1
|
Garlovsky MD, Whittington E, Albrecht T, Arenas-Castro H, Castillo DM, Keais GL, Larson EL, Moyle LC, Plakke M, Reifová R, Snook RR, Ålund M, Weber AAT. Synthesis and Scope of the Role of Postmating Prezygotic Isolation in Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041429. [PMID: 38151330 PMCID: PMC11444258 DOI: 10.1101/cshperspect.a041429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
How barriers to gene flow arise and are maintained are key questions in evolutionary biology. Speciation research has mainly focused on barriers that occur either before mating or after zygote formation. In comparison, postmating prezygotic (PMPZ) isolation-a barrier that acts after gamete release but before zygote formation-is less frequently investigated but may hold a unique role in generating biodiversity. Here we discuss the distinctive features of PMPZ isolation, including the primary drivers and molecular mechanisms underpinning PMPZ isolation. We then present the first comprehensive survey of PMPZ isolation research, revealing that it is a widespread form of prezygotic isolation across eukaryotes. The survey also exposes obstacles in studying PMPZ isolation, in part attributable to the challenges involved in directly measuring PMPZ isolation and uncovering its causal mechanisms. Finally, we identify outstanding knowledge gaps and provide recommendations for improving future research on PMPZ isolation. This will allow us to better understand the nature of this often-neglected reproductive barrier and its contribution to speciation.
Collapse
Affiliation(s)
- Martin D Garlovsky
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden 01062, Germany
| | | | - Tomas Albrecht
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno 60365, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Henry Arenas-Castro
- School of Biological Sciences, University of Queensland, St Lucia 4072, Queensland, Australia
| | - Dean M Castillo
- Department of Biological Sciences, Miami University, Hamilton, Ohio 45011, USA
| | - Graeme L Keais
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208, USA
| | - Leonie C Moyle
- Department of Biology, Indiana University Bloomington, Indiana 47405, USA
| | - Melissa Plakke
- Division of Science, Mathematics, and Technology, Governors State University, University Park, Illinois 60484, USA
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm 109 61, Sweden
| | - Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Alexandra A-T Weber
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Zürich, Switzerland
| |
Collapse
|
2
|
Olivares‐Zambrano D, Daane J, Hyde J, Sandel MW, Aguilar A. Speciation genomics and the role of depth in the divergence of rockfishes ( Sebastes) revealed through Pool-seq analysis of enriched sequences. Ecol Evol 2022; 12:e9341. [PMID: 36188524 PMCID: PMC9502067 DOI: 10.1002/ece3.9341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022] Open
Abstract
Speciation in the marine environment is challenged by the wide geographic distribution of many taxa and potential for high rates of gene flow through larval dispersal mechanisms. Depth has recently been proposed as a potential driver of ecological divergence in fishes, and yet it is unclear how adaptation along these gradients' shapes genomic divergence. The genus Sebastes contains numerous species pairs that are depth-segregated and can provide a better understanding of the mode and tempo of genomic diversification. Here, we present exome data on two species pairs of rockfishes that are depth-segregated and have different degrees of divergence: S. chlorostictus-S. rosenblatti and S. crocotulus-S. miniatus. We were able to reliably identify "islands of divergence" in the species pair with more recent divergence (S. chlorostictus-S. rosenblatti) and discovered a number of genes associated with neurosensory function, suggesting a role for this pathway in the early speciation process. We also reconstructed demographic histories of divergence and found the best supported model was isolation followed by asymmetric secondary contact for both species pairs. These results suggest past ecological/geographic isolation followed by asymmetric secondary contact of deep to shallow species. Our results provide another example of using rockfish as a model for studying speciation and support the role of depth as an important mechanism for diversification in the marine environment.
Collapse
Affiliation(s)
- Daniel Olivares‐Zambrano
- Department of Biological SciencesCalifornia State University Los AngelesLos AngelesCaliforniaUSA
- Present address:
Department of Marine and Environmental BiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jacob Daane
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - John Hyde
- National Oceanic and Atmospheric Administration, National Marine Fisheries ServiceNational Marine Fisheries ServiceSouthwest Fisheries Science CenterLa JollaCaliforniaUSA
| | - Michael W. Sandel
- Biological and Environmental SciencesUniversity of West AlabamaLivingstonAlabamaUSA
- Department of WIldlifeFisheries, and Aquaculture, Mississippi State UniversityMississippi StateMississippiUSA
| | - Andres Aguilar
- Department of Biological SciencesCalifornia State University Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
3
|
Heras J, Aguilar A. Comparative Transcriptomics Reveals Patterns of Adaptive Evolution Associated with Depth and Age Within Marine Rockfishes (Sebastes). J Hered 2020; 110:340-350. [PMID: 30602025 DOI: 10.1093/jhered/esy070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 12/31/2018] [Indexed: 01/21/2023] Open
Abstract
The genetic underpinnings that contribute to ecological adaptation and speciation are not completely understood, especially within marine ecosystems. These evolutionary processes can be elucidated by studying adaptive radiations, because they provide replicates of divergence within a given environment or time-frame. Marine rockfishes (genus Sebastes) are an adaptive radiation and unique model system for studying adaptive evolution in the marine realm. We investigated molecular evolution associated with ecological (depth) and life history (lifespan) divergence in 2 closely related clades of Sebastes. Brain transcriptomes were sequenced via RNA-Seq from 3 species within the subgenus Pteropodus and a pair of related congeners from the subgenus Sebastosomus in order to identify patterns of adaptive evolution. De novo assemblies from these transcriptomes were used to identify 3867 orthologous clusters, and genes subject to positive selection were identified based on all 5 species, depth, and lifespan. Within all our analyses, we identified hemoglobin subunit α to be under strong positive selection and is associated with the depth of occurrence. In our lifespan analysis we identified immune function genes under positive selection in association with maximum lifespan. This study provides insight on the molecular evolution of rockfishes and these candidate genes may provide a better understanding of how these subgenera radiated within the Northeast Pacific.
Collapse
Affiliation(s)
- Joseph Heras
- School of Natural Sciences and Graduate Group in Quantitative and Systems Biology, University of California, Merced, CA
| | - Andres Aguilar
- School of Natural Sciences and Graduate Group in Quantitative and Systems Biology, University of California, Merced, CA
| |
Collapse
|
4
|
Marakli S, Calis A, Gozukirmizi N. Determination of Barley-Specific Retrotransposons’ Movements in Pinus nigra ssp. pallasiana Varieties: pyramidata and Seneriana. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419010101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Drinan DP, Gruenthal KM, Canino MF, Lowry D, Fisher MC, Hauser L. Population assignment and local adaptation along an isolation-by-distance gradient in Pacific cod ( Gadus macrocephalus). Evol Appl 2018; 11:1448-1464. [PMID: 30151052 PMCID: PMC6100185 DOI: 10.1111/eva.12639] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/12/2018] [Indexed: 01/03/2023] Open
Abstract
The discernment of populations as management units is a fundamental prerequisite for sustainable exploitation of species. A lack of clear stock boundaries complicates not only the identification of spatial management units, but also the assessment of mixed fisheries by population assignment and mixed stock analysis. Many marine species, such as Pacific cod, are characterized by isolation by distance, showing significant differentiation but no clear stock boundaries. Here, we used restriction-site-associated DNA (RAD) sequencing to investigate population structure and assess power to genetically assign Pacific cod to putative populations of origin. Samples were collected across the species range in the eastern Pacific Ocean, from the Salish Sea to the Aleutian Islands. A total of 6,425 putative biallelic single nucleotide polymorphisms were identified from 276 individuals. We found a strong isolation-by-distance signal along coastlines that mirrored previous microsatellite results and pronounced genetic differentiation between coastal samples and those from the inland waters of the Salish Sea, with no evidence for hybridization between these two populations. Individual assignment success based on two methods was high overall (≥84%) but decreased from south to north. Assignment to geographic location of origin also was successful, with average distance between capture and assignment location of 220 km. Outlier analyses identified more loci potentially under selection along the coast than between Salish Sea and coastal samples, suggesting more diverse adaptation to latitudinal environmental factors than inshore vs. offshore environments. Our results confirm previous observations of sharp genetic differentiation of the Salish Sea population and isolation by distance along the coast, but also highlight the feasibility of using modern genomic techniques to inform stock boundaries and fisheries management in a low FST marine species.
Collapse
Affiliation(s)
- Daniel P. Drinan
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashington
| | | | | | - Dayv Lowry
- Washington Department of Fish and WildlifeOlympiaWashington
| | - Mary C. Fisher
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashington
| | - Lorenz Hauser
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashington
| |
Collapse
|
6
|
Sandel MW, Aguilar A, Buonaccorsi VP, Herstein J, Evgrafov O. Complete Mitochondrial Genome Sequences of Five Rockfishes (Perciformes: Sebastes). Mitochondrial DNA B Resour 2018; 3:825-826. [PMID: 31440583 PMCID: PMC6706060 DOI: 10.1080/23802359.2018.1495130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Rockfishes of the genus Sebastes rank among the longest-lived vertebrate animals. In order to facilitate comparative genomic research in animal longevity, the complete mitochondrial genome sequences are presented for Sebastes aleutianus, Sebastes minor, Sebastes nigrocinctus, Sebastes rubrivinctus, and Sebastes steindachneri.
Collapse
Affiliation(s)
- Michael W. Sandel
- Department of Biological and Environmental Sciences, University of West Alabama, Livingston, AL, USA; ,CONTACT Michael W. Sandel Department of Biological and Environmental Sciences, University of West Alabama, Livingston, AL 35470, USA
| | - Andres Aguilar
- Department of Biology, California State University Los Angeles, Los Angeles, CA, USA;
| | | | - Jennifer Herstein
- Department of Psychiatry and Behavioral Sciences, University of Southern California Medical Center, Los Angeles, CA, USA;
| | - Oleg Evgrafov
- Department of Psychiatry and Behavioral Sciences, University of Southern California Medical Center, Los Angeles, CA, USA; ,SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
7
|
Tao SQ, Cao B, Tian CM, Liang YM. Comparative transcriptome analysis and identification of candidate effectors in two related rust species (Gymnosporangium yamadae and Gymnosporangium asiaticum). BMC Genomics 2017; 18:651. [PMID: 28830353 PMCID: PMC5567642 DOI: 10.1186/s12864-017-4059-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 08/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rust fungi constitute the largest group of plant fungal pathogens. However, a paucity of data, including genomic sequences, transcriptome sequences, and associated molecular markers, hinders the development of inhibitory compounds and prevents their analysis from an evolutionary perspective. Gymnosporangium yamadae and G. asiaticum are two closely related rust fungal species, which are ecologically and economically important pathogens that cause apple rust and pear rust, respectively, proved to be devastating to orchards. In this study, we investigated the transcriptomes of these two Gymnosporangium species during the telial stage of their lifecycles. The aim of this study was to understand the evolutionary patterns of these two related fungi and to identify genes that developed by selection. RESULTS The transcriptomes of G. yamadae and G. asiaticum were generated from a mixture of RNA from three biological replicates of each species. We obtained 49,318 and 54,742 transcripts, with N50 values of 1957 and 1664, for G. yamadae and G. asiaticum, respectively. We also identified a repertoire of candidate effectors and other gene families associated with pathogenicity. A total of 4947 pairs of putative orthologues between the two species were identified. Estimation of the non-synonymous/synonymous substitution rate ratios for these orthologues identified 116 pairs with Ka/Ks values greater than1 that are under positive selection and 170 pairs with Ka/Ks values of 1 that are under neutral selection, whereas the remaining 4661 genes are subjected to purifying selection. We estimate that the divergence time between the two species is approximately 5.2 Mya. CONCLUSION This study constitutes a de novo assembly and comparative analysis between the transcriptomes of the two rust species G. yamadae and G. asiaticum. The results identified several orthologous genes, and many expressed genes were identified by annotation. Our analysis of Ka/Ks ratios identified orthologous genes subjected to positive or purifying selection. An evolutionary analysis of these two species provided a relatively precise divergence time. Overall, the information obtained in this study increases the genetic resources available for research on the genetic diversity of the Gymnosporangium genus.
Collapse
Affiliation(s)
- Si-Qi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Bin Cao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Cheng-Ming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Ying-Mei Liang
- Museum of Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|