13% of the estimated genome (398.57 Mb). Compared with the published DHL92 genome, our assembly exhibits a 157-fold increase in contig length and remarkable improvements in the assembly of centromeres and telomeres. Six genes within STHQF12.4 on pseudochromosome 12, identified from whole-genome comparison between Payzawat and DHL92, may explain a considerable proportion of the skin thickness. In addition, our population study showed that melon domesticated at multiple times from whole-genome perspective and melons in China are introduced from different routes. Selective sweeps underlying the genes related to desirable traits, haplotypes of alleles associated with agronomic traits, and the variants from resequencing data enable efficient breeding. Provides a high-quality assembly for melon genome Explains a considerable proportion of epidermis thickness Melons in China are introduced from different routes Haplotypes of alleles associated with agronomic traits enable efficient breeding
Collapse
Affiliation(s)
- Hong Zhang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - Xuming Li
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Haiyan Yu
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Yongbing Zhang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - Meihua Li
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - Haojie Wang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - Dengming Wang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - Huaisong Wang
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiushi Fu
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Changmian Ji
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Liming Ma
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Juan Tang
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Song Li
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Jianshun Miao
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Hongkun Zheng
- Biomarker Technologies Corporation, Beijing 101200, China.
| | - Hongping Yi
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China.
| |
Collapse
|
19
|
Gonzalo MJ, Díaz A, Dhillon NPS, Reddy UK, Picó B, Monforte AJ. Re-evaluation of the role of Indian germplasm as center of melon diversification based on genotyping-by-sequencing analysis. BMC Genomics 2019; 20:448. [PMID: 31159730 PMCID: PMC6547464 DOI: 10.1186/s12864-019-5784-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/07/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The importance of Indian germplasm as origin and primary center of diversity of cultivated melon is widely accepted. Genetic diversity of several collections from Indian has been studied previously, although an integrated analysis of these collections in a global diversity perspective has not been possible. In this study, a sample of Indian collections together with a selection of world-wide cultivars to analyze the genetic diversity structure based on Genotype by Sequence data. RESULTS A set of 6158 informative Single Nucleotide Polymorphism (SNP) in 175 melon accessions was generated. Melon germplasm could be classified into six major groups, in concordance with horticultural groups. Indian group was in the center of the diversity plot, with the highest genetic diversity. No strict genetic differentiation between wild and cultivated accessions was appreciated in this group. Genomic regions likely involved in the process of diversification were also found. Interestingly, some SNPs differentiating inodorus and cantalupensis groups are linked to Quantitiative Trait Loci involved in ripening behavior (a major characteristic that differentiate those groups). Linkage disequilibrium was found to be low (17 kb), with more rapid decay in euchromatic (8 kb) than heterochromatic (30 kb) regions, demonstrating that recombination events do occur within heterochromatn, although at lower frequency than in euchromatin. Concomitantly, haplotype blocks were relatively small (59 kb). Some of those haplotype blocks were found fixed in different melon groups, being therefore candidate regions that are involved in the diversification of melon cultivars. CONCLUSIONS The results support the hypothesis that India is the primary center of diversity of melon, Occidental and Far-East cultivars have been developed by divergent selection. Indian germplasm is genetically distinct from African germplasm, supporting independent domestication events. The current set of traditional Indian accessions may be considered as a population rather than a standard collection of fixed landraces with high intercrossing between cultivated and wild melons.
Collapse
Affiliation(s)
- Maria José Gonzalo
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Aurora Díaz
- Unidad de Hortofruticultura, Instituto Agroalimentario de Aragón (IA2) (CITA-Universidad de Zaragoza), Avenida de Montañana 930, 50059, Zaragoza, Spain
| | - Narinder P S Dhillon
- World Vegetable Center East and Southeast Asia/Oceania, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Umesh K Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV, 25112-1000, USA
| | - Belén Picó
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València (COMAV-UPV), Valencia, Spain
| | - Antonio J Monforte
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| |
Collapse
|
20
|
Castanera R, Ruggieri V, Pujol M, Garcia-Mas J, Casacuberta JM. An Improved Melon Reference Genome With Single-Molecule Sequencing Uncovers a Recent Burst of Transposable Elements With Potential Impact on Genes. FRONTIERS IN PLANT SCIENCE 2019; 10:1815. [PMID: 32076428 PMCID: PMC7006604 DOI: 10.3389/fpls.2019.01815] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/30/2019] [Indexed: 05/20/2023]
Abstract
The published melon (Cucumis melo L.) reference genome assembly (v3.6.1) has still 41.6 Mb (Megabases) of sequences unassigned to pseudo-chromosomes and about 57 Mb of gaps. Although different approaches have been undertaken to improve the melon genome assembly in recent years, the high percentage of repeats (~40%) and limitations due to read length have made it difficult to resolve gaps and scaffold's misassignments to pseudomolecules, especially in the heterochromatic regions. Taking advantage of the PacBio single- molecule real-time (SMRT) sequencing technology, an improvement of the melon genome was achieved. About 90% of the gaps were filled and the unassigned sequences were drastically reduced. A lift-over of the latest annotation v4.0 allowed to re-collocate protein-coding genes belonging to the unassigned sequences to the pseudomolecules. A direct proof of the improvement reached in the new melon assembly was highlighted looking at the improved annotation of the transposable element fraction. By screening the new assembly, we discovered many young (inserted less than 2Mya), polymorphic LTR-retrotransposons that were not captured in the previous reference genome. These elements sit mostly in the pericentromeric regions, but some of them are inserted in the upstream region of genes suggesting that they can have regulatory potential. This improved reference genome will provide an invaluable tool for identifying new gene or transposon variants associated with important phenotypes.
Collapse
Affiliation(s)
- Raúl Castanera
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Barcelona, Spain
| | - Valentino Ruggieri
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Genomics and Biotecnology Program, Barcelona, Spain
| | - Marta Pujol
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Genomics and Biotecnology Program, Barcelona, Spain
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Genomics and Biotecnology Program, Barcelona, Spain
- *Correspondence: Jordi Garcia-Mas, ; Josep M. Casacuberta,
| | - Josep M. Casacuberta
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Barcelona, Spain
- *Correspondence: Jordi Garcia-Mas, ; Josep M. Casacuberta,
| |
Collapse
|
21
|
An improved assembly and annotation of the melon (Cucumis melo L.) reference genome. Sci Rep 2018; 8:8088. [PMID: 29795526 PMCID: PMC5967340 DOI: 10.1038/s41598-018-26416-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
We report an improved assembly (v3.6.1) of the melon (Cucumis melo L.) genome and a new genome annotation (v4.0). The optical mapping approach allowed correcting the order and the orientation of 21 previous scaffolds and permitted to correctly define the gap-size extension along the 12 pseudomolecules. A new comprehensive annotation was also built in order to update the previous annotation v3.5.1, released more than six years ago. Using an integrative annotation pipeline, based on exhaustive RNA-Seq collections and ad-hoc transposable element annotation, we identified 29,980 protein-coding loci. Compared to the previous version, the v4.0 annotation improved gene models in terms of completeness of gene structure, UTR regions definition, intron-exon junctions and reduction of fragmented genes. More than 8,000 new genes were identified, one third of them being well supported by RNA-Seq data. To make all the new resources easily exploitable and completely available for the scientific community, a redesigned Melonomics genomic platform was released at http://melonomics.net. The resources produced in this work considerably increase the reliability of the melon genome assembly and resolution of the gene models paving the way for further studies in melon and related species.
Collapse
|
22
|
Haenel Q, Laurentino TG, Roesti M, Berner D. Meta-analysis of chromosome-scale crossover rate variation in eukaryotes and its significance to evolutionary genomics. Mol Ecol 2018; 27:2477-2497. [PMID: 29676042 DOI: 10.1111/mec.14699] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/02/2023]
Abstract
Understanding the distribution of crossovers along chromosomes is crucial to evolutionary genomics because the crossover rate determines how strongly a genome region is influenced by natural selection on linked sites. Nevertheless, generalities in the chromosome-scale distribution of crossovers have not been investigated formally. We fill this gap by synthesizing joint information on genetic and physical maps across 62 animal, plant and fungal species. Our quantitative analysis reveals a strong and taxonomically widespread reduction of the crossover rate in the centre of chromosomes relative to their peripheries. We demonstrate that this pattern is poorly explained by the position of the centromere, but find that the magnitude of the relative reduction in the crossover rate in chromosome centres increases with chromosome length. That is, long chromosomes often display a dramatically low crossover rate in their centre, whereas short chromosomes exhibit a relatively homogeneous crossover rate. This observation is compatible with a model in which crossover is initiated from the chromosome tips, an idea with preliminary support from mechanistic investigations of meiotic recombination. Consequently, we show that organisms achieve a higher genome-wide crossover rate by evolving smaller chromosomes. Summarizing theory and providing empirical examples, we finally highlight that taxonomically widespread and systematic heterogeneity in crossover rate along chromosomes generates predictable broad-scale trends in genetic diversity and population differentiation by modifying the impact of natural selection among regions within a genome. We conclude by emphasizing that chromosome-scale heterogeneity in crossover rate should urgently be incorporated into analytical tools in evolutionary genomics, and in the interpretation of resulting patterns.
Collapse
Affiliation(s)
- Quiterie Haenel
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | - Marius Roesti
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Berner
- Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Branham SE, Levi A, Katawczik M, Fei Z, Wechter WP. Construction of a genome-anchored, high-density genetic map for melon (Cucumis melo L.) and identification of Fusarium oxysporum f. sp. melonis race 1 resistance QTL. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:829-837. [PMID: 29372283 DOI: 10.1007/s00122-017-3039-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/11/2017] [Indexed: 05/22/2023]
Abstract
Four QTLs and an epistatic interaction were associated with disease severity in response to inoculation with Fusarium oxysporum f. sp. melonis race 1 in a recombinant inbred line population of melon. The USDA Cucumis melo inbred line, MR-1, harbors a wealth of alleles associated with resistance to several major diseases of melon, including powdery mildew, downy mildew, Alternaria leaf blight, and Fusarium wilt. MR-1 was crossed to an Israeli cultivar, Ananas Yok'neam, which is susceptible to all of these diseases, to generate a recombinant inbred line (RIL) population of 172 lines. In this study, the RIL population was genotyped to construct an ultra-dense genetic linkage map with 5663 binned SNPs anchored to the C. melo genome and exhibits the overall high quality of the assembly. The utility of the densely genotyped population was demonstrated through QTL mapping of a well-studied trait, resistance to Fusarium wilt caused by Fusarium oxysporum f. sp. melonis (Fom) race 1. A major QTL co-located with the previously validated resistance gene Fom-2. In addition, three minor QTLs and an epistatic interaction contributing to Fom race 1 resistance were identified. The MR-1 × AY RIL population provides a valuable resource for future QTL mapping studies and marker-assisted selection of disease resistance in melon.
Collapse
Affiliation(s)
- Sandra E Branham
- USDA, ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Amnon Levi
- USDA, ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Melanie Katawczik
- USDA, ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - W Patrick Wechter
- USDA, ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA.
| |
Collapse
|
24
|
Galpaz N, Gonda I, Shem-Tov D, Barad O, Tzuri G, Lev S, Fei Z, Xu Y, Mao L, Jiao C, Harel-Beja R, Doron-Faigenboim A, Tzfadia O, Bar E, Meir A, Sa'ar U, Fait A, Halperin E, Kenigswald M, Fallik E, Lombardi N, Kol G, Ronen G, Burger Y, Gur A, Tadmor Y, Portnoy V, Schaffer AA, Lewinsohn E, Giovannoni JJ, Katzir N. Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:169-191. [PMID: 29385635 DOI: 10.1111/tpj.13838] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 05/18/2023]
Abstract
Combined quantitative trait loci (QTL) and expression-QTL (eQTL) mapping analysis was performed to identify genetic factors affecting melon (Cucumis melo) fruit quality, by linking genotypic, metabolic and transcriptomic data from a melon recombinant inbred line (RIL) population. RNA sequencing (RNA-Seq) of fruit from 96 RILs yielded a highly saturated collection of > 58 000 single-nucleotide polymorphisms, identifying 6636 recombination events that separated the genome into 3663 genomic bins. Bin-based QTL analysis of 79 RILs and 129 fruit-quality traits affecting taste, aroma and color resulted in the mapping of 241 QTL. Thiol acyltransferase (CmThAT1) gene was identified within the QTL interval of its product, S-methyl-thioacetate, a key component of melon fruit aroma. Metabolic activity of CmThAT1-encoded protein was validated in bacteria and in vitro. QTL analysis of flesh color intensity identified a candidate white-flesh gene (CmPPR1), one of two major loci determining fruit flesh color in melon. CmPPR1 encodes a member of the pentatricopeptide protein family, involved in processing of RNA in plastids, where carotenoid and chlorophyll pigments accumulate. Network analysis of > 12 000 eQTL mapped for > 8000 differentially expressed fruit genes supported the role of CmPPR1 in determining the expression level of plastid targeted genes. We highlight the potential of RNA-Seq-based QTL analysis of small to moderate size, advanced RIL populations for precise marker-assisted breeding and gene discovery. We provide the following resources: a RIL population genotyped with a unique set of SNP markers, confined genomic segments that harbor QTL governing 129 traits and a saturated set of melon eQTLs.
Collapse
Affiliation(s)
- Navot Galpaz
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Itay Gonda
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Doron Shem-Tov
- NRGENE, Park HaMada Ness Ziona, Israel
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Galil Tzuri
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Shery Lev
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
- Institute of Life Science, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA
| | - Yimin Xu
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Linyong Mao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Chen Jiao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Rotem Harel-Beja
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Adi Doron-Faigenboim
- Department of Vegetable and Field Crops, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Oren Tzfadia
- VIB Department of Plant Systems Biology, Ghent University, Gent, Belgium
| | - Einat Bar
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Ayala Meir
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Uzi Sa'ar
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Aaron Fait
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eran Halperin
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - Merav Kenigswald
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
- Institute of Life Science, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Postharvest Science of Fresh Produce, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Elazar Fallik
- Department of Postharvest Science of Fresh Produce, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Nadia Lombardi
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
- Department of Agricultural Sciences, University of Naples, Portici, Italy
| | - Guy Kol
- NRGENE, Park HaMada Ness Ziona, Israel
| | - Gil Ronen
- NRGENE, Park HaMada Ness Ziona, Israel
| | - Yosef Burger
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Amit Gur
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Ya'akov Tadmor
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Vitaly Portnoy
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Arthur A Schaffer
- Department of Vegetable and Field Crops, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Efraim Lewinsohn
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA
| | - Nurit Katzir
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| |
Collapse
|
25
|
Zhu H, Sun X, Zhang Q, Song P, Hu Q, Zhang X, Li X, Hu J, Pan J, Sun S, Weng Y, Yang L. GLABROUS (CmGL) encodes a HD-ZIP IV transcription factor playing roles in multicellular trichome initiation in melon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:569-579. [PMID: 29147724 DOI: 10.1007/s00122-017-3019-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/10/2017] [Indexed: 05/07/2023]
Abstract
Map-based cloning identified CmGL that encodes a HD-ZIP type IV transcription factor that controls multicellular trichome initiation in melon. Trichomes are small hairs covering the aerial parts of plants that originate from the epidermal cells, which can protect plants against the damage by insects and pathogens. The regulatory pathway of unicellular trichomes has been well studied in the model plant Arabidopsis. Little is known about the genetic control and regulation of trichome development in melon (Cucumis melo L.) which has multicellular trichomes. In this study, we identified a melon mutant, cmgl, which showed completely glabrous on all aerial organs. A bulked segregant analysis was conducted to identify polymorphic markers for linkage analysis in a population with 256 F2 plants, which allowed to locate the cmgl locus in melon chromosome VIII. Next-generation sequencing-aided marker discovery and fine mapping in a large population with 1536 F2 plants narrowed the candidate gene region to 12 kb that harbored only one candidate gene for cmgl, which encoded a class IV homeodomain-associated leucine zipper transcription factor. Four SNPs in the coding region of the CmGL gene were identified between the two parental lines; a single base substitution from C to A resulted in a premature termination codon and a truncated protein in the cmgl. The SNP was converted into a dCAPS marker, which showed co-segregation in the F2 population and 564 melon accessions. Result of this study will be helpful for better understanding of genetic control of trichome development in melon and marker-assisted selection in developing new cultivars.
Collapse
Affiliation(s)
- Huayu Zhu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Xiaofen Sun
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Qi Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Pengyao Song
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Qianmei Hu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Xiaojing Zhang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Xiang Li
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Jianbin Hu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, 450002, China
| | - Junsong Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Shouru Sun
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, 450002, China
| | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China.
| |
Collapse
|
26
|
Argyris JM, Díaz A, Ruggieri V, Fernández M, Jahrmann T, Gibon Y, Picó B, Martín-Hernández AM, Monforte AJ, Garcia-Mas J. QTL Analyses in Multiple Populations Employed for the Fine Mapping and Identification of Candidate Genes at a Locus Affecting Sugar Accumulation in Melon ( Cucumis melo L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1679. [PMID: 29018473 PMCID: PMC5623194 DOI: 10.3389/fpls.2017.01679] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/12/2017] [Indexed: 05/24/2023]
Abstract
Sugar content is the major determinant of both fruit quality and consumer acceptance in melon (Cucumis melo L), and is a primary target for crop improvement. Near-isogenic lines (NILs) derived from the intraspecific cross between a "Piel de Sapo" (PS) type and the exotic cultivar "Songwhan Charmi" (SC), and several populations generated from the cross of PS × Ames 24294 ("Trigonus"), a wild melon, were used to identify QTL related to sugar and organic acid composition. Seventy-eight QTL were detected across several locations and different years, with three important clusters related to sugar content located on chromosomes 4, 5, and 7. Two PS × SC NILs (SC5-1 and SC5-2) sharing a common genomic interval of 1.7 Mb at the top of chromosome 5 contained QTL reducing soluble solids content (SSC) and sucrose content by an average of 29 and 68%, respectively. This cluster collocated with QTL affecting sugar content identified in other studies in lines developed from the PS × SC cross and supported the presence of a stable consensus locus involved in sugar accumulation that we named SUCQSC5.1. QTL reducing soluble solids and sucrose content identified in the "Trigonus" mapping populations, as well as QTL identified in previous studies from other ssp. agrestis sources, collocated with SUCQSC5.1, suggesting that they may be allelic and implying a role in domestication. In subNILs derived from the PS × SC5-1 cross, SUCQSC5.1 reduced SSC and sucrose content by an average of 18 and 34%, respectively, and was fine-mapped to a 56.1 kb interval containing four genes. Expression analysis of the candidate genes in mature fruit showed differences between the subNILs with PS alleles that were "high" sugar and SC alleles of "low" sugar phenotypes for MELO3C014519, encoding a putative BEL1-like homeodomain protein. Sequence differences in the gene predicted to affect protein function were restricted to SC and other ssp. agrestis cultivar groups. These results provide the basis for further investigation of genes affecting sugar accumulation in melon.
Collapse
Affiliation(s)
- Jason M. Argyris
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| | - Aurora Díaz
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Valentino Ruggieri
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| | | | | | - Yves Gibon
- UMR1332 Biologie du Fruit et Pathologie, Plateforme Métabolome Bordeaux, INRA, University of Bordeaux, Villenave d'Ornon, France
| | - Belén Picó
- Institute for the Conservation and Breeding of the Agricultural Biodiversity, Universitat Politècnica de València (COMAV-UPV), Valencia, Spain
| | - Ana M. Martín-Hernández
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| | - Antonio J. Monforte
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| |
Collapse
|
27
|
Hu Z, Deng G, Mou H, Xu Y, Chen L, Yang J, Zhang M. A re-sequencing-based ultra-dense genetic map reveals a gummy stem blight resistance-associated gene in Cucumis melo. DNA Res 2017; 25:1-10. [PMID: 28985339 PMCID: PMC5824858 DOI: 10.1093/dnares/dsx033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/11/2017] [Indexed: 12/30/2022] Open
Abstract
The melon (Cucumis melo) genome and genetic maps with hundreds to thousands of single nucleotide polymorphism markers were recently released. However, a high-resolution genetic map was lacking. Gummy stem blight (Gsb) is a destructive disease responsible for considerable economic losses during melon production. We herein describe the development of an ultra-dense genetic map consisting of 12,932 recombination bin markers covering 1,818 cM, with an average distance of 0.17 cM between adjacent tags. A comparison of the genetic maps for melon, watermelon, and cucumber revealed chromosome-level syntenic relationships and recombination events among the three Cucurbitaceae species. Our genetic map was useful for re-anchoring the genome scaffolds of melon. More than 92% assembly was anchored to 12 pseudo-chromosomes and 90% of them were oriented. Furthermore, 1,135 recombination hotspots revealed an unbalanced recombination rate across the melon genome. Genetic analyses of the Gsb-resistant and -susceptible lines indicated the resistance phenotype is mediated by a single dominant gene. We identified Gsb-resistance gene candidates in a 108-kb region on pseudo-chromosome 4. Our findings verify the utility of an ultra-dense genetic map for mapping a gene of interest, and for identifying new disease resistant genes.
Collapse
Affiliation(s)
- Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Guancong Deng
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Haipeng Mou
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Yuhui Xu
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Li Chen
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| |
Collapse
|
28
|
Giner A, Pascual L, Bourgeois M, Gyetvai G, Rios P, Picó B, Troadec C, Bendahmane A, Garcia-Mas J, Martín-Hernández AM. A mutation in the melon Vacuolar Protein Sorting 41prevents systemic infection of Cucumber mosaic virus. Sci Rep 2017; 7:10471. [PMID: 28874719 PMCID: PMC5585375 DOI: 10.1038/s41598-017-10783-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/14/2017] [Indexed: 01/07/2023] Open
Abstract
In the melon exotic accession PI 161375, the gene cmv1, confers recessive resistance to Cucumber mosaic virus (CMV) strains of subgroup II. cmv1 prevents the systemic infection by restricting the virus to the bundle sheath cells and impeding viral loading to the phloem. Here we report the fine mapping and cloning of cmv1. Screening of an F2 population reduced the cmv1 region to a 132 Kb interval that includes a Vacuolar Protein Sorting 41 gene. CmVPS41 is conserved among plants, animals and yeast and is required for post-Golgi vesicle trafficking towards the vacuole. We have validated CmVPS41 as the gene responsible for the resistance, both by generating CMV susceptible transgenic melon plants, expressing the susceptible allele in the resistant cultivar and by characterizing CmVPS41 TILLING mutants with reduced susceptibility to CMV. Finally, a core collection of 52 melon accessions allowed us to identify a single amino acid substitution (L348R) as the only polymorphism associated with the resistant phenotype. CmVPS41 is the first natural recessive resistance gene found to be involved in viral transport and its cellular function suggests that CMV might use CmVPS41 for its own transport towards the phloem.
Collapse
Affiliation(s)
- Ana Giner
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
| | - Laura Pascual
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
- Unidad de Genética, Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Michael Bourgeois
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
| | - Gabor Gyetvai
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
- KWS SAAT SE Grimsehlstr. 31, 37555, Einbeck, Germany
| | - Pablo Rios
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
- Syngenta España S.A., C/Cartabona 10, 04710, El Ejido, Spain
| | - Belén Picó
- COMAV, Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - Christelle Troadec
- INRA-CNRS, UMR1165, Unité de Recherche en Génomique Végétale, Evry, France
| | - Abdel Bendahmane
- INRA-CNRS, UMR1165, Unité de Recherche en Génomique Végétale, Evry, France
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain.
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain.
| |
Collapse
|
29
|
Pavy N, Lamothe M, Pelgas B, Gagnon F, Birol I, Bohlmann J, Mackay J, Isabel N, Bousquet J. A high-resolution reference genetic map positioning 8.8 K genes for the conifer white spruce: structural genomics implications and correspondence with physical distance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:189-203. [PMID: 28090692 DOI: 10.1111/tpj.13478] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/23/2016] [Accepted: 01/03/2017] [Indexed: 05/21/2023]
Abstract
Over the last decade, extensive genetic and genomic resources have been developed for the conifer white spruce (Picea glauca, Pinaceae), which has one of the largest plant genomes (20 Gbp). Draft genome sequences of white spruce and other conifers have recently been produced, but dense genetic maps are needed to comprehend genome macrostructure, delineate regions involved in quantitative traits, complement functional genomic investigations, and assist the assembly of fragmented genomic sequences. A greatly expanded P. glauca composite linkage map was generated from a set of 1976 full-sib progeny, with the positioning of 8793 expressed genes. Regions with significant low or high gene density were identified. Gene family members tended to be mapped on the same chromosomes, with tandemly arrayed genes significantly biased towards specific functional classes. The map was integrated with transcriptome data surveyed across eight tissues. In total, 69 clusters of co-expressed and co-localising genes were identified. A high level of synteny was found with pine genetic maps, which should facilitate the transfer of structural information in the Pinaceae. Although the current white spruce genome sequence remains highly fragmented, dozens of scaffolds encompassing more than one mapped gene were identified. From these, the relationship between genetic and physical distances was examined and the genome-wide recombination rate was found to be much smaller than most estimates reported for angiosperm genomes. This gene linkage map shall assist the large-scale assembly of the next-generation white spruce genome sequence and provide a reference resource for the conifer genomics community.
Collapse
Affiliation(s)
- Nathalie Pavy
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Manuel Lamothe
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Betty Pelgas
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - France Gagnon
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Inanç Birol
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - John Mackay
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, 0X1 3RB, UK
| | - Nathalie Isabel
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
30
|
In Silico identification and annotation of non-coding RNAs by RNA-seq and De Novo assembly of the transcriptome of Tomato Fruits. PLoS One 2017; 12:e0171504. [PMID: 28187155 PMCID: PMC5302821 DOI: 10.1371/journal.pone.0171504] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/21/2017] [Indexed: 12/12/2022] Open
Abstract
The complexity of the tomato (Solanum lycopersicum) transcriptome has not yet been fully elucidated. To gain insights into the diversity and features of coding and non-coding RNA molecules of tomato fruits, we generated strand-specific libraries from berries of two tomato cultivars grown in two open-field conditions with different soil type. Following high-throughput Illumina RNA-sequencing (RNA-seq), more than 90% of the reads (over one billion, derived from twelve dataset) were aligned to the tomato reference genome. We report a comprehensive analysis of the transcriptome, improved with 39,095 transcripts, which reveals previously unannotated novel transcripts, natural antisense transcripts, long non-coding RNAs and alternative splicing variants. In addition, we investigated the sequence variants between the cultivars under investigation to highlight their genetic difference. Our strand-specific analysis allowed us to expand the current tomato transcriptome annotation and it is the first to reveal the complexity of the poly-adenylated RNA world in tomato. Moreover, our work demonstrates the usefulness of strand specific RNA-seq approach for the transcriptome-based genome annotation and provides a resource valuable for further functional studies.
Collapse
|
31
|
Chang CW, Wang YH, Tung CW. Genome-Wide Single Nucleotide Polymorphism Discovery and the Construction of a High-Density Genetic Map for Melon ( Cucumis melo L.) Using Genotyping-by-Sequencing. FRONTIERS IN PLANT SCIENCE 2017; 8:125. [PMID: 28220139 PMCID: PMC5292975 DOI: 10.3389/fpls.2017.00125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/20/2017] [Indexed: 05/27/2023]
Abstract
Although genotyping-by-sequencing (GBS) enables the efficient and low-cost generation of large numbers of markers, the utility of resultant genotypes are limited, because they are enormously error-prone and contain high proportions of missing data. In this study, we generated single nucleotide polymorphism (SNP) markers for 109 recombinant inbred lines of melon (Cucumis melo L.) using the GBS approach and ordered them according to their physical position on the draft double haploid line DHL92 genome. Next, by investigating associations between these SNPs, we discovered that some segments on the physical map conflict with linkage relationships. Therefore, to filter out error-prone loci, 4,110 SNPs in which we have a high degree of confidence were selected as anchors to test independence with respect to unselected markers, and the resultant dataset was then analyzed using the Full-Sib Family Haplotype (FSFHap) algorithm in the software TASSEL 5.2. On the basis of this analysis, 22,933 loci that have an average rate of missing data of 0.281% were used to construct a genetic map, which spans 1,088.3 cM across 12 chromosomes and has a maximum spacing of 6.0 cM. Use of this high-quality linkage map enabled the identification of several quantitative trait loci (QTL) known to control traits in fruit and validated our approach. This study highlights the utility of GBS markers for the identification of trait-associated QTLs in melon and facilitates further investigation of genome structure.
Collapse
Affiliation(s)
- Che-Wei Chang
- Department of Agronomy, National Taiwan UniversityTaipei, Taiwan
| | - Yu-Hua Wang
- Crop Science Division, Taiwan Agricultural Research Institute, Council of AgricultureTaichung, Taiwan
| | - Chih-Wei Tung
- Department of Agronomy, National Taiwan UniversityTaipei, Taiwan
| |
Collapse
|
32
|
Pavan S, Marcotrigiano AR, Ciani E, Mazzeo R, Zonno V, Ruggieri V, Lotti C, Ricciardi L. Genotyping-by-sequencing of a melon (Cucumis melo L.) germplasm collection from a secondary center of diversity highlights patterns of genetic variation and genomic features of different gene pools. BMC Genomics 2017; 18:59. [PMID: 28068911 PMCID: PMC5223370 DOI: 10.1186/s12864-016-3429-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/16/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Melon (Cucumis melo L.) is one of the most important horticultural species, which includes several taxonomic groups. With the advent of next-generation sequencing, single nucleotide polymorphism (SNP) markers are widely used in the study of genetic diversity and genomics. RESULTS We report the first successful application of genotyping-by-sequencing (GBS) technology in melon. We detected 25,422 SNPs by the analysis of 72 accessions collected in Apulia, a secondary centre of diversity in Southern Italy. Analyses of genetic structure, principal components, and hierarchical clustering support the identification of three distinct subpopulations. One of them includes accessions known with the folk name of 'carosello', referable to the chate taxonomic group. This is one of the oldest domesticated forms of C. melo, once widespread in Europe and now exposed to the risk of genetic erosion. The second subpopulation contains landraces of 'barattiere', a regional vegetable production that was never characterized at the DNA level and we show was erroneously considered another form of chate melon. The third subpopulation includes genotypes of winter melon (C. melo var. inodorus). Genetic analysis within each subpopulation revealed patterns of diversity associated with fruit phenotype and geographical origin. We used SNP data to describe, for each subpopulation, the average linkage disequilibrium (LD) decay, and to highlight genomic regions possibly resulting from directional selection and associated with phenotypic variation. CONCLUSIONS We used GBS to characterize patterns of genetic diversity and genomic features within C. melo. We provide useful information to preserve endangered gene pools and to guide the use of germplasm in breeding. Finally, our findings lay a foundation for molecular breeding approaches and the identification of genes underlying phenotypic traits.
Collapse
Affiliation(s)
- Stefano Pavan
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy.
| | | | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
| | - Rosa Mazzeo
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
| | - Vito Zonno
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
| | | | - Concetta Lotti
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, via Napoli 25, I-71100, Foggia, Italy
| | - Luigi Ricciardi
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
| |
Collapse
|
33
|
Perpiñá G, Esteras C, Gibon Y, Monforte AJ, Picó B. A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC PLANT BIOLOGY 2016; 16:154. [PMID: 27390934 PMCID: PMC4938994 DOI: 10.1186/s12870-016-0842-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/28/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Genomic libraries of introgression lines (ILs) consist of collections of homozygous lines with a single chromosomal introgression from a donor genotype in a common, usually elite, genetic background, representing the whole donor genome in the full collection. Currently, the only available melon IL collection was generated using Piel de sapo (var. inodorus) as the recurrent background. ILs are not available in genetic backgrounds representing other important market class cultivars, such as the cantalupensis. The recent availability of genomic tools in melon, such as SNP collections and genetic maps, facilitates the development of such mapping populations. RESULTS We have developed a new genomic library of introgression lines from the Japanese cv. Ginsen Makuwa (var. makuwa) into the French Charentais-type cv. Vedrantais (var. cantalupensis) genetic background. In order to speed up the breeding program, we applied medium-throughput SNP genotyping with Sequenom MassARRAY technology in early backcross generations and High Resolution Melting in the final steps. The phenotyping of the backcross generations and of the final set of 27 ILs (averaging 1.3 introgressions/plant and covering nearly 100 % of the donor genome), in three environments, allowed the detection of stable QTLs for flowering and fruit quality traits, including some that affect fruit size in chromosomes 6 and 11, others that change fruit shape in chromosomes 7 and 11, others that change flesh color in chromosomes 2, 8 and 9, and still others that increase sucrose content and delay climacteric behavior in chromosomes 5 and 10. CONCLUSIONS A new melon IL collection in the Charentais genetic background has been developed. Genomic regions that consistently affect flowering and fruit quality traits have been identified, which demonstrates the suitability of this collection for dissecting complex traits in melon. Additionally, pre-breeding lines with new, commercially interesting phenotypes have been observed, including delayed climacteric ripening associated to higher sucrose levels, which is of great interest for Charentais cultivar breeding.
Collapse
Affiliation(s)
- Gorka Perpiñá
- />Instituto de Conservación y Mejora de la Agrodiversidad, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | - Cristina Esteras
- />Instituto de Conservación y Mejora de la Agrodiversidad, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | - Yves Gibon
- />UMR1332 Biologie du Fruit et Pathologie and Plateforme Métabolome, INRA-Bordeaux and Bordeaux University, 71 av. Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Antonio J. Monforte
- />Instituto de Biología Molecular y Celular de Plantas (IBMCP) UPV-CSIC, Ciudad Politécnica de la Innovación Edificio 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Belén Picó
- />Instituto de Conservación y Mejora de la Agrodiversidad, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
34
|
Wang L, Xia Q, Zhang Y, Zhu X, Zhu X, Li D, Ni X, Gao Y, Xiang H, Wei X, Yu J, Quan Z, Zhang X. Updated sesame genome assembly and fine mapping of plant height and seed coat color QTLs using a new high-density genetic map. BMC Genomics 2016; 17:31. [PMID: 26732604 PMCID: PMC4702397 DOI: 10.1186/s12864-015-2316-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/15/2015] [Indexed: 12/23/2022] Open
Abstract
Background Sesame is an important high-quality oil seed crop. The sesame genome was de novo sequenced and assembled in 2014 (version 1.0); however, the number of anchored pseudomolecules was higher than the chromosome number (2n = 2x = 26) due to the lack of a high-density genetic map with 13 linkage groups. Results We resequenced a permanent population consisting of 430 recombinant inbred lines and constructed a genetic map to improve the sesame genome assembly. We successfully anchored 327 scaffolds onto 13 pseudomolecules. The new genome assembly (version 2.0) included 97.5 % of the scaffolds greater than 150 kb in size present in assembly version 1.0 and increased the total pseudomolecule length from 233.7 to 258.4 Mb with 94.3 % of the genome assembled and 97.2 % of the predicted gene models anchored. Based on the new genome assembly, a bin map including 1,522 bins spanning 1090.99 cM was generated and used to identified 41 quantitative trait loci (QTLs) for sesame plant height and 9 for seed coat color. The plant height-related QTLs explained 3–24 % the phenotypic variation (mean value, 8 %), and 29 of them were detected in at least two field trials. Two major loci (qPH-8.2 and qPH-3.3) that contributed 23 and 18 % of the plant height were located in 350 and 928-kb spaces on Chr8 and Chr3, respectively. qPH-3.3, is predicted to be responsible for the semi-dwarf sesame plant phenotype and contains 102 candidate genes. This is the first report of a sesame semi-dwarf locus and provides an interesting opportunity for a plant architecture study of the sesame. For the sesame seed coat color, the QTLs of the color spaces L*, a*, and b* were detected with contribution rates of 3–46 %. qSCb-4.1 contributed approximately 39 % of the b* value and was located on Chr4 in a 199.9-kb space. A list of 32 candidate genes for the locus, including a predicted black seed coat-related gene, was determined by screening the newly anchored genome. Conclusions This study offers a high-density genetic map and an improved assembly of the sesame genome. The number of linkage groups and pseudomolecules in this assembly equals the number of sesame chromosomes for the first time. The map and updated genome assembly are expected to serve as a platform for future comparative genomics and genetic studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2316-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Qiuju Xia
- Shenzhen Engineering Laboratory of Crop Molecular Design Breeding, BGI-agro, 518083, Shenzhen, China.
| | - Yanxin Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Xiaodong Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Xiaofeng Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Xuemei Ni
- Shenzhen Engineering Laboratory of Crop Molecular Design Breeding, BGI-agro, 518083, Shenzhen, China.
| | - Yuan Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Haitao Xiang
- Shenzhen Engineering Laboratory of Crop Molecular Design Breeding, BGI-agro, 518083, Shenzhen, China.
| | - Xin Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Jingyin Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Zhiwu Quan
- Shenzhen Engineering Laboratory of Crop Molecular Design Breeding, BGI-agro, 518083, Shenzhen, China.
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| |
Collapse
|
35
|
Nimmakayala P, Tomason YR, Abburi VL, Alvarado A, Saminathan T, Vajja VG, Salazar G, Panicker GK, Levi A, Wechter WP, McCreight JD, Korol AB, Ronin Y, Garcia-Mas J, Reddy UK. Genome-Wide Differentiation of Various Melon Horticultural Groups for Use in GWAS for Fruit Firmness and Construction of a High Resolution Genetic Map. FRONTIERS IN PLANT SCIENCE 2016; 7:1437. [PMID: 27713759 PMCID: PMC5031849 DOI: 10.3389/fpls.2016.01437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/08/2016] [Indexed: 05/06/2023]
Abstract
Melon (Cucumis melo L.) is a phenotypically diverse eudicot diploid (2n = 2x = 24) has climacteric and non-climacteric morphotypes and show wide variation for fruit firmness, an important trait for transportation and shelf life. We generated 13,789 SNP markers using genotyping-by-sequencing (GBS) and anchored them to chromosomes to understand genome-wide fixation indices (Fst) between various melon morphotypes and genomewide linkage disequilibrium (LD) decay. The FST between accessions of cantalupensis and inodorus was 0.23. The FST between cantalupensis and various agrestis accessions was in a range of 0.19-0.53 and between inodorus and agrestis accessions was in a range of 0.21-0.59 indicating sporadic to wide ranging introgression. The EM (Expectation Maximization) algorithm was used for estimation of 1436 haplotypes. Average genome-wide LD decay for the melon genome was noted to be 9.27 Kb. In the current research, we focused on the genome-wide divergence underlying diverse melon horticultural groups. A high-resolution genetic map with 7153 loci was constructed. Genome-wide segregation distortion and recombination rate across various chromosomes were characterized. Melon has climacteric and non-climacteric morphotypes and wide variation for fruit firmness, a very important trait for transportation and shelf life. Various levels of QTLs were identified with high to moderate stringency and linked to fruit firmness using both genome-wide association study (GWAS) and biparental mapping. Gene annotation revealed some of the SNPs are located in β-D-xylosidase, glyoxysomal malate synthase, chloroplastic anthranilate phosphoribosyltransferase, and histidine kinase, the genes that were previously characterized for fruit ripening and softening in other crops.
Collapse
Affiliation(s)
- Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State UniversityInstitute, WV, USA
| | - Yan R. Tomason
- Gus R. Douglass Institute and Department of Biology, West Virginia State UniversityInstitute, WV, USA
- Department of Selection and Seed Production, Dnepropetrovsk State Agrarian and Economic UniversityDnepropetrovsk, Ukraine
| | - Venkata L. Abburi
- Gus R. Douglass Institute and Department of Biology, West Virginia State UniversityInstitute, WV, USA
| | - Alejandra Alvarado
- Gus R. Douglass Institute and Department of Biology, West Virginia State UniversityInstitute, WV, USA
| | - Thangasamy Saminathan
- Gus R. Douglass Institute and Department of Biology, West Virginia State UniversityInstitute, WV, USA
| | - Venkata G. Vajja
- Gus R. Douglass Institute and Department of Biology, West Virginia State UniversityInstitute, WV, USA
| | - Germania Salazar
- Department of Agriculture, Alcorn State UniversityLorman, MS, USA
| | | | - Amnon Levi
- U.S. Vegetable Laboratory, United States Department of Agriculture, Agricultural Research ServiceCharleston, SC, USA
| | - William P. Wechter
- U.S. Vegetable Laboratory, United States Department of Agriculture, Agricultural Research ServiceCharleston, SC, USA
| | | | - Abraham B. Korol
- Department of Evolutionary and Environmental Biology, Haifa UniversityHaifa, Israel
| | - Yefim Ronin
- Department of Evolutionary and Environmental Biology, Haifa UniversityHaifa, Israel
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institute for Food and Agricultural Research and Technology-Universitat Autònoma de Barcelona-Universitat de BarcelonaBarcelona, Spain
| | - Umesh K. Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State UniversityInstitute, WV, USA
- *Correspondence: Umesh K. Reddy
| |
Collapse
|
36
|
A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC Genomics 2015; 16:1101. [PMID: 26704908 PMCID: PMC4690373 DOI: 10.1186/s12864-015-2312-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022] Open
Abstract
Background Pumpkin (Cucurbita maxima Duch.) is an economically important crop belonging to the Cucurbitaceae family. However, very few genomic and genetic resources are available for this species. As part of our ongoing efforts to sequence the pumpkin genome, high-density genetic map is essential for anchoring and orienting the assembled scaffolds. In addition, a saturated genetic map can facilitate quantitative trait locus (QTL) mapping. Results A set of 186 F2 plants derived from the cross of pumpkin inbred lines Rimu and SQ026 were genotyped using the genotyping-by-sequencing approach. Using the SNPs we identified, a high-density genetic map containing 458 bin-markers was constructed, spanning a total genetic distance of 2,566.8 cM across the 20 linkage groups of C. maxima with a mean marker density of 5.60 cM. Using this map we were able to anchor 58 assembled scaffolds that covered about 194.5 Mb (71.7 %) of the 271.4 Mb assembled pumpkin genome, of which 44 (183.0 Mb; 67.4 %) were oriented. Furthermore, the high-density genetic map was used to identify genomic regions highly associated with an important agronomic trait, dwarf vine. Three QTLs on linkage groups (LGs) 1, 3 and 4, respectively, were recovered. One QTL, qCmB2, which was located in an interval of 0.42 Mb on LG 3, explained 21.4 % phenotypic variations. Within qCmB2, one gene, Cma_004516, encoding the gibberellin (GA) 20-oxidase in the GA biosynthesis pathway, had a 1249-bp deletion in its promoter in bush type lines, and its expression level was significantly increased during the vine growth and higher in vine type lines than bush type lines, supporting Cma_004516 as a possible candidate gene controlling vine growth in pumpkin. Conclusions A high-density pumpkin genetic map was constructed, which was used to successfully anchor and orient the assembled genome scaffolds, and to identify QTLs highly associated with pumpkin vine length. The map provided a valuable resource for gene cloning and marker assisted breeding in pumpkin and other related species. The identified vine length QTLs would help to dissect the underlying molecular basis regulating pumpkin vine growth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2312-8) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Sanseverino W, Hénaff E, Vives C, Pinosio S, Burgos-Paz W, Morgante M, Ramos-Onsins SE, Garcia-Mas J, Casacuberta JM. Transposon Insertions, Structural Variations, and SNPs Contribute to the Evolution of the Melon Genome. Mol Biol Evol 2015; 32:2760-74. [PMID: 26174143 DOI: 10.1093/molbev/msv152] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The availability of extensive databases of crop genome sequences should allow analysis of crop variability at an unprecedented scale, which should have an important impact in plant breeding. However, up to now the analysis of genetic variability at the whole-genome scale has been mainly restricted to single nucleotide polymorphisms (SNPs). This is a strong limitation as structural variation (SV) and transposon insertion polymorphisms are frequent in plant species and have had an important mutational role in crop domestication and breeding. Here, we present the first comprehensive analysis of melon genetic diversity, which includes a detailed analysis of SNPs, SV, and transposon insertion polymorphisms. The variability found among seven melon varieties representing the species diversity and including wild accessions and highly breed lines, is relatively high due in part to the marked divergence of some lineages. The diversity is distributed nonuniformly across the genome, being lower at the extremes of the chromosomes and higher in the pericentromeric regions, which is compatible with the effect of purifying selection and recombination forces over functional regions. Additionally, this variability is greatly reduced among elite varieties, probably due to selection during breeding. We have found some chromosomal regions showing a high differentiation of the elite varieties versus the rest, which could be considered as strongly selected candidate regions. Our data also suggest that transposons and SV may be at the origin of an important fraction of the variability in melon, which highlights the importance of analyzing all types of genetic variability to understand crop genome evolution.
Collapse
Affiliation(s)
- Walter Sanseverino
- Institut de Recerca i Tecnologia Agroalimentàries, Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Elizabeth Hénaff
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Cristina Vives
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Sara Pinosio
- Dipartimento di szience agrarie e ambientali, Università degli studi di Udine, Udine, Italy
| | - William Burgos-Paz
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Michele Morgante
- Dipartimento di szience agrarie e ambientali, Università degli studi di Udine, Udine, Italy
| | | | - Jordi Garcia-Mas
- Institut de Recerca i Tecnologia Agroalimentàries, Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Barcelona, Spain
| | | |
Collapse
|