1
|
Ariharasutharsan G, Akilan M, Dhasarathan M, Amaravel M, Divya S, Deivamani M, Sudha M, Pandiyan M, Karthikeyan A, Senthil N. De Novo Transcriptome Assembly of Rice Bean ( Vigna umbellata) and Characterization of WRKY Transcription Factors Response to Aluminum Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3170. [PMID: 39599379 PMCID: PMC11598158 DOI: 10.3390/plants13223170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
Rice bean is an underutilized legume crop cultivated in Asia, and it is a good source of protein, minerals, and essential fatty acids for human consumption. Moreover, the leaves left over after harvesting rice bean seeds contain various biological constituents beneficial to humans and animals. In our study, we performed a de-novo transcriptome assembly of rice bean, characterized the WRKY transcription factors, and studied their response to aluminum stress. A total of 46.6 million clean reads, with a GC value of 43%, were generated via transcriptome sequencing. De novo assembly of the clean reads resulted in 90,933 transcripts and 74,926 unigenes, with minimum and maximum lengths of 301 bp and 24,052 bp, and N50 values of 1801 bp and 1710 bp, respectively. A total of 27,095 and 28,378 unigenes were annotated and subjected to GO and KEGG analyses. Among the unigenes, 15,593, 20,770, and 15,385 unigenes were identified in the domains of biological process, molecular function, and cellular component, respectively. A total of 16,132 unigenes were assigned to 188 pathways, including metabolic pathways (5500) and secondary metabolite biosynthesis (2858). Transcription factor analysis revealed 4860 unigenes from 98 different transcription factor families. For WRKY, a total of 95 unigenes were identified. Further analysis revealed the diverse response of WRKY transcription factors to aluminum stress. Collectively, the results of this study boost genomic resources and provide a baseline for further research on the role of WRKY transcription factors in aluminum tolerance in rice bean.
Collapse
Affiliation(s)
- Gunasekaran Ariharasutharsan
- Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Department of Biotechnology, Centre of Excellence for Innovation, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625105, India
| | - Manoharan Akilan
- Department of Genetics and Plant Breeding, Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu Agricultural University, Trichy 620027, India
| | - Manickam Dhasarathan
- Department of Biotechnology, Centre of Excellence for Innovation, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625105, India
- Agro Climate Research Centre, Directorate of Crop Management, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Manivel Amaravel
- Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Centre of Excellence in Millets, Tamil Nadu Agricultural University, Tiruvannamalai 606603, India
| | - Sankaran Divya
- Department of Plant Molecular Biology and Bioinformatics, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Mariyappan Deivamani
- ICAR-Krishi Vigyan Kendra, Tamil Nadu Agricultural University, Dharmapuri 636809, India
| | - Manickam Sudha
- Department of Plant Biotechnology, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Muthaiyan Pandiyan
- Agricultural College and Research Institute, Tamil Nadu Agricultural University, Eachangkottai, Thanjavur 614902, India
| | - Adhimoolam Karthikeyan
- Department of Biotechnology, Centre of Excellence for Innovation, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625105, India
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Natesan Senthil
- Department of Plant Molecular Biology and Bioinformatics, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
- School of Post Graduate Studies, Tamil Nadu Agricultural University, Coimbatore 641003, India
| |
Collapse
|
2
|
Zhang H, Wang Y, Ma B, Bu X, Dang Z, Wang Y. Transcriptional Profiling Analysis Providing Insights into the Harsh Environments Tolerance Mechanisms of Krascheninnikovia arborescens. Int J Mol Sci 2024; 25:11891. [PMID: 39595960 PMCID: PMC11594238 DOI: 10.3390/ijms252211891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Krascheninnikovia arborescens, an endemic shrub in China, thrives in desertification-prone environments due to its robust biomass, hairy leaves, and extensive root system. It is vital for ecological restoration and serves as a valuable forage plant. This study explored the molecular mechanisms underlying K. arborescens' adaptation to desert conditions, focusing on its physiological, biochemical, and transcriptomic responses to drought, salt, and alkali stresses. The results revealed that the three stresses have significant impacts on the photosynthetic, antioxidant, and ion balance systems of the plants, with the alkali stress inducing the most pronounced changes and differential gene expression. The clustering and functional enrichment analyses of differentially expressed genes (DEGs) highlighted the enrichment of the induced genes in pathways related to plant hormone signaling, phenylpropanoid biosynthesis, and transcription factors following stress treatments. In these pathways, the synthesis and signal transduction of abscisic acid (ABA) and ethylene, as well as the flavonoid and lignin synthesis pathways, and transcription factors such as MYB, AP2/ERF, bHLH, NAC, and WRKY responded actively to the stress and played pivotal roles. Through the WGCNA analysis, 10 key modules were identified, with the yellow module demonstrating a high correlation with the ABA and anthocyanin contents, while the turquoise module was enriched in the majority of genes related to hormone and phenylpropanoid pathways. The analysis of hub genes in these modules highlighted the significant roles of the bHLH and MYB transcription factors. These findings could offer new insights into the molecular mechanisms that enable the adaptation of K. arborescens to desert environments, enhancing our understanding of how other desert plants adapt to harsh conditions. These insights are crucial for exploring and utilizing high-quality forage plant germplasm resources and ecological development, with the identified candidate genes serving as valuable targets for further research on stress-resistant genes.
Collapse
Affiliation(s)
- Hongyi Zhang
- Ministry of Education Key Laboratory of Forage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (H.Z.); (Y.W.); (X.B.)
| | - Yingnan Wang
- Ministry of Education Key Laboratory of Forage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (H.Z.); (Y.W.); (X.B.)
| | - Binjie Ma
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China;
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xiangqi Bu
- Ministry of Education Key Laboratory of Forage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (H.Z.); (Y.W.); (X.B.)
| | - Zhenhua Dang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010070, China
| | - Yingchun Wang
- Ministry of Education Key Laboratory of Forage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (H.Z.); (Y.W.); (X.B.)
| |
Collapse
|
3
|
Rurek M, Smolibowski M. Variability of plant transcriptomic responses under stress acclimation: a review from high throughput studies. Acta Biochim Pol 2024; 71:13585. [PMID: 39524930 PMCID: PMC11543463 DOI: 10.3389/abp.2024.13585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Plant transcriptomes are complex entities shaped spatially and temporally by a multitude of stressors. The aim of this review was to summarize the most relevant transcriptomic responses to selected abiotic (UV radiation, chemical compounds, drought, suboptimal temperature) and biotic (bacteria, fungi, viruses, viroids) stress conditions in a variety of plant species, including model species, crops, and medicinal plants. Selected basic and applicative studies employing RNA-seq from various sequencing platforms and single-cell RNA-seq were involved. The transcriptomic responsiveness of various plant species and the diversity of affected gene families were discussed. Under stress acclimation, plant transcriptomes respond particularly dynamically. Stress response involved both distinct, but also similar gene families, depending on the species, tissue, and the quality and dosage of the stressor. We also noted the over-representation of transcriptomic data for some plant organs. Studies on plant transcriptomes allow for a better understanding of response strategies to environmental conditions. Functional analyses reveal the multitude of stress-affected genes as well as acclimatory mechanisms and suggest metabolome diversity, particularly among medicinal species. Extensive characterization of transcriptomic responses to stress would result in the development of new cultivars that would cope with stress more efficiently. These actions would include modern methodological tools, including advanced genetic engineering, as well as gene editing, especially for the expression of selected stress proteins in planta and for metabolic modifications that allow more efficient synthesis of secondary metabolites.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | |
Collapse
|
4
|
Demircan N, Sonmez MC, Akyol TY, Ozgur R, Turkan I, Dietz KJ, Uzilday B. Alternative electron sinks in chloroplasts and mitochondria of halophytes as a safety valve for controlling ROS production during salinity. PHYSIOLOGIA PLANTARUM 2024; 176:e14397. [PMID: 38894507 DOI: 10.1111/ppl.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 06/21/2024]
Abstract
Electron flow through the electron transport chain (ETC) is essential for oxidative phosphorylation in mitochondria and photosynthesis in chloroplasts. Electron fluxes depend on environmental parameters, e.g., ionic and osmotic conditions and endogenous factors, and this may cause severe imbalances. Plants have evolved alternative sinks to balance the reductive load on the electron transport chains in order to avoid overreduction, generation of reactive oxygen species (ROS), and to cope with environmental stresses. These sinks act primarily as valves for electron drainage and secondarily as regulators of tolerance-related metabolism, utilizing the excess reductive energy. High salinity is an environmental stressor that stimulates the generation of ROS and oxidative stress, which affects growth and development by disrupting the redox homeostasis of plants. While glycophytic plants are sensitive to high salinity, halophytic plants tolerate, grow, and reproduce at high salinity. Various studies have examined the ETC systems of glycophytic plants, however, information about the state and regulation of ETCs in halophytes under non-saline and saline conditions is scarce. This review focuses on alternative electron sinks in chloroplasts and mitochondria of halophytic plants. In cases where information on halophytes is lacking, we examined the available knowledge on the relationship between alternative sinks and gradual salinity resilience of glycophytes. To this end, transcriptional responses of involved components of photosynthetic and respiratory ETCs were compared between the glycophyte Arabidopsis thaliana and the halophyte Schrenkiella parvula, and the time-courses of these transcripts were examined in A. thaliana. The observed regulatory patterns are discussed in the context of reactive molecular species formation in halophytes and glycophytes.
Collapse
Affiliation(s)
- Nil Demircan
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | | | - Turgut Yigit Akyol
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | - Ismail Turkan
- Department of Soil and Plant Nutrition, Faculty of Agricultural Sciences and Technologies, Yasar University, İzmir, Türkiye
| | - Karl-Josef Dietz
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| |
Collapse
|
5
|
Huang X, Liu L, Qiang X, Meng Y, Li Z, Huang F. Integrated Metabolomic and Transcriptomic Profiles Provide Insights into the Mechanisms of Anthocyanin and Carotenoid Biosynthesis in Petals of Medicago sativa ssp. sativa and Medicago sativa ssp. falcata. PLANTS (BASEL, SWITZERLAND) 2024; 13:700. [PMID: 38475545 DOI: 10.3390/plants13050700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The petals of Medicago sativa ssp. sativa and M. sativa ssp. falcata are purple and yellow, respectively. Free hybridization between M. sativa ssp. sativa and M. sativa ssp. falcata has created hybrids with various flower colors in nature. Moreover, the flower colors of alfalfa are closely correlated with yield, nutritional quality, stress tolerance and other agronomic characteristics. To elucidate the underlying mechanisms of flower color formation in M. sativa ssp. sativa and M. sativa ssp. falcata, we conducted an integrative analysis of the transcriptome and metabolome of alfalfa with three different petal colors (purple, yellow and cream). The metabolic profiles suggested that anthocyanins and carotenoids are the crucial pigments in purple and yellow flowers, respectively. A quantitative exploration of the anthocyanin and carotenoid components indicated that the accumulations of cyanidin, delphinidin, peonidin, malvidin, pelargonidin and petunidin derivatives are significantly higher in purple flowers than in cream flowers. In addition, the content of carotenes (phytoene, α-carotene and β-carotene) and xanthophylls (α-cryptoxanthin, lutein, β-cryptoxanthin, zeaxanthin, antheraxanthin and violaxanthin derivatives) was markedly higher in yellow flowers than in cream flowers. Furthermore, we found that delphinidin-3,5-O-diglucoside and lutein were the predominant pigments accumulated in purple and yellow flowers, respectively. The transcriptomic results revealed that twenty-five upregulated structural genes (one C4H, three 4CL, twelve CHS, two CHI, one F3H, one F3'H, one F3'5'H and four DFR) are involved in the accumulation of anthocyanins in purple flowers, and nine structural genes (two PSY, one ZDS, two CRTISO, two BCH, one ZEP and one ECH) exert an effect on the carotenoid biosynthesis pathway in yellow flowers. The findings of this study reveal the underlying mechanisms of anthocyanin and carotenoid biosynthesis in alfalfa with three classic flower colors.
Collapse
Affiliation(s)
- Xiuzheng Huang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 100081, China
| | - Lei Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 100081, China
| | - Xiaojing Qiang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 100081, China
| | - Yuanfa Meng
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 100081, China
| | - Zhiyong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 100081, China
| | - Fan Huang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 100081, China
| |
Collapse
|
6
|
Li Q, Jiang W, Jiang Z, Du W, Song J, Qiang Z, Zhang B, Pang Y, Wang Y. Transcriptome and functional analyses reveal ERF053 from Medicago falcata as key regulator in drought resistances. FRONTIERS IN PLANT SCIENCE 2022; 13:995754. [PMID: 36304391 PMCID: PMC9594990 DOI: 10.3389/fpls.2022.995754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Medicago falcata L. is an important legume forage grass with strong drought resistant, which could be utilized as an important gene pool in molecular breed of forage grass. In this study, M. falcata seedlings were treated with 400 mM mannitol to simulate drought stress, and the morphological and physiological changes were investigated, as well as the transcriptome changes of M. falcata seedlings at different treatment time points (0 h, 2 h, 6 h, 12 h, 24 h, 36 h and 48 h). Transcriptome analyses revealed four modules were closely related with drought response in M. falcata by WGCNA analysis, and four ERF transcription factor genes related with drought stress were identified (MfERF053, MfERF9, MfERF034 and MfRAP2.1). Among them, MfERF053 was highly expressed in roots, and MfERF053 protein showed transcriptional activation activity by transient expression in tobacco leaves. Overexpression of MfERF053 in Arabidopsis improved root growth, number of lateral roots and fresh weight under drought, salt stress and exogenous ABA treatments. Transgenic Arabidopsis over-expressing MfERF053 gene grew significantly better than the wild type under both drought stress and salt stress when grown in soil. Taken together, our strategy with transcriptome combined WGCNA analyses identified key transcription factor genes from M. falcata, and the selected MfERF053 gene was verified to be able to enhance drought and salt resistance when over-expressed in Arabidopsis.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, Key Laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhihu Jiang
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, Key Laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| | - Wenxuan Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaxing Song
- College of Grassland Agriculture, Northwest A&F University, Shanxi, China
| | - Zhiquan Qiang
- College of Grassland Agriculture, Northwest A&F University, Shanxi, China
| | - Bo Zhang
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, Key Laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxiang Wang
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, Key Laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
7
|
Integrated Transcriptomic and Metabolomic Analyses of Cold-Tolerant and Cold-Sensitive Pepper Species Reveal Key Genes and Essential Metabolic Pathways Involved in Response to Cold Stress. Int J Mol Sci 2022; 23:ijms23126683. [PMID: 35743127 PMCID: PMC9224482 DOI: 10.3390/ijms23126683] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 01/10/2023] Open
Abstract
Cold stress, triggered by particularly low temperatures, is one of the most severe forms of abiotic stress in pepper plants and a major constraint to the global pepper industry, threatening crop production and food security. To acclimatize to extreme conditions, the plant undergoes numerous modifications, including genetic and metabolic modulations. A thorough study of both the genetic and metabolic alterations of plants in response to cold stress is vital to understanding and developing the cold stress resistance mechanism. This study implemented transcriptome and metabolome analyses to evaluate the cold stress response in cold-tolerant and cold-sensitive pepper species. The weighted gene co-expression network revealed three significant modules related to cold stress tolerance in Capsicum pubescens. We identified 17 commonly enriched genes among both species at different time points in 10 different comparisons, including the AP2 transcription factor, LRR receptor-like serine, hypersensitivity-related 4-like protein, and uncharacterized novel.295 and novel.6172 genes. A pathway enrichment analysis indicated that these DEGs were mainly associated with the MAPK signaling pathway, hormone signaling pathway, and primary and secondary metabolism. Additionally, 21 significantly differentially accumulated metabolites (DAMs) were identified in both species after 6 h of cold stress. A transcriptome and metabolome integrated analysis revealed that 54 genes correlated with metabolites enriched in five different pathways. Most genes and metabolites involved in carbohydrate metabolism, the TCA cycle, and flavonoid biosynthesis pathways were upregulated in cold-tolerant plants under cold stress. Together, the results of this study provide a comprehensive gene regulatory and metabolic network in response to cold stress and identified some key genes and metabolic pathways involved in pepper cold tolerance. This study lays a foundation for the functional characterization and development of pepper cultivars with improved cold tolerance.
Collapse
|
8
|
Bhat KA, Mahajan R, Pakhtoon MM, Urwat U, Bashir Z, Shah AA, Agrawal A, Bhat B, Sofi PA, Masi A, Zargar SM. Low Temperature Stress Tolerance: An Insight Into the Omics Approaches for Legume Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:888710. [PMID: 35720588 PMCID: PMC9204169 DOI: 10.3389/fpls.2022.888710] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 05/27/2023]
Abstract
The change in climatic conditions is the major cause for decline in crop production worldwide. Decreasing crop productivity will further lead to increase in global hunger rate. Climate change results in environmental stress which has negative impact on plant-like deficiencies in growth, crop yield, permanent damage, or death if the plant remains in the stress conditions for prolonged period. Cold stress is one of the main abiotic stresses which have already affected the global crop production. Cold stress adversely affects the plants leading to necrosis, chlorosis, and growth retardation. Various physiological, biochemical, and molecular responses under cold stress have revealed that the cold resistance is more complex than perceived which involves multiple pathways. Like other crops, legumes are also affected by cold stress and therefore, an effective technique to mitigate cold-mediated damage is critical for long-term legume production. Earlier, crop improvement for any stress was challenging for scientific community as conventional breeding approaches like inter-specific or inter-generic hybridization had limited success in crop improvement. The availability of genome sequence, transcriptome, and proteome data provides in-depth sight into different complex mechanisms under cold stress. Identification of QTLs, genes, and proteins responsible for cold stress tolerance will help in improving or developing stress-tolerant legume crop. Cold stress can alter gene expression which further leads to increases in stress protecting metabolites to cope up the plant against the temperature fluctuations. Moreover, genetic engineering can help in development of new cold stress-tolerant varieties of legume crop. This paper provides a general insight into the "omics" approaches for cold stress in legume crops.
Collapse
Affiliation(s)
- Kaisar Ahmad Bhat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, India
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Reetika Mahajan
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, India
| | - Mohammad Maqbool Pakhtoon
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, India
- Department of Life Sciences, Rabindranath Tagore University, Bhopal, India
| | - Uneeb Urwat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, India
| | - Zaffar Bashir
- Deparment of Microbiology, University of Kashmir, Srinagar, India
| | - Ali Asghar Shah
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Ankit Agrawal
- Department of Life Sciences, Rabindranath Tagore University, Bhopal, India
| | - Basharat Bhat
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Parvaze A. Sofi
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, India
| |
Collapse
|
9
|
Li Q, Gu L, Song J, Li C, Zhang Y, Wang Y, Pang Y, Zhang B. Physiological and transcriptome analyses highlight multiple pathways involved in drought stress in Medicago falcata. PLoS One 2022; 17:e0266542. [PMID: 35390072 PMCID: PMC8989214 DOI: 10.1371/journal.pone.0266542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Medicago falcata is one of the leguminous forage crops, which grows well in arid and semiarid region. To fully investigate the mechanism of drought resistance response in M. falcata, we challenged the M. falcata plants with 30% PEG-6000, and performed physiological and transcriptome analyses. It was found that, the activities of antioxidant enzymes (eg. SOD, POD, and CAT) and soluble sugar content were all increased in the PEG-treated group, as compared to the control group. Transcriptome results showed that a total of 706 genes were differentially expressed in the PEG-treated plants in comparison with the control. Gene enrichment analyses on differentially expressed genes revealed that a number of genes in various pathway were significantly enriched, including the phenylpropanoid biosynthesis (ko00940) and glycolysis/gluconeogenesis (ko00010), indicating the involvement of these key pathways in drought response. Furthermore, the expression levels of seven differentially expressed genes were verified to be involved in drought response in M. falcata by qPCR. Taken together, these results will provide valuable information related to drought response in M. falcata and lay a foundation for molecular studies and genetic breeding of legume crops in future research.
Collapse
Affiliation(s)
- Qian Li
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Gu
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Jiaxing Song
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Chenjian Li
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Yanhui Zhang
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Yuxiang Wang
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (BZ); (YP)
| | - Bo Zhang
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
- * E-mail: (BZ); (YP)
| |
Collapse
|
10
|
Spatiotemporal Gene Expression Profiling and Network Inference: A Roadmap for Analysis, Visualization, and Key Gene Identification. Methods Mol Biol 2021. [PMID: 34251619 DOI: 10.1007/978-1-0716-1534-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Gene expression data analysis and the prediction of causal relationships within gene regulatory networks (GRNs) have guided the identification of key regulatory factors and unraveled the dynamic properties of biological systems. However, drawing accurate and unbiased conclusions requires a comprehensive understanding of relevant tools, computational methods, and their workflows. The topics covered in this chapter encompass the entire workflow for GRN inference including: (1) experimental design; (2) RNA sequencing data processing; (3) differentially expressed gene (DEG) selection; (4) clustering prior to inference; (5) network inference techniques; and (6) network visualization and analysis. Moreover, this chapter aims to present a workflow feasible and accessible for plant biologists without a bioinformatics or computer science background. To address this need, TuxNet, a user-friendly graphical user interface that integrates RNA sequencing data analysis with GRN inference, is chosen for the purpose of providing a detailed tutorial.
Collapse
|
11
|
Gao Z, Gao S, Li P, Zhang Y, Ma B, Wang Y. Exogenous methyl jasmonate promotes salt stress-induced growth inhibition and prioritizes defense response of Nitraria tangutorum Bobr. PHYSIOLOGIA PLANTARUM 2021; 172:162-175. [PMID: 33314279 DOI: 10.1111/ppl.13314] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 05/04/2023]
Abstract
Jasmonates (JAs) play a key role in the regulation of growth and the defense response to environmental stresses. JAs inhibit plant growth and promote defense response. However, their roles in desert halophyte in the response to salt stress remain poorly understood. The effects of the combination of methyl jasmonate (MeJA) and NaCl treatment (the "MeN" condition) on the growth regulation and defense response of Nitraria tangutorum seedlings were investigated. Compared with NaCl treatment alone, exogenous MeJA aggravated the growth inhibition of seedlings by antagonizing to growth-related hormones and suppressing the transcript levels of these hormones-responsive genes, including gibberellin (GA)-responsive NtPIF3, NtGAST1, NtGSAT4, and cytokinin (CYT)-responsive NtARR1, NtARR11, NtARR12. Meanwhile, exogenous MeJA enhanced defense response and alleviated the stress damage by increasing antioxidase activity and antioxidant content, accumulating more osmolytes, maintaining lower Na+ /K+ ratios in shoots and higher Na+ efflux rates in roots of plants. In addition, exogenous MeJA increased the contents of endogenous JA and ABA, and the transcript levels of genes involved in their biosynthesis and responsiveness, thereby further regulating the transcript levels of defense response genes. These findings suggest that exogenous MeJA increases salt stress-induced growth inhibition and prioritizes the defensive responses (e.g. antioxidant defense, osmotic adjustment, and ion homeostasis) of N. tangutorum. These effects may be related to the amplification of jasmonic acid (JA) and abscisic acid (ABA) signals.
Collapse
Affiliation(s)
- Ziqi Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Shuai Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Pengxuan Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Yan Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Binjie Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Yingchun Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| |
Collapse
|
12
|
Castañeda V, González EM. Strategies to Apply Water-Deficit Stress: Similarities and Disparities at the Whole Plant Metabolism Level in Medicago truncatula. Int J Mol Sci 2021; 22:ijms22062813. [PMID: 33802151 PMCID: PMC8002188 DOI: 10.3390/ijms22062813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Water-deficit stresses such as drought and salinity are the most important factors limiting crop productivity. Hence, understanding the plant responses to these stresses is key for the improvement of their tolerance and yield. In this study M. truncatula plants were subjected to 250 mM NaCl as well as reduced irrigation (No-W) and 250 g/L polyethylene glycol (PEG)-6000 to induce salinity and drought stress, respectively, provoking a drop to −1.7 MPa in leaf water potential. The whole plant physiology and metabolism was explored by characterizing the stress responses at root, phloem sap and leaf organ level. PEG treatment led to some typical responses of plants to drought stress, but in addition to PEG uptake, an important impairment of nutrient uptake and a different regulation of carbon metabolism could be observed compared to No-W plants. No-W plants showed an important redistribution of antioxidants and assimilates to the root tissue, with a distinctive increase in root proline degradation and alkaline invertase activity. On the contrary, salinity provoked an increase in leaf starch and isocitrate dehydrogenase activity, suggesting key roles in the plant response to this stress. Overall, results suggest higher protection of salt-stressed shoots and non-irrigated roots through different mechanisms, including the regulation of proline and carbon metabolism, while discarding PEG as safe mimicker of drought. This raises the need to understand the effect at the whole plant level of the different strategies employed to apply water-deficit stress.
Collapse
|
13
|
Wang J, Guo J, Zhang Y, Yan X. Integrated transcriptomic and metabolomic analyses of yellow horn (Xanthoceras sorbifolia) in response to cold stress. PLoS One 2020; 15:e0236588. [PMID: 32706804 PMCID: PMC7380624 DOI: 10.1371/journal.pone.0236588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/08/2020] [Indexed: 01/10/2023] Open
Abstract
Xanthoceras sorbifolia, a medicinal and oil-rich woody plant, has great potential for biodiesel production. However, little study explores the link between gene expression level and metabolite accumulation of X. sorbifolia in response to cold stress. Herein, we performed both transcriptomic and metabolomic analyses of X. sorbifolia seedlings to investigate the regulatory mechanism of resistance to low temperature (4 °C) based on physiological profile analyses. Cold stress resulted in a significant increase in the malondialdehyde content, electrolyte leakage and activity of antioxidant enzymes. A total of 1,527 common differentially expressed genes (DEGs) were identified, of which 895 were upregulated and 632 were downregulated. Annotation of DEGs revealed that amino acid metabolism, glycolysis/gluconeogenesis, starch and sucrose metabolism, galactose metabolism, fructose and mannose metabolism, and the citrate cycle (TCA) were strongly affected by cold stress. In addition, DEGs within the plant mitogen-activated protein kinase (MAPK) signaling pathway and TF families of ERF, WRKY, NAC, MYB, and bHLH were transcriptionally activated. Through metabolomic analysis, we found 51 significantly changed metabolites, particularly with the analysis of primary metabolites, such as sugars, amino acids, and organic acids. Moreover, there is an overlap between transcript and metabolite profiles. Association analysis between key genes and altered metabolites indicated that amino acid metabolism and sugar metabolism were enhanced. A large number of specific cold-responsive genes and metabolites highlight a comprehensive regulatory mechanism, which will contribute to a deeper understanding of the highly complex regulatory program under cold stress in X. sorbifolia.
Collapse
Affiliation(s)
- Juan Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Taigu, Shanxi, China
| | - Jinping Guo
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Taigu, Shanxi, China
| | - Yunxiang Zhang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Taigu, Shanxi, China
| | - Xingrong Yan
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Taigu, Shanxi, China
| |
Collapse
|
14
|
Hoang NV, Park C, Kamran M, Lee JY. Gene Regulatory Network Guided Investigations and Engineering of Storage Root Development in Root Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:762. [PMID: 32625220 PMCID: PMC7313660 DOI: 10.3389/fpls.2020.00762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/13/2020] [Indexed: 05/23/2023]
Abstract
The plasticity of plant development relies on its ability to balance growth and stress resistance. To do this, plants have established highly coordinated gene regulatory networks (GRNs) of the transcription factors and signaling components involved in developmental processes and stress responses. In root crops, yields of storage roots are mainly determined by secondary growth driven by the vascular cambium. In relation to this, a dynamic yet intricate GRN should operate in the vascular cambium, in coordination with environmental changes. Despite the significance of root crops as food sources, GRNs wired to mediate secondary growth in the storage root have just begun to emerge, specifically with the study of the radish. Gene expression data available with regard to other important root crops are not detailed enough for us directly to infer underlying molecular mechanisms. Thus, in this review, we provide a general overview of the regulatory programs governing the development and functions of the vascular cambium in model systems, and the role of the vascular cambium on the growth and yield potential of the storage roots in root crops. We then undertake a reanalysis of recent gene expression data generated for major root crops and discuss common GRNs involved in the vascular cambium-driven secondary growth in storage roots using the wealth of information available in Arabidopsis. Finally, we propose future engineering schemes for improving root crop yields by modifying potential key nodes in GRNs.
Collapse
Affiliation(s)
- Nam V. Hoang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Chulmin Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Muhammad Kamran
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Young Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
15
|
Tripathi S, Srivastava Y, Sangwan RS, Sangwan NS. In silico mining and functional analysis of AP2/ERF gene in Withania somnifera. Sci Rep 2020; 10:4877. [PMID: 32184405 PMCID: PMC7078187 DOI: 10.1038/s41598-020-60090-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/28/2019] [Indexed: 12/03/2022] Open
Abstract
Withania somnifera owing to its strong and remarkable stress tolerance property is a reliable candidate for the determination of genes involved in mechanism of adaption/tolerance of various stress conditions. 187 AP2/ERF gene related transcripts (GRTs) were identified during comprehensive search in W. somnifera transcriptome repertoire. Major hits in homology search were observed from the model plant Arabidopsis and members of Solanaceae family. Cloning, expression analysis of the gene and genetic transient transformation with the gene (WsAP2) were performed to predict its functional role in planta. Enhanced expression of some of the pathway genes for terpenoid biosynthesis was observed in transformed tissues in comparison to the control tissues. It is speculated that WsAP2 gene crucially regulates the expression of GGPPS gene in addition to the regulation of other important genes of terpenoid pathway via induction of expression of other genes such as HMGR, CAS, DXS and DXR. To the best of our knowledge, this is the first report representing detailed study of AP2/ERF gene family in W. somnifera. It is also suggested from the study that gene might have role in eliciting responses to combat stress and attribute the strong stress tolerant property associated with the plant.
Collapse
Affiliation(s)
- Sandhya Tripathi
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.,Academy of Scientific and Innovative Research (AcSIR) (An Institution of National Importance by Act of Parliament), CSIR-HRDC Campus, Kamla Nehru Nagar, Sector-19, Ghaziabad, 201002, UP, India
| | - Yashdeep Srivastava
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Rajender Singh Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.,Academy of Scientific and Innovative Research (AcSIR) (An Institution of National Importance by Act of Parliament), CSIR-HRDC Campus, Kamla Nehru Nagar, Sector-19, Ghaziabad, 201002, UP, India
| | - Neelam Singh Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India. .,Academy of Scientific and Innovative Research (AcSIR) (An Institution of National Importance by Act of Parliament), CSIR-HRDC Campus, Kamla Nehru Nagar, Sector-19, Ghaziabad, 201002, UP, India. .,Department of Biochemistry, School of Interdisciplinary and Applied Life Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana, 123031, India.
| |
Collapse
|
16
|
Zhang L, Jia X, Zhao J, Hasi A, Niu Y. Molecular characterisation and expression analysis of NAC transcription factor genes in wild Medicago falcata under abiotic stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:327-341. [PMID: 32092285 DOI: 10.1071/fp19199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
The No apical meristem-Arabidopsis transcription activation factor-Cup-shaped cotyledon (NAC) proteins play vital roles in plant development processes and responses to abiotic stress. In this study, 146 unigenes were identified as NAC genes from wild Medicago falcata L. by RNA sequencing. Among these were 30 full-length NACs, which, except for MfNAC63, MfNAC64 and MfNAC91, contained a complete DNA-binding domain and a variable transcriptional activation region. Sequence analyses of MfNACs along with their Arabidopsis thaliana (L.) Heynh. counterparts allowed these proteins to be phylogenetically classified into nine groups. MfNAC35, MfNAC88, MfNAC79, MfNAC26 and MfNAC95 were found to be stress-responsive genes. The eight MfNAC genes that were chosen for further analysis had different expression abilities in the leaves, stems and roots of M. falcata. Additionally, their expression levels were regulated by salinity, drought and cold stress, and ABA. This study will be useful for understanding the roles of MfNACs in wild M. falcata and could provide important information for the selection of candidate genes associated with stress tolerance.
Collapse
Affiliation(s)
- Liquan Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R. China; and State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R.China; and Corresponding authors. Emails: ;
| | - Xuhui Jia
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R. China
| | - Jingwei Zhao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R. China
| | - Agula Hasi
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R. China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R. China; and State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R.China; and Corresponding authors. Emails: ;
| |
Collapse
|
17
|
Das P, Behera BK, Chatterjee S, Das BK, Mohapatra T. De novo transcriptome analysis of halotolerant bacterium Staphylococcus sp. strain P-TSB-70 isolated from East coast of India: In search of salt stress tolerant genes. PLoS One 2020; 15:e0228199. [PMID: 32040520 PMCID: PMC7010390 DOI: 10.1371/journal.pone.0228199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022] Open
Abstract
In the present study, we identified salt stress tolerant genes from the marine bacterium Staphylococcus sp. strain P-TSB-70 through transcriptome sequencing. In favour of whole-genome transcriptome profiling of Staphylococcus sp. strain P-TSB-70 (GenBank Accn. No. KP117091) which tolerated upto 20% NaCl stress, the strain was cultured in the laboratory condition with 20% NaCl stress. Transcriptome analyses were performed by SOLiD4.0 sequencing technology from which 10280 and 9612 transcripts for control and treated, respectively, were obtained. The coverage per base (CPB) statistics were analyzed for both the samples. Gene ontology (GO) analysis has been categorized at varied graph levels based on three primary ontology studies viz. cellular components, biological processes, and molecular functions. The KEGG analysis of the assembled transcripts using KAAS showed presumed components of metabolic pathways which perhaps implicated in diverse metabolic pathways responsible for salt tolerance viz. glycolysis/gluconeogenesis, oxidative phosphorylation, glutathione metabolism, etc. further involving in salt tolerance. Overall, 90 salt stress tolerant genes were identified as of 186 salt-related transcripts. Several genes have been found executing normally in the TCA cycle pathway, integral membrane proteins, generation of the osmoprotectants, enzymatic pathway associated with salt tolerance. Recognized genes fit diverse groups of salt stress genes viz. abc transporter, betaine, sodium antiporter, sodium symporter, trehalose, ectoine, and choline, that belong to different families of genes involved in the pathway of salt stress. The control sample of the bacterium showed elevated high proportion of transcript contigs (29%) while upto 20% salt stress treated sample of the bacterium showed a higher percentage of transcript contigs (31.28%). A total of 1,288 and 1,133 transcript contigs were measured entirely as novel transcript contigs in both control and treated samples, respectively. The structure and function of 10 significant salt stress tolerant genes of Staphylococcus sp. have been analyzed in this study. The information acquired in the present study possibly used to recognize and clone the salt stress tolerant genes and support in developing the salt stress-tolerant plant varieties to expand the agricultural productivity in the saline system.
Collapse
Affiliation(s)
- Priyanka Das
- Fishery Resource and Environmental Management Division, Biotechnology Laboratory, ICAR- Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | - Bijay Kumar Behera
- Fishery Resource and Environmental Management Division, Biotechnology Laboratory, ICAR- Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
- * E-mail:
| | - Soumendranath Chatterjee
- Parasitology and Microbiology Research Laboratory, Department of Zoology, University of Burdwan, Burdwan, West Bengal, India
| | - Basanta Kumar Das
- Fishery Resource and Environmental Management Division, Biotechnology Laboratory, ICAR- Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | - Trilochan Mohapatra
- Secretary, DARE and Director General, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
18
|
Cui G, Chai H, Yin H, Yang M, Hu G, Guo M, Yi R, Zhang P. Full-length transcriptome sequencing reveals the low-temperature-tolerance mechanism of Medicago falcata roots. BMC PLANT BIOLOGY 2019; 19:575. [PMID: 31864302 PMCID: PMC6925873 DOI: 10.1186/s12870-019-2192-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/08/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Low temperature is one of the main environmental factors that limits crop growth, development, and production. Medicago falcata is an important leguminous herb that is widely distributed worldwide. M. falcata is related to alfalfa but is more tolerant to low temperature than alfalfa. Understanding the low temperature tolerance mechanism of M. falcata is important for the genetic improvement of alfalfa. RESULTS In this study, we explored the transcriptomic changes in the roots of low-temperature-treated M. falcata plants by combining SMRT sequencing and NGS technologies. A total of 115,153 nonredundant sequences were obtained, and 8849 AS events, 73,149 SSRs, and 4189 lncRNAs were predicted. A total of 111,587 genes from SMRT sequencing were annotated, and 11,369 DEGs involved in plant hormone signal transduction, protein processing in endoplasmic reticulum, carbon metabolism, glycolysis/gluconeogenesis, starch and sucrose metabolism, and endocytosis pathways were identified. We characterized 1538 TF genes into 45 TF gene families, and the most abundant TF family was the WRKY family, followed by the ERF, MYB, bHLH and NAC families. A total of 134 genes, including 101 whose expression was upregulated and 33 whose expression was downregulated, were differentially coexpressed at all five temperature points. PB40804, PB75011, PB110405 and PB108808 were found to play crucial roles in the tolerance of M. falcata to low temperature. WGCNA revealed that the MEbrown module was significantly correlated with low-temperature stress in M. falcata. Electrolyte leakage was correlated with most genetic modules and verified that electrolyte leakage can be used as a direct stress marker in physiological assays to indicate cell membrane damage from low-temperature stress. The consistency between the qRT-PCR results and RNA-seq analyses confirmed the validity of the RNA-seq data and the analysis of the regulatory mechanism of low-temperature stress on the basis of the transcriptome. CONCLUSIONS The full-length transcripts generated in this study provide a full characterization of the transcriptome of M. falcata and may be useful for mining new low-temperature stress-related genes specific to M. falcata. These new findings could facilitate the understanding of the low-temperature-tolerance mechanism of M. falcata.
Collapse
Affiliation(s)
- Guowen Cui
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Hua Chai
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161005, China
| | - Hang Yin
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Mei Yang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Guofu Hu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Mingying Guo
- Hulunbuir Grassland Station, Hulunbuir, 021008, China
| | - Rugeletu Yi
- Hulunbuir Grassland Station, Hulunbuir, 021008, China
| | - Pan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
19
|
Identification of Genes Differentially Expressed in Response to Cold in Pisum sativum Using RNA Sequencing Analyses. PLANTS 2019; 8:plants8080288. [PMID: 31443248 PMCID: PMC6724123 DOI: 10.3390/plants8080288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022]
Abstract
Low temperature stress affects growth and development in pea (Pisum sativum L.) and decreases yield. In this study, RNA sequencing time series analyses performed on lines, Champagne frost-tolerant and Térèse frost-sensitive, during a low temperature treatment versus a control condition, led us to identify 4981 differentially expressed genes. Thanks to our experimental design and statistical analyses, we were able to classify these genes into three sets. The first one was composed of 2487 genes that could be related to the constitutive differences between the two lines and were not regulated during cold treatment. The second gathered 1403 genes that could be related to the chilling response. The third set contained 1091 genes, including genes that could be related to freezing tolerance. The identification of differentially expressed genes related to cold, oxidative stress, and dehydration responses, including some transcription factors and kinases, confirmed the soundness of our analyses. In addition, we identified about one hundred genes, whose expression has not yet been linked to cold stress. Overall, our findings showed that both lines have different characteristics for their cold response (chilling response and/or freezing tolerance), as more than 90% of differentially expressed genes were specific to each of them.
Collapse
|
20
|
Zhang R, Chen H, Duan M, Zhu F, Wen J, Dong J, Wang T. Medicago falcata MfSTMIR, an E3 ligase of endoplasmic reticulum-associated degradation, is involved in salt stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:680-696. [PMID: 30712282 PMCID: PMC6849540 DOI: 10.1111/tpj.14265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 05/28/2023]
Abstract
Recent studies on E3 of endoplasmic reticulum (ER)-associated degradation (ERAD) in plants have revealed homologs in yeast and animals. However, it remains unknown whether the plant ERAD system contains a plant-specific E3 ligase. Here, we report that MfSTMIR, which encodes an ER-membrane-localized RING E3 ligase that is highly conserved in leguminous plants, plays essential roles in the response of ER and salt stress in Medicago. MfSTMIR expression was induced by salt and tunicamycin (Tm). mtstmir loss-of-function mutants displayed impaired induction of the ER stress-responsive genes BiP1/2 and BiP3 under Tm treatment and sensitivity to salt stress. MfSTMIR promoted the degradation of a known ERAD substrate, CPY*. MfSTMIR interacted with the ERAD-associated ubiquitin-conjugating enzyme MtUBC32 and Sec61-translocon subunit MtSec61γ. MfSTMIR did not affect MtSec61γ protein stability. Our results suggest that the plant-specific E3 ligase MfSTMIR participates in the ERAD pathway by interacting with MtUBC32 and MtSec61γ to relieve ER stress during salt stress.
Collapse
Affiliation(s)
- Rongxue Zhang
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
- Crop Research Institute of Tianjin Academy of Agricultural SciencesTianjin300384China
| | - Hong Chen
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Mei Duan
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Fugui Zhu
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Jiangqi Wen
- Plant Biology DivisionSamuel Roberts Noble Research InstituteArdmoreOklahoma73401USA
| | - Jiangli Dong
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Tao Wang
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| |
Collapse
|
21
|
Muscle transcriptome signature and gene regulatory network analysis in two divergent lines of a hilly bovine species Mithun (Bos frontalis). Genomics 2019; 112:252-262. [PMID: 30822468 DOI: 10.1016/j.ygeno.2019.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 11/23/2022]
Abstract
A massive bovine, Bos frontalis, also known as Mithun or Gayal, found at higher altitude is very promising meat and milk animal. For candidate gene and marker discovery, RNA-seq data was generated from longissimus dorsi muscle tissues with Illumina-HiSeq. Such markers can be used in future for genetic gain of traits like feed conversion efficiency (FCE) and average daily gain (ADG). Analysis revealed 297differentially expressed genes (DEGs) having 173 up and 124 down-regulated unigenes. Extensive conservation was found in genic region while comparing with Bos taurus. Analysis revealed 57 pathways having 112 enzymes, 72 transcriptional factors and cofactors, 212 miRNAs regulating 71 DEGs, 25,855 SSRs, mithun-specific 104,822 variants and 7288 indels, gene regulatory network (GRN) having 24 hub-genes and transcriptional factors regulating cell proliferation, immune tolerance and myogenesis. This is first report of muscle transcriptome depicting candidate genes with GRN controlling FCE and ADG. Reported putative molecular markers, candidate genes and hub proteins can be valuable genomic resources for association studies in genetic improvement programme.
Collapse
|
22
|
Luo D, Wu Y, Liu J, Zhou Q, Liu W, Wang Y, Yang Q, Wang Z, Liu Z. Comparative Transcriptomic and Physiological Analyses of Medicago sativa L. Indicates that Multiple Regulatory Networks Are Activated during Continuous ABA Treatment. Int J Mol Sci 2018; 20:E47. [PMID: 30583536 PMCID: PMC6337461 DOI: 10.3390/ijms20010047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022] Open
Abstract
Alfalfa is the most extensively cultivated forage legume worldwide. However, the molecular mechanisms underlying alfalfa responses to exogenous abscisic acid (ABA) are still unknown. In this study, the first global transcriptome profiles of alfalfa roots under ABA treatments for 1, 3 and 12 h (three biological replicates for each time point, including the control group) were constructed using a BGISEQ-500 sequencing platform. A total of 50,742 isoforms with a mean length of 2541 bp were generated, and 4944 differentially expressed isoforms (DEIs) were identified after ABA deposition. Metabolic analyses revealed that these DEIs were involved in plant hormone signal transduction, transcriptional regulation, antioxidative defense and pathogen immunity. Notably, several well characterized hormone signaling pathways, for example, the core ABA signaling pathway, was activated, while salicylic acid, jasmonate and ethylene signaling pathways were mainly suppressed by exogenous ABA. Moreover, the physiological work showed that catalase and peroxidase activity and glutathione and proline content were increased after ABA deposition, which is in accordance with the dynamic transcript profiles of the relevant genes in antioxidative defense system. These results indicate that ABA has the potential to improve abiotic stress tolerance, but that it may negatively regulate pathogen resistance in alfalfa.
Collapse
Affiliation(s)
- Dong Luo
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Yuguo Wu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Jie Liu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Qiang Zhou
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Wenxian Liu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Yanrong Wang
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100000, China.
| | - Zengyu Wang
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
- Core Research & Transformation, Noble Research Institute, Ardmore, OK 73401, USA.
| | - Zhipeng Liu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
23
|
Abdelrahman M, Jogaiah S, Burritt DJ, Tran LSP. Legume genetic resources and transcriptome dynamics under abiotic stress conditions. PLANT, CELL & ENVIRONMENT 2018; 41:1972-1983. [PMID: 29314055 DOI: 10.1111/pce.13123] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 05/04/2023]
Abstract
Grain legumes are an important source of nutrition and income for billions of consumers and farmers around the world. However, the low productivity of new legume varieties, due to the limited genetic diversity available for legume breeding programmes and poor policymaker support, combined with an increasingly unpredictable global climate is resulting in a large gap between current yields and the increasing demand for legumes as food. Hence, there is a need for novel approaches to develop new high-yielding legume cultivars that are able to cope with a range of environmental stressors. Next-generation technologies are providing the tools that could enable the more rapid and cost-effective genomic and transcriptomic studies for most major crops, allowing the identification of key functional and regulatory genes involved in abiotic stress resistance. In this review, we provide an overview of the recent achievements regarding abiotic stress resistance in a wide range of legume crops and highlight the transcriptomic and miRNA approaches that have been used. In addition, we critically evaluate the availability and importance of legume genetic resources with desirable abiotic stress resistance traits.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Laboratory of Genomic Reproductive Biology, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Sudisha Jogaiah
- Plant Healthcare and Diagnostic Center, Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad, 580 003, India
| | - David J Burritt
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
24
|
Singer SD, Hannoufa A, Acharya S. Molecular improvement of alfalfa for enhanced productivity and adaptability in a changing environment. PLANT, CELL & ENVIRONMENT 2018; 41:1955-1971. [PMID: 29044610 DOI: 10.1111/pce.13090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 05/09/2023]
Abstract
Due to an expanding world population and increased buying power, the demand for ruminant products such as meat and milk is expected to grow substantially in coming years, and high levels of forage crop production will therefore be a necessity. Unfortunately, urbanization of agricultural land, intensive agricultural practices, and climate change are all predicted to limit crop production in the future, which means that the development of forage cultivars with improved productivity and adaptability will be essential. Because alfalfa (Medicago sativa L.) is one of the most widely cultivated perennial forage crops, it has been the target of much research in this field. In this review, we discuss progress that has been made towards the improvement of productivity, abiotic stress tolerance, and nutrient-use efficiency, as well as disease and pest resistance, in alfalfa using biotechnological techniques. Furthermore, we consider possible future priorities and avenues for attaining further enhancements in this crop as a means of contributing to the realization of food security in a changing environment.
Collapse
Affiliation(s)
- Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3, Canada
| | - Surya Acharya
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, T1J 4B1, Canada
| |
Collapse
|
25
|
Abdelrahman M, El-Sayed MA, Hashem A, Abd_Allah EF, Alqarawi AA, Burritt DJ, Tran LSP. Metabolomics and Transcriptomics in Legumes Under Phosphate Deficiency in Relation to Nitrogen Fixation by Root Nodules. FRONTIERS IN PLANT SCIENCE 2018; 9:922. [PMID: 30050543 PMCID: PMC6052890 DOI: 10.3389/fpls.2018.00922] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/11/2018] [Indexed: 05/27/2023]
Abstract
Phosphate (Pi) deficiency is a critical environmental constraint that affects the growth and development of several legume crops that are usually cultivated in semi-arid regions and marginal areas. Pi deficiency is known to be a significant limitation for symbiotic nitrogen (N2) fixation (SNF), and variability in SNF is strongly interlinked with the concentrations of Pi in the nodules. To deal with Pi deficiency, plants trigger various adaptive responses, including the induction and secretion of acid phosphatases, maintenance of Pi homeostasis in nodules and other organs, and improvement of oxygen (O2) consumption per unit of nodule mass. These molecular and physiological responses can be observed in terms of changes in growth, photosynthesis, and respiration. In this mini review, we provide a brief introduction to the problem of Pi deficiency in legume crops. We then summarize the current understanding of how Pi deficiency is regulated in legumes by changes in the transcriptomes and metabolomes found in different plant organs. Finally, we will provide perspectives on future directions for research in this field.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori, Japan
- Department of Botany, Faculty of Science, Aswan University, Aswan, Egypt
| | - Magdi A. El-Sayed
- Department of Botany, Faculty of Science, Aswan University, Aswan, Egypt
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz A. Alqarawi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
26
|
Shu Y, Li W, Zhao J, Liu Y, Guo C. Transcriptome sequencing and expression profiling of genes involved in the response to abiotic stress in Medicago ruthenica. Genet Mol Biol 2018; 41:638-648. [PMID: 30004107 PMCID: PMC6136363 DOI: 10.1590/1678-4685-gmb-2017-0284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/03/2018] [Indexed: 11/21/2022] Open
Abstract
Medicago ruthenica is a perennial forage legume with the remarkable ability to survive under unfavorable environmental conditions. It has been identified as an excellent species of Medicago that can adapt to various environmental stresses including low temperature, drought, and salinity. To investigate its potential as a genetic resource, we performed transcriptome sequencing and analysis in M. ruthenica under abiotic stresses. We generated >120 million reads from six cDNA libraries, resulting in 79,249 unique transcripts, most of which were highly similar to transcripts from M. truncatula (44,608, 56.3%) and alfalfa (M. sativa, 48,023, 60.6%). Based on gene expression profiles, 2,721 transcripts were identified as abiotic stress responsive genes which were predicted to be mainly involved in phytohormone signaling pathways, transcriptional regulation, and ROS-scavenging. These results suggest that they play critical roles in the response to abiotic stress. In summary, we identified genes in our transcriptome dataset involved in the regulation of the abiotic stress response in M. ruthenica which will provide a valuable resource for the future identification and functional analysis of candidate genes for adaption to unfavorable conditions. The genes identified here could be also useful for improving stress tolerance traits in alfalfa through molecular breeding in the future.
Collapse
Affiliation(s)
- Yongjun Shu
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Wei Li
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Jinyue Zhao
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Ying Liu
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Changhong Guo
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| |
Collapse
|
27
|
Zhang A, Han D, Wang Y, Mu H, Zhang T, Yan X, Pang Q. Transcriptomic and proteomic feature of salt stress-regulated network in Jerusalem artichoke (Helianthus tuberosus L.) root based on de novo assembly sequencing analysis. PLANTA 2018; 247:715-732. [PMID: 29185033 DOI: 10.1007/s00425-017-2818-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/18/2017] [Indexed: 05/21/2023]
Abstract
Ribosome activation and sugar metabolic process mainly act on the regulation of salt tolerance in the bioenergy crop Helianthus tuberosus L. as dissected by integrated transcriptomic and proteomic analyses. Helianthus tuberosus L. is an important halophyte plant that can survive in saline-alkali soil. It is vitally necessary to build an available genomic resource to investigate the molecular mechanisms underlying salt tolerance in H. tuberosus. De novo assembly and annotation of transcriptomes were built for H. tuberosus using a HiSeq 4000 platform. 293,823 transcripts were identified and annotated into 190,567 unigenes. In addition, iTRAQ-labeled quantitative proteomics was carried out to detect global protein profiling as a response to salt stress. Comparative omics analysis showed that 5432 genes and 43 proteins were differentially expressed in H. tuberosus under salt stress, which were enriched in the following processes: carbohydrate metabolism, ribosome activation and translation, oxidation-reduction and ion binding. The reprogramming of transcript and protein works suggested that the induced activity of ribosome and sugar signaling may endue H. tuberosus with salt tolerance. With high-quality sequencing and annotation, the obtained transcriptomics and proteomics provide a robust genomic resource for dissecting the regulatory molecular mechanism of H. tuberosus in response to salt stress.
Collapse
Affiliation(s)
- Aiqin Zhang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China
| | - Dongming Han
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China
| | - Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Huifang Mu
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China
| | - Tong Zhang
- Department of Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Xiufeng Yan
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China
| | - Qiuying Pang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China.
| |
Collapse
|
28
|
Czolpinska M, Rurek M. Plant Glycine-Rich Proteins in Stress Response: An Emerging, Still Prospective Story. FRONTIERS IN PLANT SCIENCE 2018; 9:302. [PMID: 29568308 PMCID: PMC5852109 DOI: 10.3389/fpls.2018.00302] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/21/2018] [Indexed: 05/21/2023]
Abstract
Seed plants are sessile organisms that have developed a plethora of strategies for sensing, avoiding, and responding to stress. Several proteins, including the glycine-rich protein (GRP) superfamily, are involved in cellular stress responses and signaling. GRPs are characterized by high glycine content and the presence of conserved segments including glycine-containing structural motifs composed of repetitive amino acid residues. The general structure of this superfamily facilitates division of GRPs into five main subclasses. Although the participation of GRPs in plant stress response has been indicated in numerous model and non-model plant species, relatively little is known about the key physiological processes and molecular mechanisms in which those proteins are engaged. Class I, II, and IV members are known to be involved in hormone signaling, stress acclimation, and floral development, and are crucial for regulation of plant cells growth. GRPs of class IV [RNA-binding proteins (RBPs)] are involved in alternative splicing or regulation of transcription and stomatal movement, seed, pollen, and stamen development; their accumulation is regulated by the circadian clock. Owing to the fact that the overexpression of GRPs can confer tolerance to stress (e.g., some are involved in cold acclimation and may improve growth at low temperatures), these proteins could play a promising role in agriculture through plant genetic engineering. Consequently, isolation, cloning, characterization, and functional validation of novel GRPs expressed in response to the diverse stress conditions are expected to be growing areas of research in the coming years. According to our knowledge, this is the first comprehensive review on participation of plant GRPs in the response to diverse stress stimuli.
Collapse
|
29
|
Van den Broeck L, Dubois M, Vermeersch M, Storme V, Matsui M, Inzé D. From network to phenotype: the dynamic wiring of an Arabidopsis transcriptional network induced by osmotic stress. Mol Syst Biol 2017; 13:961. [PMID: 29269383 PMCID: PMC5740496 DOI: 10.15252/msb.20177840] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Plants have established different mechanisms to cope with environmental fluctuations and accordingly fine-tune their growth and development through the regulation of complex molecular networks. It is largely unknown how the network architectures change and what the key regulators in stress responses and plant growth are. Here, we investigated a complex, highly interconnected network of 20 Arabidopsis transcription factors (TFs) at the basis of leaf growth inhibition upon mild osmotic stress. We tracked the dynamic behavior of the stress-responsive TFs over time, showing the rapid induction following stress treatment, specifically in growing leaves. The connections between the TFs were uncovered using inducible overexpression lines and were validated with transient expression assays. This study resulted in the identification of a core network, composed of ERF6, ERF8, ERF9, ERF59, and ERF98, which is responsible for most transcriptional connections. The analyses highlight the biological function of this core network in environmental adaptation and its redundancy. Finally, a phenotypic analysis of loss-of-function and gain-of-function lines of the transcription factors established multiple connections between the stress-responsive network and leaf growth.
Collapse
Affiliation(s)
- Lisa Van den Broeck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Mattias Vermeersch
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Veronique Storme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Minami Matsui
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium .,VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
30
|
Tiwari S, Lata C, Chauhan PS, Prasad V, Prasad M. A Functional Genomic Perspective on Drought Signalling and its Crosstalk with Phytohormone-mediated Signalling Pathways in Plants. Curr Genomics 2017; 18:469-482. [PMID: 29204077 PMCID: PMC5684651 DOI: 10.2174/1389202918666170605083319] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/03/2016] [Accepted: 10/15/2016] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Drought stress is one of the most important abiotic stresses that negatively influence crop performance and productivity. Plants acclimatize to drought stress conditions through altered molecular, biochemical and physiological responses. Gene and/or protein expression and regulation are thought to be modulated upon stress perception and signal transduction for providing requisite endurance to plants.Plant growth regulators or phytohormones are important molecules required for various biological processes in plants and are also central to stress signalling pathways. Among various phytohormones, Abscisic Acid (ABA) and Ethylene (ET) are considered to be the most vital growth regulators implicated in drought stress signalling and tolerance. Besides the above two known classical phytohormones, Salicylic Acid (SA) and Jasmonic Acid (JA) have also been found to potentially enhance abiotic stress tolerance particularly that of drought, salinity, and heat stress tolerance in plants. Apart from these several other growth regulators such as Cytokinins (CKs), Auxin (AUX), Gibberellic Acid (GA), Brassinosteroids (BRs) and Strigolactones (SLs) have also been reported to actively participate in abiotic stress responses and tolerance in plants. The abiotic stress signalling in plants regulated by these hormones further depends upon the nature, intensity, and duration of exposure to various environmental stresses. It has been reported that all these phytohormones are also involved in extensive crosstalk and signal transduction among themselves and/or with other factors. CONCLUSION This review thus summarizes the molecular mechanism of drought signalling and its crosstalk with various phytohormone signalling pathways implicated in abiotic stress response and tolerance.
Collapse
Affiliation(s)
- Shalini Tiwari
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, India
- Department of Botany, University of Lucknow, Lucknow-226007, India
| | - Charu Lata
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, India
| | - Puneet Singh Chauhan
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, India
| | - Vivek Prasad
- Department of Botany, University of Lucknow, Lucknow-226007, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
31
|
Shu Y, Li W, Zhao J, Zhang S, Xu H, Liu Y, Guo C. Transcriptome sequencing analysis of alfalfa reveals CBF genes potentially playing important roles in response to freezing stress. Genet Mol Biol 2017; 40:824-833. [PMID: 29111565 PMCID: PMC5738619 DOI: 10.1590/1678-4685-gmb-2017-0053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/23/2017] [Indexed: 12/31/2022] Open
Abstract
Alfalfa (Medicago sativa L.) is an important perennial forage, with high nutritional value, which is widely grown in the world. Because of low freezing tolerance, its distribution and production are threatened and limited by winter weather. To understand the complex regulation mechanisms of freezing tolerance in alfalfa, we performed transcriptome sequencing analysis under cold (4 °C) and freezing (-8 °C) stresses. More than 66 million reads were generated, and we identified 5767 transcripts differentially expressed in response to cold and/or freezing stresses. These results showed that these genes were mainly classified as response to stress, transcription regulation, hormone signaling pathway, antioxidant, nodule morphogenesis, etc., implying their important roles in response to cold and freezing stresses. Furthermore, nine CBF transcripts differentially expressed were homologous to CBF genes of Mt-FTQTL6 site, conferring freezing tolerance in M. truncatula, which indicated that a genetic mechanism controlling freezing tolerance was conservative between M. truncatula and M. sativa. In summary, this transcriptome dataset highlighted the gene regulation response to cold and/or freezing stresses in alfalfa, which provides a valuable resource for future identification and functional analysis of candidate genes in determining freezing tolerance.
Collapse
Affiliation(s)
- Yongjun Shu
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Wei Li
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Jinyue Zhao
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Sijia Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Hanyun Xu
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Ying Liu
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Changhong Guo
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| |
Collapse
|
32
|
Duan M, Zhang R, Zhu F, Zhang Z, Gou L, Wen J, Dong J, Wang T. A Lipid-Anchored NAC Transcription Factor Is Translocated into the Nucleus and Activates Glyoxalase I Expression during Drought Stress. THE PLANT CELL 2017; 29:1748-1772. [PMID: 28684428 PMCID: PMC5559744 DOI: 10.1105/tpc.17.00044] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/09/2017] [Accepted: 07/04/2017] [Indexed: 05/18/2023]
Abstract
The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play a vital role in the response to drought stress. Here, we report a lipid-anchored NACsa TF in Medicago falcata MfNACsa is an essential regulator of plant tolerance to drought stress, resulting in the differential expression of genes involved in oxidation reduction and lipid transport and localization. MfNACsa is associated with membranes under unstressed conditions and, more specifically, is targeted to the plasma membrane through S-palmitoylation. However, a Cys26-to-Ser mutation or inhibition of S-palmitoylation results in MfNACsa retention in the endoplasmic reticulum/Golgi. Under drought stress, MfNACsa translocates to the nucleus through de-S-palmitoylation mediated by the thioesterase MtAPT1, as coexpression of APT1 results in the nuclear translocation of MfNACsa, whereas mutation of the catalytic site of APT1 results in colocalization with MfNACsa and membrane retention of MfNACsa. Specifically, the nuclear MfNACsa binds the glyoxalase I (MtGlyl) promoter under drought stress, resulting in drought tolerance by maintaining the glutathione pool in a reduced state, and the process is dependent on the APT1-NACsa regulatory module. Our findings reveal a novel mechanism for the nuclear translocation of an S-palmitoylated NAC in response to stress.
Collapse
Affiliation(s)
- Mei Duan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Rongxue Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Crop Research Institute of Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Fugui Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhenqian Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lanming Gou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangqi Wen
- Plant Biology Division, Samuel Roberts Noble Research Institute, Ardmore, Oklahoma 73401
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
33
|
Li T, Wang J, Lu M, Zhang T, Qu X, Wang Z. Selection and Validation of Appropriate Reference Genes for qRT-PCR Analysis in Isatis indigotica Fort. FRONTIERS IN PLANT SCIENCE 2017; 8:1139. [PMID: 28702046 PMCID: PMC5487591 DOI: 10.3389/fpls.2017.01139] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/13/2017] [Indexed: 05/29/2023]
Abstract
Due to its sensitivity and specificity, real-time quantitative PCR (qRT-PCR) is a popular technique for investigating gene expression levels in plants. Based on the Minimum Information for Publication of Real-Time Quantitative PCR Experiments (MIQE) guidelines, it is necessary to select and validate putative appropriate reference genes for qRT-PCR normalization. In the current study, three algorithms, geNorm, NormFinder, and BestKeeper, were applied to assess the expression stability of 10 candidate reference genes across five different tissues and three different abiotic stresses in Isatis indigotica Fort. Additionally, the IiYUC6 gene associated with IAA biosynthesis was applied to validate the candidate reference genes. The analysis results of the geNorm, NormFinder, and BestKeeper algorithms indicated certain differences for the different sample sets and different experiment conditions. Considering all of the algorithms, PP2A-4 and TUB4 were recommended as the most stable reference genes for total and different tissue samples, respectively. Moreover, RPL15 and PP2A-4 were considered to be the most suitable reference genes for abiotic stress treatments. The obtained experimental results might contribute to improved accuracy and credibility for the expression levels of target genes by qRT-PCR normalization in I. indigotica.
Collapse
|
34
|
Rahnamaie-Tajadod R, Loke KK, Goh HH, Noor NM. Differential Gene Expression Analysis in Polygonum minus Leaf upon 24 h of Methyl Jasmonate Elicitation. FRONTIERS IN PLANT SCIENCE 2017; 8:109. [PMID: 28220135 PMCID: PMC5292430 DOI: 10.3389/fpls.2017.00109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/19/2017] [Indexed: 05/06/2023]
Abstract
Polygonum minus is an herbal plant that grows in Southeast Asian countries and traditionally used as medicine. This plant produces diverse secondary metabolites such as phenolic compounds and their derivatives, which are known to have roles in plant abiotic and biotic stress responses. Methyl jasmonate (MeJA) is a plant signaling molecule that triggers transcriptional reprogramming in secondary metabolism and activation of defense responses against many biotic and abiotic stresses. However, the effect of MeJA elicitation on the genome-wide expression profile in the leaf tissue of P. minus has not been well-studied due to the limited genetic information. Hence, we performed Illumina paired-end RNA-seq for de novo reconstruction of P. minus leaf transcriptome to identify differentially expressed genes (DEGs) in response to MeJA elicitation. A total of 182,111 unique transcripts (UTs) were obtained by de novo assembly of 191.57 million paired-end clean reads using Trinity analysis pipeline. A total of 2374 UTs were identified to be significantly up-/down-regulated 24 h after MeJA treatment. These UTs comprising many genes related to plant secondary metabolite biosynthesis, defense and stress responses. To validate our sequencing results, we analyzed the expression of 21 selected DEGs by quantitative real-time PCR and found a good correlation between the two analyses. The single time-point analysis in this work not only provides a useful genomic resource for P. minus but also gives insights on molecular mechanisms of stress responses in P. minus.
Collapse
|
35
|
Li P, Cao W, Fang H, Xu S, Yin S, Zhang Y, Lin D, Wang J, Chen Y, Xu C, Yang Z. Transcriptomic Profiling of the Maize ( Zea mays L.) Leaf Response to Abiotic Stresses at the Seedling Stage. FRONTIERS IN PLANT SCIENCE 2017; 8:290. [PMID: 28298920 PMCID: PMC5331654 DOI: 10.3389/fpls.2017.00290] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/17/2017] [Indexed: 05/18/2023]
Abstract
Abiotic stresses, including drought, salinity, heat, and cold, negatively affect maize (Zea mays L.) development and productivity. To elucidate the molecular mechanisms of resistance to abiotic stresses in maize, RNA-seq was used for global transcriptome profiling of B73 seedling leaves exposed to drought, salinity, heat, and cold stress. A total of 5,330 differentially expressed genes (DEGs) were detected in differential comparisons between the control and each stressed sample, with 1,661, 2,019, 2,346, and 1,841 DEGs being identified in comparisons of the control with salinity, drought, heat, and cold stress, respectively. Functional annotations of DEGs suggested that the stress response was mediated by pathways involving hormone metabolism and signaling, transcription factors (TFs), very-long-chain fatty acid biosynthesis and lipid signaling, among others. Of the obtained DEGs (5,330), 167 genes are common to these four abiotic stresses, including 10 up-regulated TFs (five ERFs, two NACs, one ARF, one MYB, and one HD-ZIP) and two down-regulated TFs (one b-ZIP and one MYB-related), which suggested that common mechanisms may be initiated in response to different abiotic stresses in maize. This study contributes to a better understanding of the molecular mechanisms of maize leaf responses to abiotic stresses and could be useful for developing maize cultivars resistant to abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chenwu Xu
- *Correspondence: Zefeng Yang, Chenwu Xu,
| | | |
Collapse
|
36
|
He C, Gao G, Zhang J, Duan A, Luo H. Proteome profiling reveals insights into cold-tolerant growth in sea buckthorn. Proteome Sci 2016; 14:14. [PMID: 27761102 PMCID: PMC5054542 DOI: 10.1186/s12953-016-0103-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/03/2016] [Indexed: 11/13/2022] Open
Abstract
Background Low temperature is one of the crucial environmental factors limiting the productivity and distribution of plants. Sea buckthorn (Hippophae rhamnoides L.), a well recognized multipurpose plant species, live successfully in in cold desert regions. But their molecular mechanisms underlying cold tolerance are not well understood. Methods Physiological and biochemical responses to low-temperature stress were studied in seedlings of sea buckthorn. Differentially expressed protein spots were analyzed using multiplexing fluorescent two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption/ionization (MALDI) time-of-flight/time-of-flight (TOF/TOF) mass spectrometry (MS), the concentration of phytohormone was measured using enzyme-linked immunosorbent assay, and a spectrophotometric assay was used to measure enzymatic reactions. Results With the increase of cold stress intensity, the photosynthesis rate, transpiration rate, stomatal conductance in leaves and contents of abscisic acid (ABA) and indole acetic acid (IAA) in roots decreased significantly; however, water-use efficiency, ABA and zeatin riboside in leaves increased significantly, while cell membrane permeability, malondialdehyde and IAA in leaves increased at 7 d and then decreased at 14 d. DIGE and MS/MS analysis identified 32 of 39 differentially expressed protein spots under low-temperature stress, and their functions were mainly involved in metabolism, photosynthesis, signal transduction, antioxidative systems and post-translational modification. Conclusion The changed protein abundance and corresponding physiological–biochemical response shed light on the molecular mechanisms related to cold tolerance in cold-tolerant plants and provide key candidate proteins for genetic improvement of plants. Electronic supplementary material The online version of this article (doi:10.1186/s12953-016-0103-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caiyun He
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People's Republic of China
| | - Guori Gao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People's Republic of China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People's Republic of China ; Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Aiguo Duan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People's Republic of China
| | - Hongmei Luo
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, InnerMonglia, People's Republic of China
| |
Collapse
|
37
|
He CY, Zhang GY, Zhang JG, Duan AG, Luo HM. Physiological, biochemical, and proteome profiling reveals key pathways underlying the drought stress responses of Hippophae rhamnoides. Proteomics 2016; 16:2688-2697. [PMID: 27546101 DOI: 10.1002/pmic.201600160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/04/2016] [Accepted: 08/16/2016] [Indexed: 01/11/2023]
Abstract
The effects of drought on plant growth and development are occurring as a result of climate change and the growing scarcity of water resources. Hippophae rhamnoides has been exploited for soil and water conservation for many years. However, the outstanding drought-resistance mechanisms possessed by this species remain unclear. The protein, physiological, and biochemical responses to medium and severe drought stresses in H. rhamnoides seedlings are analyzed. Linear decreases in photosynthesis rate, transpiration rate, and the content of indole acetic acid in roots, as well as a linear increase in the contents of abscisic acid, superoxide dismutase, glutathione reductase, and zeatin riboside in leaves are observed as water potential decreased. At the same time, cell membrane permeability, malondialdehyde, stomatal conductance, water use efficiency, and contents of zeatin riboside in roots and indole acetic acid in leaves showed nonconsistent changes. DIGE and MS/MS analysis identified 51 differently expressed protein spots in leaves with functions related to epigenetic modification and PTM in addition to normal metabolism, photosynthesis, signal transduction, antioxidative systems, and responses to stimuli. This study provides new insights into the responses and adaptations in this drought-resistant species and may benefit future agricultural production.
Collapse
Affiliation(s)
- Cai Y He
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Guo Y Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Jian G Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China. .,Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, P. R. China.
| | - Ai G Duan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Hong M Luo
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Inner Monglia, P. R. China
| |
Collapse
|
38
|
Martins PK, Mafra V, de Souza WR, Ribeiro AP, Vinecky F, Basso MF, da Cunha BADB, Kobayashi AK, Molinari HBC. Selection of reliable reference genes for RT-qPCR analysis during developmental stages and abiotic stress in Setaria viridis. Sci Rep 2016; 6:28348. [PMID: 27321675 PMCID: PMC4913262 DOI: 10.1038/srep28348] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/01/2016] [Indexed: 12/28/2022] Open
Abstract
Real-time PCR (RT-qPCR) expression analysis is a powerful analytical technique, but reliable results depend on the use of stable reference genes for proper normalization. This study proposed to test the expression stability of 13 candidate reference genes in Setaria viridis, a monocot species recently proposed as a new C4 model plant. Gene expression stability of these genes was assayed across different tissues and developmental stages of Setaria and under drought or aluminum stress. In general, our results showed Protein Kinase, RNA Binding Protein and SDH as the most stable genes. Moreover, pairwise analysis showed that two reference genes were sufficient to normalize the gene expression data under each condition. By contrast, GAPDH and ACT were the least stably expressed genes tested. Validation of suitable reference genes was carried out to profile the expression of P5CS and GolS during abiotic stress. In addition, normalization of gene expression of SuSy, involved in sugar metabolism, was assayed in the developmental dataset. This study provides a list of reliable reference genes for transcript normalization in S. viridis in different tissues and stages of development and under abiotic stresses, which will facilitate genetic studies in this monocot model plant.
Collapse
Affiliation(s)
- Polyana Kelly Martins
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF, 70770-901, Brazil
| | - Valéria Mafra
- Brazilian Bioethanol Science and Technology Laboratory/Brazilian Center of Research in Energy and Materials, Campinas, SP, 13083-100, Brazil
| | - Wagner Rodrigo de Souza
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF, 70770-901, Brazil
| | - Ana Paula Ribeiro
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF, 70770-901, Brazil
| | - Felipe Vinecky
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF, 70770-901, Brazil
| | - Marcos Fernando Basso
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF, 70770-901, Brazil
| | | | - Adilson Kenji Kobayashi
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF, 70770-901, Brazil
| | | |
Collapse
|