1
|
del Carmen S, Corchete LA, González Velasco C, Sanz J, Alcazar JA, García J, Rodríguez AI, Vidal Tocino R, Rodriguez A, Pérez-Romasanta LA, Sayagués JM, Abad M. High-Risk Clinicopathological and Genetic Features and Outcomes in Patients Receiving Neoadjuvant Radiochemotherapy for Locally Advanced Rectal Cancer. Cancers (Basel) 2021; 13:3166. [PMID: 34202891 PMCID: PMC8269103 DOI: 10.3390/cancers13133166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 01/16/2023] Open
Abstract
Administering preoperative radiochemotherapy (RCT) in stage II-III tumors to locally advanced rectal carcinoma patients has proved to be effective in a high percentage of cases. Despite this, 20-30% of patients show no response or even disease progression. At present, preoperative response is assessed by a combination of imaging and tumor regression on histopathology, but recent studies suggest that various genetic abnormalities may be associated with the sensitivity or resistance of rectal cancer tumor cells to neoadjuvant therapy. In the present study we investigated the relationship between genetic lesions detected by high-density single-nucleotide polymorphisms (SNP) arrays 6.0 and response to neoadjuvant RCT, evaluated according to Dworak criteria in 39 rectal cancer tumors before treatment. The highest frequency of copy-number (CN) losses detected corresponded to chromosomes 18q (n = 27; 69%), 1p (n = 22; 56%), 15q (n = 19; 49%), 8p (n = 18; 48%), 4q (n = 17; 46%), and 22q (n = 17; 46%); in turn, CN gains more frequently involved chromosomes 20p (n = 22; 56%), 8p (n = 20; 51%), and 15q (n = 16; 41%). There was a significant association between alterations in the 1p, 3q, 7q, 12p, 17q, 20p, and 22q chromosomal regions and the degree of response to therapy prior to surgery. However, 4q, 15q11.1, and 15q14 chromosomal region alterations were identified as important by five prediction algorithms, i.e., those with the greatest influence on predicting the tumor response to treatment with preoperative RCT. Multivariate analysis of prognostic factors showed that gains on 15q11.1 and carcinoembryonic antigen (CEA) levels serum at diagnosis were the only independent variables predicting disease-free survival (DFS). Lymph node involvement also showed a prognostic impact on overall survival (OS) in the multivariate analysis. A deep-learning-based algorithm showed a 100% success rate in predicting both DFS and OS at 60 months after diagnosis of the disease. In summary, our results indicate the existence of an association between tumor genetic abnormalities at diagnosis, response to neoadjuvant therapy, and survival of patients with locally advanced rectal cancer. In addition to the clinical and biological characteristics of locally advanced rectal cancer patients, these could be used in the future as therapeutic and prognostic biomarkers, to identify patients sensitive or resistant to preoperative treatment, helping guide therapeutic decision-making. Additional prospective studies in larger series of patients are required to confirm the clinical utility of the newly identified biomarkers.
Collapse
Affiliation(s)
- Sofía del Carmen
- Department of Pathology and IBSAL, University Hospital of Salamanca, University of Salamanca, 37007 Salamanca, Spain; (S.d.C.); (C.G.V.); (J.S.); (A.R.)
| | - Luís Antonio Corchete
- Cancer Research Center and Hematology Service and IBSAL, University Hospital of Salamanca, University of Salamanca, 37007 Salamanca, Spain;
| | - Cristina González Velasco
- Department of Pathology and IBSAL, University Hospital of Salamanca, University of Salamanca, 37007 Salamanca, Spain; (S.d.C.); (C.G.V.); (J.S.); (A.R.)
| | - Julia Sanz
- Department of Pathology and IBSAL, University Hospital of Salamanca, University of Salamanca, 37007 Salamanca, Spain; (S.d.C.); (C.G.V.); (J.S.); (A.R.)
| | - José Antonio Alcazar
- General and Gastrointestinal Surgery Service and IBSAL, University Hospital of Salamanca, University of Salamanca, 37007 Salamanca, Spain; (J.A.A.); (J.G.)
| | - Jacinto García
- General and Gastrointestinal Surgery Service and IBSAL, University Hospital of Salamanca, University of Salamanca, 37007 Salamanca, Spain; (J.A.A.); (J.G.)
| | - Ana Isabel Rodríguez
- Radiation Oncology Service and IBSAL, University Hospital of Salamanca, University of Salamanca, 37007 Salamanca, Spain; (A.I.R.); (L.A.P.-R.)
| | - Rosario Vidal Tocino
- Medical Oncology Service and IBSAL, University Hospital of Salamanca, University of Salamanca, 37007 Salamanca, Spain;
| | - Alba Rodriguez
- Department of Pathology and IBSAL, University Hospital of Salamanca, University of Salamanca, 37007 Salamanca, Spain; (S.d.C.); (C.G.V.); (J.S.); (A.R.)
| | - Luis Alberto Pérez-Romasanta
- Radiation Oncology Service and IBSAL, University Hospital of Salamanca, University of Salamanca, 37007 Salamanca, Spain; (A.I.R.); (L.A.P.-R.)
| | - José María Sayagués
- Department of Pathology and IBSAL, University Hospital of Salamanca, University of Salamanca, 37007 Salamanca, Spain; (S.d.C.); (C.G.V.); (J.S.); (A.R.)
| | - Mar Abad
- Department of Pathology and IBSAL, University Hospital of Salamanca, University of Salamanca, 37007 Salamanca, Spain; (S.d.C.); (C.G.V.); (J.S.); (A.R.)
| |
Collapse
|
3
|
Sugai T, Takahashi Y, Eizuka M, Sugimoto R, Fujita Y, Habano W, Otsuka K, Sasaki A, Yamamoto E, Matsumoto T, Suzuki H. Molecular profiling and genome-wide analysis based on somatic copy number alterations in advanced colorectal cancers. Mol Carcinog 2017; 57:451-461. [PMID: 29230882 PMCID: PMC5814737 DOI: 10.1002/mc.22769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022]
Abstract
To characterize somatic alterations in colorectal cancer (CRC), we conducted a genome-scale analysis of 106 CRC specimens. We assessed comprehensive somatic copy number alterations (SCNAs) in these CRC specimens. In addition, we examined microsatellite instability (MSI; low and high), genetic mutations (KRAS, BRAF, TP53, and PIK3CA), and DNA methylation status (classified into low, intermediate, and high type). We stratified molecular alterations in the CRCs using a hierarchical cluster analysis. The examined CRCs could be categorized into three subgroups using hierarchical cluster analysis. Tumors in subgroup 1 were characterized by a low frequency of SCNAs and a high frequency of MSI-high status, whereas tumors in subgroups 2 and 3 were closely associated with a high frequency of SCNAs. Tumors in subgroup 1 were preferentially present in the right-sided colon and showed frequent MSI-high status. Subgroup 3 was distinguished by specific alterations, including gains at 1q23-44, 1p11-36, 10q11-26, 10p11-13, 12q24-24, and 13q33-33. In contrast, tumors in subgroup 2 were characterized by copy-neutral LOH at 12p12-13, 1q24-25, and 10q22. In addition, KRAS mutations were more frequently found in subgroup 3 than in subgroup 1. TP53 mutations and intermediate levels of DNA methylation were common alterations in the three subgroups. SCNAs contributed to sporadic CRC, and there were three subgroups based on SCNAs that played a different role in driving the development of this disease.
Collapse
Affiliation(s)
- Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Yayoi Takahashi
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Makoto Eizuka
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Ryo Sugimoto
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Yasuko Fujita
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Wataru Habano
- Department of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, Morioka, Japan
| | - Kouki Otsuka
- Department of Surgery, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Akira Sasaki
- Department of Surgery, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
4
|
Alonso MH, Aussó S, Lopez-Doriga A, Cordero D, Guinó E, Solé X, Barenys M, de Oca J, Capella G, Salazar R, Sanz-Pamplona R, Moreno V. Comprehensive analysis of copy number aberrations in microsatellite stable colon cancer in view of stromal component. Br J Cancer 2017; 117:421-431. [PMID: 28683472 PMCID: PMC5537504 DOI: 10.1038/bjc.2017.208] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/11/2017] [Accepted: 06/09/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Somatic copy number aberrations (CNAs) are common acquired changes in cancer cells having an important role in the progression of colon cancer (colorectal cancer, CRC). This study aimed to perform a characterisation of CNA and their impact in gene expression. METHODS Copy number aberrations were inferred from SNP array data in a series of 99 CRC. Copy number aberration events were calculated and used to assess the association between copy number dosage, clinical and molecular characteristics of the tumours, and gene expression changes. All analyses were adjusted for the quantity of stroma in each sample, which was inferred from gene expression data. RESULTS High heterogeneity among samples was observed; the proportion of altered genome ranged between 0.04 and 26.6%. Recurrent CNA regions with gains were frequent in chromosomes 7p, 8q, 13q, and 20, whereas 8p, 17p, and 18 cumulated losses. A significant positive correlation was observed between the number of somatic mutations and total CNA (Spearman's r=0.42, P=0.006). Approximately 37% of genes located in CNA regions changed their level of expression and the average partial correlation (adjusted for stromal content) with copy number was 0.54 (interquartile range 0.20 to 0.81). Altered genes showed enrichment in pathways relevant for CRC. Tumours classified as CMS2 and CMS4 by the consensus molecular subtyping showed higher frequency of CNA. Losses of one small region in 1p36.33, with gene CDK11B, were associated with poor prognosis. More than 66% of the recurrent CNA were validated in the The Cancer Genome Atlas (TCGA) data when analysed with the same procedure. Furthermore, 79% of the genes with altered expression in our data were validated in the TCGA. CONCLUSIONS Although CNA are frequent events in microsatellite stable CRC, few focal recurrent regions were found. These aberrations have strong effects on gene expression and contribute to deregulate relevant cancer pathways. Owing to the diploid nature of stromal cells, it is important to consider the purity of tumour samples to accurately calculate CNA events in CRC.
Collapse
Affiliation(s)
- M Henar Alonso
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), CIBERESP, Gran Via 199, Hospitalet Llobregat, 08908 Barcelona, Spain.,Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Susanna Aussó
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), CIBERESP, Gran Via 199, Hospitalet Llobregat, 08908 Barcelona, Spain.,Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Adriana Lopez-Doriga
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), CIBERESP, Gran Via 199, Hospitalet Llobregat, 08908 Barcelona, Spain.,Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - David Cordero
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), CIBERESP, Gran Via 199, Hospitalet Llobregat, 08908 Barcelona, Spain.,Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Elisabet Guinó
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), CIBERESP, Gran Via 199, Hospitalet Llobregat, 08908 Barcelona, Spain.,Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Xavier Solé
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), CIBERESP, Gran Via 199, Hospitalet Llobregat, 08908 Barcelona, Spain.,Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Mercè Barenys
- Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Gastroenterology Service, Hospital de Viladecans, Barcelona, Spain.,Faculty of Medicine, Department of Clinical Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Javier de Oca
- Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Faculty of Medicine, Department of Clinical Sciences, University of Barcelona (UB), Barcelona, Spain.,Department of General and Digestive Surgery, Bellvitge University Hospital, Barcelona, Spain
| | - Gabriel Capella
- Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Faculty of Medicine, Department of Clinical Sciences, University of Barcelona (UB), Barcelona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology (ICO) and CIBERONC, Barcelona, Spain
| | - Ramón Salazar
- Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Faculty of Medicine, Department of Clinical Sciences, University of Barcelona (UB), Barcelona, Spain.,Oncology Department, Catalan Institute of Oncology (ICO) and CIBERONC, Barcelona, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), CIBERESP, Gran Via 199, Hospitalet Llobregat, 08908 Barcelona, Spain.,Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), CIBERESP, Gran Via 199, Hospitalet Llobregat, 08908 Barcelona, Spain.,Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Faculty of Medicine, Department of Clinical Sciences, University of Barcelona (UB), Barcelona, Spain
| |
Collapse
|