1
|
Yao S, Lai J, Sun C, Zhao M, Duan J, Liao X, Pan Z. The microbial communities of the rust layer were influenced by seawater microbial communities. BIOFOULING 2024; 40:754-771. [PMID: 39373126 DOI: 10.1080/08927014.2024.2411076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/12/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
To reveal the responsible microorganisms of microbiologically-influenced-corrosion (MIC), using 16S rRNA and ITS sequencing techniques, we investigated the bacterial and fungal communities in rust layer and seawater. Results show that the corrosion-related genera of Erythrobacter, norank_f__Rhodothermaceae, and Acinetobacter bacteria, as well as Aspergillus fungi, were overrepresented in the rust layer, along with the Pseudoalteromonas and Marinobacterium bacteria in seawater, and Ramlibacter, Aquimarina, and Williamsia bacteria were first detected in the rust layer. SourceTracker analysis revealed that approximately 23.08% of bacteria and 21.48% of fungi originated from seawater. Stochastic processes governed the rust layer and seawater microbial communities, and network analysis showed coexistence and interaction among bacterial and fungal communities. These results indicate that the composition of microbial communities in the rust layer was influenced by the marine environmental microbial communities, which can provide basic data support for the control of MIC in marine-related projects.
Collapse
Affiliation(s)
- Shengxun Yao
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, P.R. China
| | - Junxiang Lai
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, P.R. China
| | - Congtao Sun
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China
| | - Maomi Zhao
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, P.R. China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China
| | - Xiufen Liao
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, P.R. China
| | - Zihan Pan
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, P.R. China
| |
Collapse
|
2
|
Modolon F, Schultz J, Duarte G, Vilela CLS, Thomas T, Peixoto RS. In situ devices can culture the microbial dark matter of corals. iScience 2023; 26:108374. [PMID: 38162026 PMCID: PMC10755713 DOI: 10.1016/j.isci.2023.108374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/16/2023] [Accepted: 10/27/2023] [Indexed: 01/03/2024] Open
Abstract
Most microorganisms found in environmental samples have never been cultured and can often only be explored through molecular or microscopic approaches. Here, we adapt the use of in situ diffusion-based devices to culture "yet-to-be-cultured" microorganisms associated with coral mucus and compare this with a traditional culturing method. The culturability of microorganisms associated with mucus of the coral Pocillopora damicornis increased by 420% and 570% with diffusion growth chambers and microwell chip devices, respectively, compared with the traditional method tested. The obtained cultures represent up to 64.4% of the total diversity of amplicon sequence variants (ASVs) found in the mucus of the coral P. damicornis. In addition, some previously uncultured microorganisms, such as members of the family Nitrosopumilaceae and halophilic/halotolerant bacteria were cultured. Our results validate alternative microbial culturing strategies to culture coral-associated microorganisms, while significantly increasing the culturability of previous microbial dark matter.
Collapse
Affiliation(s)
- Flúvio Modolon
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Júnia Schultz
- King Abdullah University of Science and Technology (KAUST), Marine Science and Bioscience Programs, Red Sea Research Center (RSRC) and Computational Biology Center (CBRC), Environmental and Engineering Sciences Division (BESE Thuwal, Makkah 23955, Saudi Arabia
| | - Gustavo Duarte
- King Abdullah University of Science and Technology (KAUST), Marine Science and Bioscience Programs, Red Sea Research Center (RSRC) and Computational Biology Center (CBRC), Environmental and Engineering Sciences Division (BESE Thuwal, Makkah 23955, Saudi Arabia
| | - Caren Leite Spindola Vilela
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Raquel Silva Peixoto
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- King Abdullah University of Science and Technology (KAUST), Marine Science and Bioscience Programs, Red Sea Research Center (RSRC) and Computational Biology Center (CBRC), Environmental and Engineering Sciences Division (BESE Thuwal, Makkah 23955, Saudi Arabia
| |
Collapse
|
3
|
Aquimarina algicola sp. nov., isolated from the surface of a marine red alga. Arch Microbiol 2021; 203:5397-5403. [PMID: 34398306 DOI: 10.1007/s00203-021-02524-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/29/2022]
Abstract
A bacterial strain, designated M625T, was isolated from the surface of a marine red alga. Phylogenetic trees were reconstructed based on the 16S rRNA gene and RpoB protein sequences, which indicated that the strain belongs to the genus Aquimarina within the family Flavobacteriaceae. Strain M625T showed high sequence similarities to A. aggregata RZW4-3-2 T (95.7%), A. seongsanensis CBA3208T (95.3%) and A. versatilis CBA3207T (95.0%). The AAI and POCP values between strain M625T and A. muelleri DSM 19832 T were 71.8% and 57.9% respectively. The dDDH and ANI values between strain M625T and A. aggregata were 19.5% and 74.6% respectively. The strain was Gram-stain negative, strictly aerobic, non-motile and long rod-shaped, and positive for hydrolysis of starch, cellulose, alginate, DNA and Tween 20. The dominant respiratory quinone was MK-6. The major fatty acids were iso-C15:0, iso-C17:0 3-OH, and iso-C15:1 G, and the polar lipids consisted of phosphatidylethanolamine, one unidentified phospholipid, two unidentified aminolipids, and seven unidentified lipids. Based on the polyphasic comparisons, strain M625T is proposed to represent a novel species within the genus Aquimarina, for which the name Aquimarina algicola sp. nov. (type strain M625T = MCCC 1H00399T = KCTC 72685 T) was proposed.
Collapse
|
4
|
Tarquinio F, Attlan O, Vanderklift MA, Berry O, Bissett A. Distinct Endophytic Bacterial Communities Inhabiting Seagrass Seeds. Front Microbiol 2021; 12:703014. [PMID: 34621247 PMCID: PMC8491609 DOI: 10.3389/fmicb.2021.703014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Seagrasses are marine angiosperms that can live completely or partially submerged in water and perform a variety of significant ecosystem services. Like terrestrial angiosperms, seagrasses can reproduce sexually and, the pollinated female flower develop into fruits and seeds, which represent a critical stage in the life of plants. Seed microbiomes include endophytic microorganisms that in terrestrial plants can affect seed germination and seedling health through phytohormone production, enhanced nutrient availability and defence against pathogens. However, the characteristics and origins of the seagrass seed microbiomes is unknown. Here, we examined the endophytic bacterial community of six microenvironments (flowers, fruits, and seeds, together with leaves, roots, and rhizospheric sediment) of the seagrass Halophila ovalis collected from the Swan Estuary, in southwestern Australia. An amplicon sequencing approach (16S rRNA) was used to characterize the diversity and composition of H. ovalis bacterial microbiomes and identify core microbiome bacteria that were conserved across microenvironments. Distinct communities of bacteria were observed within specific seagrass microenvironments, including the reproductive tissues (flowers, fruits, and seeds). In particular, bacteria previously associated with plant growth promoting characteristics were mainly found within reproductive tissues. Seagrass seed-borne bacteria that exhibit growth promoting traits, the ability to fix nitrogen and anti-pathogenic potential activity, may play a pivotal role in seed survival, as is common for terrestrial plants. We present the endophytic community of the seagrass seeds as foundation for the identification of potential beneficial bacteria and their selection in order to improve seagrass restoration.
Collapse
Affiliation(s)
- Flavia Tarquinio
- Oceans and Atmosphere, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia.,Environomics Future Science Platform, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
| | - Océane Attlan
- Oceans and Atmosphere, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia.,Sciences et Technologies, Université de la Réunion, Saint-Denis, France
| | - Mathew A Vanderklift
- Oceans and Atmosphere, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
| | - Oliver Berry
- Environomics Future Science Platform, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Hobart, TAS, Australia
| |
Collapse
|
5
|
Leinberger J, Holste J, Bunk B, Freese HM, Spröer C, Dlugosch L, Kück AC, Schulz S, Brinkhoff T. High Potential for Secondary Metabolite Production of Paracoccus marcusii CP157, Isolated From the Crustacean Cancer pagurus. Front Microbiol 2021; 12:688754. [PMID: 34262548 PMCID: PMC8273931 DOI: 10.3389/fmicb.2021.688754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Secondary metabolites are key components in microbial ecology by mediating interactions between bacteria and their environment, neighboring species or host organisms. Bioactivities can be beneficial for both interaction partners or provide a competitive advantage only for the producer. Colonizers of confined habitats such as biofilms are known as prolific producers of a great number of bioactive secondary metabolites and are a potential source for novel compounds. We investigated the strain Paracoccus marcusii CP157, which originates from the biofilm on the carapace of a shell disease-affected Cancer pagurus specimen, for its potential to produce bioactive secondary metabolites. Its closed genome contains 22 extrachromosomal elements and several gene clusters potentially involved in biosynthesis of bioactive polyketides, bacteriocins, and non-ribosomal peptides. Culture extracts of CP157 showed antagonistic activities against bacteria from different phyla, but also against microalgae and crustacean larvae. Different HPLC-fractions of CP157 culture extracts had antibacterial properties, indicating that several bioactive compounds are produced by CP157. The bioactive extract contains several small, antibacterial compounds that partially withstand elevated temperatures, extreme pH values and exposure to proteolytic enzymes, providing high stability toward environmental conditions in the natural habitat of CP157. Further, screening of 17 Paracoccus spp. revealed that antimicrobial activity, hemolysis and production of N-acyl homoserine lactones are common features within the genus. Taking into account the large habitat diversity and phylogenetic distance of the tested strains, we hypothesize that bioactive secondary metabolites play a central role in the ecology of Paracoccus spp. in their natural environments.
Collapse
Affiliation(s)
- Janina Leinberger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Jonas Holste
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Heike M. Freese
- Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Leon Dlugosch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Anna-Carlotta Kück
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Valdespino-Castillo PM, Bautista-García A, Favoretto F, Merino-Ibarra M, Alcántara-Hernández RJ, Pi-Puig T, Castillo FS, Espinosa-Matías S, Holman HY, Blanco-Jarvio A. Interplay of microbial communities with mineral environments in coralline algae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143877. [PMID: 33316514 DOI: 10.1016/j.scitotenv.2020.143877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Coralline algae are worldwide carbonate builders, considered to be foundational species and biodiversity hotspots. Coralline habitats face increasing pressure from human activities and effects related to Global Change, yet their ecological properties and adaptive responses remain poorly understood. The relationships of the algal microbiota with the mineral bioconstructions, as well as plasticity and resilience of coralline holobionts in a changing environment, are of particular interest. In the Gulf of California, Neogoniolithon trichotomum (Rhodophyta) is the main carbonate builder in tidal pools. We performed a multi-disciplinary assessment of the N. trichotomum microstructure using XRD, SEM microscopy and SR-FTIR spectromicroscopy. In the algal perithallus, magnesium-calcite and aragonite were spatially segregated and embedded in a polysaccharide matrix (rich in sulfated polysaccharides). Mg-calcites (18-19 mol% Mg) were the main mineral components of the thallus overall, followed by iron carbonates related to dolomite (ankerite) and siderite. Minerals of late evaporitic sequences (sylvite and bischofite) were also present, suggesting potential halophilic microenvironments within the algal thalli. The diverse set of abundant halophilic, halotolerant and oligotrophic taxa, whose abundance increase in the summer, further suggests this condition. We created an integrated model, based on environmental parameters and the microbiota distribution, that identified temperature and nutrient availability (particularly nitrate and silicate) as the main parameters related to specific taxa patterns. Among these, Hahella, Granulossicoccus, Ferrimonas, Spongiibacteraceae and cyanobacterial Xenococcaceae and Nostocaceae change significantly between seasons. These bacterial components might play relevant roles in algal plasticity and adaptive responses to a changing environment. This study contributes to the understanding of the interplay of the prokaryotic microbiota with the mineral microenvironments of coralline algae. Because of their carbonates with potential resistance to dissolution in a higher pCO2 world and their seasonally dynamic bacteria, coralline algae are relevant targets to study coastal resilience and carbonated systems responses to changing environments.
Collapse
Affiliation(s)
- Patricia M Valdespino-Castillo
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Andrea Bautista-García
- Laboratorio de Bioingeniería y Ciencias Ambientales (BICA), Departamento Académico de Ingeniería en Pesquerías, Universidad Autónoma de Baja California Sur, La Paz, BCS, Mexico
| | - Fabio Favoretto
- Laboratorio de Bioingeniería y Ciencias Ambientales (BICA), Departamento Académico de Ingeniería en Pesquerías, Universidad Autónoma de Baja California Sur, La Paz, BCS, Mexico; Gulf of California Marine Program, Scripps Institution of Oceanography, University of California San Diego, CA, United States
| | - Martín Merino-Ibarra
- Unidad Académica de Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Teresa Pi-Puig
- Instituto de Geología, Universidad Nacional Autónoma de México, Mexico City, Mexico; Laboratorio Nacional de Geoquímica y Mineralogía (LANGEM), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - F Sergio Castillo
- Unidad Académica de Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Silvia Espinosa-Matías
- Laboratorio de Microscopía Electrónica de Barrido, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hoi-Ying Holman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anidia Blanco-Jarvio
- Laboratorio de Bioingeniería y Ciencias Ambientales (BICA), Departamento Académico de Ingeniería en Pesquerías, Universidad Autónoma de Baja California Sur, La Paz, BCS, Mexico.
| |
Collapse
|
7
|
Ooi MC, Goulden EF, Trotter AJ, Smith GG, Bridle AR. Aquimarina sp. Associated With a Cuticular Disease of Cultured Larval Palinurid and Scyllarid Lobsters. Front Microbiol 2020; 11:573588. [PMID: 33162955 PMCID: PMC7581904 DOI: 10.3389/fmicb.2020.573588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
Shell (cuticular) disease manifests in various forms and affects many crustaceans, including lobsters. Outbreaks of white leg disease (WLD) with distinct signs of pereiopod tissue whitening and death have been observed in cultured larvae (phyllosomas) of ornate spiny lobster Panulirus ornatus, eastern rock lobster Sagmariasus verreauxi, and slipper lobster Thenus australiensis. This study aimed to characterise and identify the causative agent of WLD through morphological and molecular (16S rRNA gene and whole genome sequencing) analysis, experimental infection of damaged/undamaged P. ornatus and T. australiensis phyllosomas, and bacterial community analysis (16S rRNA gene amplicon sequencing) of P. ornatus phyllosomas presenting with WLD during an outbreak. Bacterial communities of WLD-affected pereiopods showed low bacterial diversity and dominant abundance of Aquimarina spp. compared to healthy pereiopods, which were more diverse and enriched with Sulfitobacter spp. 16S rRNA gene Sanger sequencing of cultures from disease outbreaks identified the dominant bacterial isolate (TRL1) as a Gram-negative, long non-flagellated rod with 100% sequence identity to Aquimarina hainanensis. Aquimarina sp. TRL1 was demonstrated through comparative genome analysis (99.99% OrthoANIu) as the bacterium reisolated from experimentally infected phyllosomas presenting with typical signs of WLD. Pereiopod damage was a major predisposing factor to WLD. Histopathological examination of WLD-affected pereiopods showed masses of internalised bacteria and loss of structural integrity, suggesting that Aquimarina sp. TRL1 could enter the circulatory system and cause death by septicaemia. Aquimarina sp. TRL1 appears to have important genomic traits (e.g., tissue-degrading enzymes, gliding motility, and aggregate-promoting factors) implicated in the pathogenicity of this bacterium. We have shown that Aquimarina sp. TRL1 is the aetiological agent of WLD in cultured Palinurid and Scyllarid phyllosomas and that damaged pereiopods are a predisposing factor to WLD.
Collapse
Affiliation(s)
- Mei C Ooi
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Evan F Goulden
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia.,Department of Agriculture and Fisheries, Bribie Island Research Centre, Woorim, QLD, Australia
| | - Andrew J Trotter
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Gregory G Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Andrew R Bridle
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
8
|
Zilius M, Bonaglia S, Broman E, Chiozzini VG, Samuiloviene A, Nascimento FJA, Cardini U, Bartoli M. N 2 fixation dominates nitrogen cycling in a mangrove fiddler crab holobiont. Sci Rep 2020; 10:13966. [PMID: 32811860 PMCID: PMC7435186 DOI: 10.1038/s41598-020-70834-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
Mangrove forests are among the most productive and diverse ecosystems on the planet, despite limited nitrogen (N) availability. Under such conditions, animal-microbe associations (holobionts) are often key to ecosystem functioning. Here, we investigated the role of fiddler crabs and their carapace-associated microbial biofilm as hotspots of microbial N transformations and sources of N within the mangrove ecosystem. 16S rRNA gene and metagenomic sequencing provided evidence of a microbial biofilm dominated by Cyanobacteria, Alphaproteobacteria, Actinobacteria, and Bacteroidota with a community encoding both aerobic and anaerobic pathways of the N cycle. Dinitrogen (N2) fixation was among the most commonly predicted process. Net N fluxes between the biofilm-covered crabs and the water and microbial N transformation rates in suspended biofilm slurries portray these holobionts as a net N2 sink, with N2 fixation exceeding N losses, and as a significant source of ammonium and dissolved organic N to the surrounding environment. N stable isotope natural abundances of fiddler crab carapace-associated biofilms were within the range expected for fixed N, further suggesting active microbial N2 fixation. These results extend our knowledge on the diversity of invertebrate-microbe associations, and provide a clear example of how animal microbiota can mediate a plethora of essential biogeochemical processes in mangrove ecosystems.
Collapse
Affiliation(s)
- Mindaugas Zilius
- Marine Research Institute, Klaipėda University, Klaipeda, Lithuania. .,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Stefano Bonaglia
- Marine Research Institute, Klaipėda University, Klaipeda, Lithuania.,Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.,Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.,Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | | | | | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.,Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Ulisse Cardini
- Marine Research Institute, Klaipėda University, Klaipeda, Lithuania.,Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Napoli, Italy
| | - Marco Bartoli
- Marine Research Institute, Klaipėda University, Klaipeda, Lithuania.,Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
9
|
Comparative genome analysis provides novel insight into the interaction of Aquimarina sp. AD1, BL5 and AD10 with their macroalgal host. Mar Genomics 2019; 46:8-15. [PMID: 30852185 DOI: 10.1016/j.margen.2019.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 11/23/2022]
Abstract
The Aquimarina genus is widely distributed throughout the marine environment, however little is understood regarding its ecological role, particularly when in association with eukaryotic hosts. Here, we examine the genomes of two opportunistic pathogens, Aquimarina sp. AD1 and BL5, and a non-pathogenic strain Aquimarina sp. AD10, that were isolated from diseased individuals of the red alga Delisea pulchra. Each strain encodes multiple genes for the degradation of marine carbohydrates and vitamin biosynthesis. These traits are hypothesised to promote nutrient exchange between the Aquimarina strains and their algal host, facilitating a close symbiotic relationship. Moreover, each strain harbours the necessary genes for the assembly of a Type 9 Secretion System (T9SS) and the associated gliding motility apparatus. In addition to these common features, pathogenic strains AD1 and BL5, encode genes for the production of flexirubin type pigments and a number of unique non-ribosomal peptide synthesis (NRPS) gene clusters, suggesting a role for these uncharacterised traits in virulence. This study provides valuable insight into the potential ecological role of Aquimarina in the marine environment and the complex factors driving pathogenesis and symbiosis in this genus.
Collapse
|
10
|
Wang Y, Deng H, Li Z, Tan Y, Han Y, Wang X, Du Z, Liu Y, Yang R, Bai Y, Bi Y, Zhi F. Safety Evaluation of a Novel Strain of Bacteroides fragilis. Front Microbiol 2017; 8:435. [PMID: 28367145 PMCID: PMC5355466 DOI: 10.3389/fmicb.2017.00435] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/02/2017] [Indexed: 12/18/2022] Open
Abstract
Commensal non-toxigenic Bacteroides fragilis confers powerful health benefits to the host, and has recently been identified as a promising probiotic candidate. We previously isolated B. fragilis strain ZY-312 and identified it as a novel strain based on 16S rRNA sequencing and morphological analyses. We also determined that ZY-312 displayed desirable probiotic properties, including tolerance to simulated digestive fluid, adherence, and in vitro safety. In this study, we aim to investigate whether ZY-312 meets the safety criteria required for probiotic bacteria through comprehensive and systematic evaluation. Consequently, the fatty acid profile, metabolite production, and biochemical activity of strain ZY-312 were found to closely resemble descriptions of B. fragilis in Bergey’s manual. Taxonomic identification of strain ZY-312 based on whole genome sequencing indicated that ZY-312 and ATCC 25285 showed 99.99% similarity. The 33 putative virulence-associated factors identified in ZY-312 mainly encoded structural proteins and proteins with physiological activity, while the lack of bft indicated that ZY-312 was non-toxigenic. In vivo safety was proven in both normal and immune-deficient mice. The 11 identified antibiotic resistance genes were located on the chromosome rather than on a plasmid, ruling out the risk of plasmid-mediated transfer of antibiotic resistance. In vitro, ZY-312 showed resistance to cefepime, kanamycin, and streptomycin. Finally, and notably, ZY-312 exhibited high genetic stability after 100 passages in vitro. This study supplements the foundation work on the safety evaluation of ZY-312, and contributes to the development of the first probiotic representative from the dominant Bacteroidetes phylum.
Collapse
Affiliation(s)
- Ye Wang
- Institute of Genetic Engineering, Jinan University,Guangzhou, China; Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology, Nanfang Hospital, Southern Medical University,Guangzhou, China
| | - Huimin Deng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology, Nanfang Hospital, Southern Medical University,Guangzhou, China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology,Beijing, China
| | - Zhengchao Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology, Nanfang Hospital, Southern Medical University,Guangzhou, China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology,Beijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoyi Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yangyang Liu
- Guangzhou ZhiYi biotechnology Co. Ltd., Guangzhou, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Genomic Insights into Aquimarina sp. Strain EL33, a Bacterial Symbiont of the Gorgonian Coral Eunicella labiata. GENOME ANNOUNCEMENTS 2016; 4:4/4/e00855-16. [PMID: 27540075 PMCID: PMC4991720 DOI: 10.1128/genomea.00855-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To address the metabolic potential of symbiotic Aquimarina spp., we report here the genome sequence of Aquimarina sp. strain EL33, a bacterium isolated from the gorgonian coral Eunicella labiata This first-described (to our knowledge) animal-associated Aquimarina genome possesses a sophisticated repertoire of genes involved in drug/antibiotic resistance and biosynthesis.
Collapse
|
12
|
Robertson V, Haltli B, McCauley EP, Overy DP, Kerr RG. Highly Variable Bacterial Communities Associated with the Octocoral Antillogorgia elisabethae. Microorganisms 2016; 4:E23. [PMID: 27681917 PMCID: PMC5039583 DOI: 10.3390/microorganisms4030023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/01/2016] [Accepted: 06/23/2016] [Indexed: 11/30/2022] Open
Abstract
Antillogorgia elisabethae (synonymous with Pseudopterogorgia elisabethae) is a common branching octocoral in Caribbean reef ecosystems. A. elisabethae is a rich source of anti-inflammatory diterpenes, thus this octocoral has been the subject of numerous natural product investigations, yet relatively little is known regarding the composition, diversity and the geographic and temporal stability of its microbiome. To characterize the composition, diversity and stability of bacterial communities of Bahamian A. elisabethae populations, 17 A. elisabethae samples originating from five sites within The Bahamas were characterized by 16S rDNA pyrosequencing. A. elisabethae bacterial communities were less diverse and distinct from those of surrounding seawater samples. Analyses of α- and β-diversity revealed that A. elisabethae bacterial communities were highly variable between A. elisabethae samples from The Bahamas. This contrasts results obtained from a previous study of three specimens collected from Providencia Island, Colombia, which found A. elisabethae bacterial communities to be highly structured. Taxa belonging to the Rhodobacteriales, Rhizobiales, Flavobacteriales and Oceanospiralles were identified as potential members of the A. elisabethae core microbiome.
Collapse
Affiliation(s)
- Veronica Robertson
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Brad Haltli
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Erin P McCauley
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - David P Overy
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
- Department of Pathology and Microbiology, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Russell G Kerr
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|