1
|
Peel E, Silver L, Brandies P, Zhu Y, Cheng Y, Hogg CJ, Belov K. Best genome sequencing strategies for annotation of complex immune gene families in wildlife. Gigascience 2022; 11:giac100. [PMID: 36310247 PMCID: PMC9618407 DOI: 10.1093/gigascience/giac100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The biodiversity crisis and increasing impact of wildlife disease on animal and human health provides impetus for studying immune genes in wildlife. Despite the recent boom in genomes for wildlife species, immune genes are poorly annotated in nonmodel species owing to their high level of polymorphism and complex genomic organisation. Our research over the past decade and a half on Tasmanian devils and koalas highlights the importance of genomics and accurate immune annotations to investigate disease in wildlife. Given this, we have increasingly been asked the minimum levels of genome quality required to effectively annotate immune genes in order to study immunogenetic diversity. Here we set out to answer this question by manually annotating immune genes in 5 marsupial genomes and 1 monotreme genome to determine the impact of sequencing data type, assembly quality, and automated annotation on accurate immune annotation. RESULTS Genome quality is directly linked to our ability to annotate complex immune gene families, with long reads and scaffolding technologies required to reassemble immune gene clusters and elucidate evolution, organisation, and true gene content of the immune repertoire. Draft-quality genomes generated from short reads with HiC or 10× Chromium linked reads were unable to achieve this. Despite mammalian BUSCOv5 scores of up to 94.1% amongst the 6 genomes, automated annotation pipelines incorrectly annotated up to 59% of manually annotated immune genes regardless of assembly quality or method of automated annotation. CONCLUSIONS Our results demonstrate that long reads and scaffolding technologies, alongside manual annotation, are required to accurately study the immune gene repertoire of wildlife species.
Collapse
Affiliation(s)
- Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Sydney NSW 2006, Australia
| | - Luke Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Parice Brandies
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ying Zhu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan 610000, China
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Sydney NSW 2006, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
2
|
Some thoughts about what non-mammalian jawed vertebrates are telling us about antigen processing and peptide loading of MHC molecules. Curr Opin Immunol 2022; 77:102218. [PMID: 35687979 PMCID: PMC9586880 DOI: 10.1016/j.coi.2022.102218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/19/2022] [Accepted: 05/10/2022] [Indexed: 12/11/2022]
Abstract
The major histocompatibility complex (MHC) of mammals encodes highly polymorphic classical class I and class II molecules with crucial roles in immune responses, as well as various nonclassical molecules encoded by the MHC and elsewhere in the genome that have a variety of functions. These MHC molecules are supported by antigen processing and peptide loading pathways which are well-understood in mammals. This review considers what has been learned about the MHC, MHC molecules and the supporting pathways in non-mammalian jawed vertebrates. From the initial understanding from work with the chicken MHC, a great deal of diversity in the structure and function has been found. Are there underlying principles? The genomic organisation of the MHC varies enormously across jawed vertebrates. Total numbers of MHC genes vary among vertebrates, with only a few classical MHC genes. Some nonclassical MHC and classical pathway genes appear earlier than others. Obvious co-evolution within MHC pathways occurs in some species, but not others. The promiscuity of interactions may correlate with differences in genomic organisation.
Collapse
|
3
|
Hussey K, Caldwell A, Kreiss A, Skjødt K, Gastaldello A, Pye R, Hamede R, Woods GM, Siddle HV. Expression of the Nonclassical MHC Class I, Saha-UD in the Transmissible Cancer Devil Facial Tumour Disease (DFTD). Pathogens 2022; 11:pathogens11030351. [PMID: 35335675 PMCID: PMC8953681 DOI: 10.3390/pathogens11030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
Devil facial tumour disease (DFTD) is a transmissible cancer that has circulated in the Tasmanian devil population for >25 years. Like other contagious cancers in dogs and devils, the way DFTD escapes the immune response of its host is a central question to understanding this disease. DFTD has a low major histocompatibility complex class I (MHC-I) expression due to epigenetic modifications, preventing host immune recognition of mismatched MHC-I molecules by T cells. However, the total MHC-I loss should result in natural killer (NK) cell activation due to the ‘missing self’. Here, we have investigated the expression of the nonclassical MHC-I, Saha-UD as a potential regulatory or suppressive mechanism for DFTD. A monoclonal antibody was generated against the devil Saha-UD that binds recombinant Saha-UD by Western blot, with limited crossreactivity to the classical MHC-I, Saha-UC and nonclassical Saha-UK. Using this antibody, we confirmed the expression of Saha-UD in 13 DFTD tumours by immunohistochemistry (n = 15) and demonstrated that Saha-UD expression is heterogeneous, with 12 tumours showing intratumour heterogeneity. Immunohistochemical staining for the Saha-UD showed distinct patterns of expression when compared with classical MHC-I molecules. The nonclassical Saha-UD expression by DFTD tumours in vivo may be a mechanism for immunosuppression, and further work is ongoing to characterise its ligand on immune cells.
Collapse
Affiliation(s)
- Kathryn Hussey
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; (K.H.); (A.C.); (A.G.)
| | - Alison Caldwell
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; (K.H.); (A.C.); (A.G.)
| | - Alexandre Kreiss
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia; (A.K.); (R.P.); (G.M.W.)
| | - Karsten Skjødt
- Department of Cancer and Inflammation, University of Southern Denmark, 5230 Odense, Denmark;
| | - Annalisa Gastaldello
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; (K.H.); (A.C.); (A.G.)
| | - Ruth Pye
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia; (A.K.); (R.P.); (G.M.W.)
| | - Rodrigo Hamede
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Gregory M. Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia; (A.K.); (R.P.); (G.M.W.)
| | - Hannah V. Siddle
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; (K.H.); (A.C.); (A.G.)
- Correspondence:
| |
Collapse
|
4
|
Wang P, Yue C, Liu K, Lu D, Liu S, Yao S, Li X, Su X, Ren K, Chai Y, Qi J, Zhao Y, Lou Y, Sun Z, Gao GF, Liu WJ. Peptide Presentations of Marsupial MHC Class I Visualize Immune Features of Lower Mammals Paralleled with Bats. THE JOURNAL OF IMMUNOLOGY 2021; 207:2167-2178. [PMID: 34535575 DOI: 10.4049/jimmunol.2100350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/03/2021] [Indexed: 12/29/2022]
Abstract
Marsupials are one of three major mammalian lineages that include the placental eutherians and the egg-laying monotremes. The marsupial brushtail possum is an important protected species in the Australian forest ecosystem. Molecules encoded by the MHC genes are essential mediators of adaptive immune responses in virus-host interactions. Yet, nothing is known about the peptide presentation features of any marsupial MHC class I (MHC I). This study identified a series of possum MHC I Trvu-UB*01:01 binding peptides derived from wobbly possum disease virus (WPDV), a lethal virus of both captive and feral possum populations, and unveiled the structure of marsupial peptide/MHC I complex. Notably, we found the two brushtail possum-specific insertions, the 3-aa Ile52Glu53Arg54 and 1-aa Arg154 insertions are located in the Trvu-UB*01:01 peptide binding groove (PBG). The 3-aa insertion plays a pivotal role in maintaining the stability of the N terminus of Trvu-UB*01:01 PBG. This aspect of marsupial PBG is unexpectedly similar to the bat MHC I Ptal-N*01:01 and is shared with lower vertebrates from elasmobranch to monotreme, indicating an evolution hotspot that may have emerged from the pathogen-host interactions. Residue Arg154 insertion, located in the α2 helix, is available for TCR recognition, and it has a particular influence on promoting the anchoring of peptide WPDV-12. These findings add significantly to our understanding of adaptive immunity in marsupials and its evolution in vertebrates. Our findings have the potential to impact the conservation of the protected species brushtail possum and other marsupial species.
Collapse
Affiliation(s)
- Pengyan Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Can Yue
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and
| | - Dan Lu
- Savaid Medical School, University of Chinese Academy of Science, Beijing, China
| | - Sai Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Sijia Yao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Li
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Keyi Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and
| | - Yingze Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - George F Gao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China; .,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and
| | - William J Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China; .,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
5
|
Almeida T, Ohta Y, Gaigher A, Muñoz-Mérida A, Neves F, Castro LFC, Machado AM, Esteves PJ, Veríssimo A, Flajnik MF. A Highly Complex, MHC-Linked, 350 Million-Year-Old Shark Nonclassical Class I Lineage. THE JOURNAL OF IMMUNOLOGY 2021; 207:824-836. [PMID: 34301841 DOI: 10.4049/jimmunol.2000851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 05/09/2021] [Indexed: 11/19/2022]
Abstract
Cartilaginous fish, or Chondrichthyes, are the oldest extant vertebrates to possess the MHC and the Ig superfamily-based Ag receptors, the defining genes of the gnathostome adaptive immune system. In this work, we have identified a novel MHC lineage, UEA, a complex multigene nonclassical class I family found in sharks (division Selachii) but not detected in chimaeras (subclass Holocephali) or rays (division Batoidea). This new lineage is distantly related to the previously reported nonclassical class I lineage UCA, which appears to be present only in dogfish sharks (order Squaliformes). UEA lacks conservation of the nine invariant residues in the peptide (ligand)-binding regions (PBR) that bind to the N and C termini of bound peptide in most vertebrate classical class I proteins, which are replaced by relatively hydrophobic residues compared with the classical UAA. In fact, UEA and UCA proteins have the most hydrophobic-predicted PBR of all identified chondrichthyan class I molecules. UEA genes detected in the whale shark and bamboo shark genome projects are MHC linked. Consistent with UEA comprising a very large gene family, we detected weak expression in different tissues of the nurse shark via Northern blotting and RNA sequencing. UEA genes fall into three sublineages with unique characteristics in the PBR. UEA shares structural and genetic features with certain nonclassical class I genes in other vertebrates, such as the highly complex XNC nonclassical class I genes in Xenopus, and we anticipate that each shark gene, or at least each sublineage, will have a unique function, perhaps in bacterial defense.
Collapse
Affiliation(s)
- Tereza Almeida
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD; and
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD; and
| | - Arnaud Gaigher
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal
| | - Antonio Muñoz-Mérida
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal
| | - Fabiana Neves
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal
| | - L Filipe C Castro
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - André M Machado
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Pedro J Esteves
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Ana Veríssimo
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Porto, Portugal
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD; and
| |
Collapse
|
6
|
Escoda L, Castresana J. The genome of the Pyrenean desman and the effects of bottlenecks and inbreeding on the genomic landscape of an endangered species. Evol Appl 2021; 14:1898-1913. [PMID: 34295371 PMCID: PMC8288019 DOI: 10.1111/eva.13249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/19/2021] [Accepted: 04/27/2021] [Indexed: 01/23/2023] Open
Abstract
The Pyrenean desman (Galemys pyrenaicus) is a small semiaquatic mammal endemic to the Iberian Peninsula. Despite its limited range, this species presents a strong genetic structure due to past isolation in glacial refugia and subsequent bottlenecks. Additionally, some populations are highly fragmented today as a consequence of river barriers, causing substantial levels of inbreeding. These features make the Pyrenean desman a unique model in which to study the genomic footprints of differentiation, bottlenecks and extreme isolation in an endangered species. To understand these processes, the complete genome of the Pyrenean desman was sequenced and assembled using a Bloom filter-based approach. An analysis of the 1.83 Gb reference genome and the sequencing of five additional individuals from different evolutionary units allowed us to detect its main genomic characteristics. The population differentiation of the species was reflected in highly distinctive demographic trajectories. In addition, a severe population bottleneck during the postglacial recolonization of the eastern Pyrenees created one of the lowest genomic heterozygosity values recorded in a mammal. Moreover, isolation and inbreeding gave rise to a high proportion of runs of homozygosity (ROH). Despite these extremely low levels of genetic diversity, two key multigene families from an eco-evolutionary perspective, the major histocompatibility complex and olfactory receptor genes, showed heterozygosity excess in the majority of individuals, revealing that functional diversity can be maintained up to a certain extent. Furthermore, these two classes of genes were significantly less abundant than expected within ROH. In conclusion, the genomic landscape of each analysed Pyrenean desman turned out to be strikingly distinctive and was a clear reflection of its recent ancestry and current conservation conditions. These results may help characterize the genomic health of each individual, and can be crucial for the conservation and management of the species.
Collapse
Affiliation(s)
- Lídia Escoda
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| | - Jose Castresana
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| |
Collapse
|
7
|
Major histocompatibility complex genes and locus organization in the Komodo dragon (Varanus komodoensis). Immunogenetics 2021; 73:405-417. [PMID: 33978784 DOI: 10.1007/s00251-021-01217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
We performed a meta-analysis of the newly assembled Komodo dragon (Varanus komodoensis) genome to characterize the major histocompatibility complex (MHC) of the species. The MHC gene clusters of the Komodo dragon are gene dense, complex, and contain counterparts of many genes of the human MHC. Our analysis identified 20 contigs encompassing ~ 6.9 Mbp of sequence with 223 annotated genes of which many are predicted orthologs to the genes of the human MHC. These MHC contigs range in size from 13.2 kb to 21.5 Mbp, contain an average of one gene per 30 kb, and are thought to occur on at least two chromosomes. Eight contigs, each > 100 kb, could be aligned to the human MHC based on gene content, and these represent gene clusters found in each of the recognized mammalian MHC subregions. The MHC of the Komodo dragon shares organizational features of other non-mammalian taxa. Multiple class Iα and class IIβ genes are indicated, with linkage between classical class I and immunoproteasome genes and between framework class I genes and genes associated with the mammalian class III subregion. These findings are supported in both Komodo genome assemblies and provide new insight into the MHC organization of these unique squamate reptiles.
Collapse
|
8
|
Peel E, Frankenberg S, Hogg CJ, Pask A, Belov K. Annotation of immune genes in the extinct thylacine (Thylacinus cynocephalus). Immunogenetics 2021; 73:263-275. [PMID: 33544183 DOI: 10.1007/s00251-020-01197-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/24/2020] [Indexed: 11/28/2022]
Abstract
Advances in genome sequencing technology have enabled genomes of extinct species to be sequenced. However, given the fragmented nature of these genome assemblies, it is not clear whether it is possible to comprehensively annotate highly variable and repetitive genes such as those involved in immunity. As such, immune genes have only been investigated in a handful of extinct genomes, mainly in human lineages. In 2018 the genome of the thylacine (Thylacinus cynocephalus), a carnivorous marsupial from Tasmania that went extinct in 1936, was sequenced. Here we attempt to characterise the immune repertoire of the thylacine and determine similarity to its closest relative with a genome available, the Tasmanian devil (Sarcophilus harrisii), as well as other marsupials. Members from all major immune gene families were identified. However, variable regions could not be characterised, and complex families such as the major histocompatibility complex (MHC) were highly fragmented and located across multiple small scaffolds. As such, at a gene level we were unable to reconstruct full-length coding sequences for the majority of thylacine immune genes. Despite this, we identified genes encoding functionally important receptors and immune effector molecules, which suggests the functional capacity of the thylacine immune system was similar to other mammals. However, the high number of partial immune gene sequences identified limits our ability to reconstruct an accurate picture of the thylacine immune repertoire.
Collapse
Affiliation(s)
- Emma Peel
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | | | - Carolyn J Hogg
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Andrew Pask
- School of BioSciences, The University of Melbourne, Vic, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Old JM, Ong OTW, Stannard HJ. Red-tailed phascogales: A review of their biology and importance as model marsupial species. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:217-227. [PMID: 33382214 DOI: 10.1002/jez.2438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/09/2022]
Abstract
There are many limitations when using traditional laboratory species. Limits on variation, may result in limited outcomes, at both the species and individual level, due to different individuals/species having diverse physiological processes, or differing molecular and genetic mechanisms. By using a variety of model species, we will be able to develop creative solutions to biological problems and identify differences of which we were not previously aware. The laboratory mouse has been a suitable model species for various mammalian studies, however most are bred specifically for laboratory research with limited variability due to selective breeding. Marsupial models offer unique research opportunities compared to eutherian models. We believe that there should be an expansion in marsupial model species, and the introduction of the red-tailed phascogale (Phascogale calura), a dasyurid marsupial, should be one of them. Phascogales are easily managed in captivity, and there are now multiple studies involving their development, reproduction, nutrition, behavior and immune system, which can serve as a baseline for future studies. The addition of the phascogale as a model species will improve future mammalian studies by introducing variability and offer alternate solutions to biological problems, particularly in the areas of genetics, nutrition, immunology, the neuro-endocrine system, and ageing, due to their semelparous reproductive strategy and hence, subsequent predictive physiology. In this review, we provide information based on existing research on red-tailed phascogales to support their inclusion as a model species.
Collapse
Affiliation(s)
- Julie M Old
- School of Science, Hawkesbury Campus, Western Sydney University, Penrith, New South Wales, Australia
| | - Oselyne T W Ong
- Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Hayley J Stannard
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| |
Collapse
|
10
|
Lu D, Liu K, Zhang D, Yue C, Lu Q, Cheng H, Wang L, Chai Y, Qi J, Wang LF, Gao GF, Liu WJ. Peptide presentation by bat MHC class I provides new insight into the antiviral immunity of bats. PLoS Biol 2019; 17:e3000436. [PMID: 31498797 PMCID: PMC6752855 DOI: 10.1371/journal.pbio.3000436] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/19/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Bats harbor many zoonotic viruses, including highly pathogenic viruses of humans and other mammals, but they are typically asymptomatic in bats. To further understand the antiviral immunity of bats, we screened and identified a series of bat major histocompatibility complex (MHC) I Ptal-N*01:01-binding peptides derived from four different bat-borne viruses, i.e., Hendra virus (HeV), Ebola virus (EBOV), Middle East respiratory syndrome coronavirus (MERS-CoV), and H17N10 influenza-like virus. The structures of Ptal-N*01:01 display unusual peptide presentation features in that the bat-specific 3-amino acid (aa) insertion enables the tight "surface anchoring" of the P1-Asp in pocket A of bat MHC I. As the classical primary anchoring positions, the B and F pockets of Ptal-N*01:01 also show unconventional conformations, which contribute to unusual peptide motifs and distinct peptide presentation. Notably, the features of bat MHC I may be shared by MHC I from various marsupials. Our study sheds light on bat adaptive immunity and may benefit future vaccine development against bat-borne viruses of high impact on humans.
Collapse
Affiliation(s)
- Dan Lu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kefang Liu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Di Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Can Yue
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qiong Lu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Hao Cheng
- Beijing Institutes of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yan Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - George F. Gao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Faculty of Health Sciences, University of Macau, Macau SAR, China
- Beijing Institutes of Life Science, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - William J. Liu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
11
|
Bronchud MH. Are aggressive epithelial cancers 'a disease' of Eutherian mammals? Ecancermedicalscience 2018; 12:840. [PMID: 30034517 PMCID: PMC6027979 DOI: 10.3332/ecancer.2018.840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 01/06/2023] Open
Abstract
Placental immune editing switches (PIES) have not evolved to prevent or to cause cancer but to make feto-maternal immune tolerance possible, which is at the very core of our placental mammalian ('Eutherian') nature. Aggressive epithelial cancers might be an unfortunate 'side effect' of this highly sophisticated biological nature. Microenvironmental properties in the placenta and decidua are thought to be a key to feto-maternal immune tolerance. Recently, in 2016-2018, we published the first human genomic and epigenomic evidence of similar gene expression profiles in immune regulatory genes in cancer (primary lobular infiltrating breast cancer and ipsilateral axillary metastatic lymph nodes) and both placenta and decidua of the same young patient with breast carcinoma during pregnancy. These findings led us to speculate that ectopic expression, or repression, of 'PIES' might be used by cancer cells during carcinogenesis or cancer progression to elude immune vigilance in spite of tumour-associated antigens or evolving neo antigenic landscapes. Cancers are well known to frequently express embryonic antigens, such as carcinoembryonic antigen, used as cancer markers and detectable in the blood circulation, or to express ectopic hormones. Why should cancer cells invent de novo complex new immune suppression mechanisms, if they could simply use innate ones developed during the long-term evolution of placental mammals in order to hide fetal paternal antigens from the mother's own immune system? Monotremata (Prototheria-like Echidnas or Platypus Ornithoryncus) are nonplacental egg-laying mammals and, in spite of rudimentary breast epithelial ducts and lobules, they are seldom reported to suffer from aggressive breast cancers.
Collapse
Affiliation(s)
- Miguel H Bronchud
- GenesisCare Corachan Clinic, Calle Buigas 19, 08017 Barcelona, Spain
| |
Collapse
|
12
|
Dunwell TL, Paps J, Holland PWH. Novel and divergent genes in the evolution of placental mammals. Proc Biol Sci 2018; 284:rspb.2017.1357. [PMID: 28978728 DOI: 10.1098/rspb.2017.1357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/04/2017] [Indexed: 01/02/2023] Open
Abstract
Analysis of genome sequences within a phylogenetic context can give insight into the mode and tempo of gene and protein evolution, including inference of gene ages. This can reveal whether new genes arose on particular evolutionary lineages and were recruited for new functional roles. Here, we apply MCL clustering with all-versus-all reciprocal BLASTP to identify and phylogenetically date 'Homology Groups' among vertebrate proteins. Homology Groups include new genes and highly divergent duplicate genes. Focusing on the origin of the placental mammals within the Eutheria, we identify 357 novel Homology Groups that arose on the stem lineage of Placentalia, 87 of which are deduced to play core roles in mammalian biology as judged by extensive retention in evolution. We find the human homologues of novel eutherian genes are enriched for expression in preimplantation embryo, brain, and testes, and enriched for functions in keratinization, reproductive development, and the immune system.
Collapse
Affiliation(s)
| | - Jordi Paps
- Department of Zoology, University of Oxford, Oxford, UK.,School of Biological Sciences, University of Essex, Colchester, UK
| | | |
Collapse
|
13
|
Dijkstra JM, Yamaguchi T, Grimholt U. Conservation of sequence motifs suggests that the nonclassical MHC class I lineages CD1/PROCR and UT were established before the emergence of tetrapod species. Immunogenetics 2017; 70:459-476. [DOI: 10.1007/s00251-017-1050-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/05/2017] [Indexed: 01/09/2023]
|
14
|
Transcriptome sequencing of the long-nosed bandicoot (Perameles nasuta) reveals conservation and innovation of immune genes in the marsupial order Peramelemorphia. Immunogenetics 2017; 70:327-336. [PMID: 29159447 DOI: 10.1007/s00251-017-1043-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022]
Abstract
Bandicoots are omnivorous marsupials of the order Peramelemorphia. Conservation concerns and their unique biological characteristics suggest peramelomorphs are worthy research subjects, but knowledge of their genetics and immunology has lagged behind that of other high-profile marsupials. Here, we characterise the transcriptome of the long-nose bandicoot (Perameles nasuta), the first high-throughput data set from any peramelomorph. We investigate the immune gene repertoire of the bandicoot, with a focus on key immune gene families, and compare to previously characterised marsupial and mammalian species. We find that the immune gene complement in bandicoot is often conserved with respect to other marsupials; however, the diversity of expressed transcripts in several key families, such as major histocompatibility complex, T cell receptor μ and natural killer cell receptors, appears greater in the bandicoot than other Australian marsupials, including devil and koala. This transcriptome is an important first step for future studies of bandicoots and the bilby, allowing for population level analysis and construction of bandicoot-specific immunological reagents and assays. Such studies will be critical to understanding the immunology and physiology of Peramelemorphia and to inform the conservation of these unique marsupials.
Collapse
|
15
|
Caldwell A, Siddle HV. The role of MHC genes in contagious cancer: the story of Tasmanian devils. Immunogenetics 2017; 69:537-545. [PMID: 28695294 PMCID: PMC5537419 DOI: 10.1007/s00251-017-0991-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
Abstract
The Tasmanian devil, a marsupial species endemic to the island of Tasmania, harbours two contagious cancers, Devil Facial Tumour 1 (DFT1) and Devil Facial Tumour 2 (DFT2). These cancers pass between individuals in the population via the direct transfer of tumour cells, resulting in the growth of large tumours around the face and neck of affected animals. While these cancers are rare, a contagious cancer also exists in dogs and five contagious cancers circulate in bivalves. The ability of tumour cells to emerge and transmit in mammals is surprising as these cells are an allograft and should be rejected due to incompatibility between Major Histocompatibility Complex (MHC) genes. As such, considerable research has focused on understanding how DFT1 cells evade the host immune system with particular reference to MHC molecules. This review evaluates the role that MHC class I expression and genotype plays in allowing DFT1 to circumvent histocompatibility barriers in Tasmanian devils. We also examine recent research that suggests that Tasmanian devils can mount an immune response to DFT1 and may form the basis of a protective vaccine against the tumour.
Collapse
Affiliation(s)
- Alison Caldwell
- Department of Biological Science, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Hannah V Siddle
- Department of Biological Science, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK.
| |
Collapse
|
16
|
Krasnec KV, Papenfuss AT, Miller RD. The UT family of MHC class I loci unique to non-eutherian mammals has limited polymorphism and tissue specific patterns of expression in the opossum. BMC Immunol 2016; 17:43. [PMID: 27825298 PMCID: PMC5101759 DOI: 10.1186/s12865-016-0181-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Major Histocompatibility Complex (MHC) class I family of genes encode for molecules that have well-conserved structures, but have evolved to perform diverse functions. The availability of the gray, short-tailed opossum, Monodelphis domestica whole genome sequence has allowed for analysis of MHC class I gene content in this marsupial. Utilization of a novel method to search for MHC related domain structures revealed a previously unknown family of MHC class I-related genes. These genes, named UT1-17, are clustered on chromosome 1 in the opossum, unlinked to the MHC region. UT genes are only found in marsupial and monotreme genomes, consistent with being ancient in mammals yet lost in eutherian mammals. This study investigates the expression and polymorphism of the UT loci in the opossum to gain insight into their possible function. RESULTS Of the 17 opossum UT genes, most have restricted tissue transcription patterns, with the thymus and skin being the most common sites. Full-length structure of 11 UT transcripts revealed genes varying between five and eight exons, typical for class I family members. There were only two alternative splice variants found. The UT genes also have limited polymorphism and little evidence of positive selection. One locus, UT8, was chosen for further analysis due to its conservation amongst marsupials and generic characteristics. UT8 transcription is limited to developing αβ thymocytes, and is absent from mature αβ T cells in peripheral lymphoid tissues. CONCLUSION The overall characteristics and features of UT genes including low polymorphism and restricted tissue expression make it likely that the molecules encoded by UT genes perform roles other than antigenic peptide presentation.
Collapse
Affiliation(s)
- Katina V Krasnec
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia.,Peter MacCallum Cancer Centre, East Melbourne, 3002, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Robert D Miller
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
17
|
Further characterisation of cytokines in macropod marsupials: IL-10 and IL-10Δ3. Cytokine 2016; 88:37-44. [PMID: 27552114 DOI: 10.1016/j.cyto.2016.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/07/2016] [Accepted: 08/14/2016] [Indexed: 11/21/2022]
Abstract
Interleukin-10 is an immunomodulatory cytokine that has been implicated, along with IFN-γ, in the disease sequelae of mycobacterial infection. In order to investigate the role of IL-10 in marsupial disease models we sequenced and characterised the IL10 gene in the tammar wallaby (Macropus eugenii) and rufous hare-wallaby (Lagorchestes hirsutus). An isoform IL-10Δ3, in which an in-frame deletion of exon 3 occurs, was discovered in both macropod species. Analysis of wallaby and other reported marsupial IL-10 homologs suggests that while marsupial IL-10 is comparable to that of human IL-10, the predicted IL-10Δ3 protein may play a more complicated role in the modulation of IL-10-directed responses. Expression of the canonical gene and splicing variant was confirmed in both wallabies, and the rufous hare-wallaby showed differential expression across lymph node, spleen and liver, with isoform expression detected in the lymph node. This characterisation and expression of IL-10 in de novo tissues provides a basis for further study into the role of IL-10 in disease models in marsupials.
Collapse
|
18
|
Rogers SL, Kaufman J. Location, location, location: the evolutionary history of CD1 genes and the NKR-P1/ligand systems. Immunogenetics 2016; 68:499-513. [PMID: 27457887 PMCID: PMC5002281 DOI: 10.1007/s00251-016-0938-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/04/2016] [Indexed: 01/14/2023]
Abstract
CD1 genes encode cell surface molecules that present lipid antigens to various kinds of T lymphocytes of the immune system. The structures of CD1 genes and molecules are like the major histocompatibility complex (MHC) class I system, the loading of antigen and the tissue distribution for CD1 molecules are like those in the class II system, and phylogenetic analyses place CD1 between class I and class II sequences, altogether leading to the notion that CD1 is a third ancient system of antigen presentation molecules. However, thus far, CD1 genes have only been described in mammals, birds and reptiles, leaving major questions as to their origin and evolution. In this review, we recount a little history of the field so far and then consider what has been learned about the structure and functional attributes of CD1 genes and molecules in marsupials, birds and reptiles. We describe the central conundrum of CD1 evolution, the genomic location of CD1 genes in the MHC and/or MHC paralogous regions in different animals, considering the three models of evolutionary history that have been proposed. We describe the natural killer (NK) receptors NKR-P1 and ligands, also found in different genomic locations for different animals. We discuss the consequence of these three models, one of which includes the repudiation of a guiding principle for the last 20 years, that two rounds of genome-wide duplication at the base of the vertebrates provided the extra MHC genes necessary for the emergence of adaptive immune system of jawed vertebrates.
Collapse
Affiliation(s)
- Sally L Rogers
- Department of Biosciences, University of Gloucestershire, Cheltenham, GL50 4AZ, UK
| | - Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK. .,Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK.
| |
Collapse
|