1
|
Blechert O, Lan S, Xiong S, Zou Y, Li P, Hu J, Li J, Zhan P. Trace-elements driven up-regulation of secreted proteases expression in the human-pathogenic fungus Trichophyton rubrum. J Trace Elem Med Biol 2025; 87:127580. [PMID: 39673825 DOI: 10.1016/j.jtemb.2024.127580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Trichophyton rubrum is a widespread human pathogenic fungus, colonizing keratinized tissue of outer body-parts. Thereby, the pathogen is relying on nutrients available from the host. The invasive mechanism of the pathogen is relaying on secreted proteases, which hydrolyze skin-proteins for subsequent up-take. METHODS In this study, we analyzed the gene expression of secreted proteases by RNAseq. In the results, we show the expression profile of 31 secreted protease genes under three conditions: keratin medium and keratin medium with trace-elements or with glucose. RESULTS By adding trace-elements to keratin medium, the expression of secreted proteases increased from 1.8 % to 3.3 %. Across all groups of secreted proteases, higher expression was observed. The genes SUB4, MEP1, MEP3, MEP5, MEP9, LAP1, LAP2 and MCPA were significantly stronger expressed, whereby MEP5 (∼6 fold) and SUB4 (∼5.8 fold) were strongest up-regulated. DISCUSSION We discuss the influence and significance of trace-elements on secreted proteases. Further, we speculate about the disturbed nutritional immunity in psoriatic and atopic skin as factor for increased risk of getting severe T. rubrum infections.
Collapse
Affiliation(s)
- Oliver Blechert
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Shanyu Lan
- Dermatology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Shuzhen Xiong
- Dermatology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Yuning Zou
- Dermatology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Peicong Li
- Dermatology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Jiewei Hu
- Dermatology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Jiayuan Li
- Dermatology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Ping Zhan
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| |
Collapse
|
2
|
Chen J, Gao Y, Xiong S, Peng Z, Zhan P. Expression Profiles of Protease in Onychomycosis-Related Pathogenic Trichophyton rubrum and Tinea Capitis-Related Pathogenic Trichophyton violaceum. Mycopathologia 2024; 189:14. [PMID: 38265566 DOI: 10.1007/s11046-024-00828-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/01/2024] [Indexed: 01/25/2024]
Abstract
The two fungal species Trichophyton rubrum and Trichophyton violaceum are common pathogens on human, infecting keratinized tissue of the outer body parts. Both species are belonging to the "Trichophyton rubrum complex" and share very high similarity in the genome. Secreted proteinases, key factors for keratin degradation, are nearly identical. Contrary, the ecological niches are differing. Trichophyton rubrum preferably infects skin and nails, whereas T. violaceum preferably infects the scalp. We postulate, that differences in the protease expression contribute to differences in ecological preferences. We analyzed the expression profiles of all 22 endoprotease genes, 12 subtilisins (S8A), 5 deuterolysins (M35) and 5 fungalysins (M36), for both species. To compare the influence of the keratin source, we designed experiments with human nail keratin, sheep wool keratin and keratin free cultivation media. Samples were taken at 12 h, 24 h, 48 h and 96 h post incubation in keratin medium. The expression of the proteases is higher in wool-keratin medium compared to human nail medium, with the exception of MEP4 and SUB6. Expression in the keratin-free medium is lowest. The expression profiles of the two species are remarkable different. The expression of MEP1, MEP3, SUB5, SUB11 and SUB12 are higher in T. rubrum compared to T. violaceum. MEP2, NpIIc, NpIIe, SUB1, SUB3, SUB4, SUB7 and SUB8 are higher expressed in T. violaceum compared to T. rubrum. The differences of the protease expression in the two species may expalin the differences in the ecological niches. Further analysis are necessary to verify the hypothesis.Please check and conform the edit made in title.Here I thinke the species of strains shouldnt be capital, and the right expression should be, "Expression Profiles of Protease in Onychomycosis-Related Pathogenic Trichophyton rubrum and Tinea Capitis-Related Pathogenic Trichophyton violaceum"Author names: Please confirm if the author names are presented accurately and in the correct se-quence (given name, middle name/initial, family name). Author 1 Given name: [Jingjing] Last name [Chen], Author 2 Given name: [Yangmin] Last name [Gao], Author 3 Given name: [Shuzhen] Last name [Xiong], Author 4 Given name: [Ping] Last name [Zhan]. Also, kindly confirm the details in the metadata are correct.YesPlease check and confirm the inserted city and country are correctly identified for affiliation 3.Please change the affiliations, Affiliation 2: ²Jiangxi Provincial Clinical Research Center for Skin Diseases, Dermatology Hospital of Jiangxi Province,The Affiliated Dermatology Hospital of Nanchang University, Nanchang, 330200, Jiangxi; Affiliation 3: 3Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College,Nanchang 330001, Jiangxi. Thanks a lot!
Collapse
Affiliation(s)
| | - Yangmin Gao
- Jiangxi Provincial Clinical Research Center for Skin Diseases, Dermatology Hospital of Jiangxi Province, The Affiliated Dermatology Hospital of Nanchang University, Nanchang, 330200, Jiangxi, China
| | | | - Zimei Peng
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330001, Jiangxi, China
| | - Ping Zhan
- Nanchang University, Nanchang, 330006, China.
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| |
Collapse
|
3
|
Deng R, Wang X, Li R. Dermatophyte infection: from fungal pathogenicity to host immune responses. Front Immunol 2023; 14:1285887. [PMID: 38022599 PMCID: PMC10652793 DOI: 10.3389/fimmu.2023.1285887] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Dermatophytosis is a common superficial infection caused by dermatophytes, a group of pathogenic keratinophilic fungi. Apart from invasion against skin barrier, host immune responses to dermatophytes could also lead to pathologic inflammation and tissue damage to some extent. Therefore, it is of great help to understand the pathogenesis of dermatophytes, including fungal virulence factors and anti-pathogen immune responses. This review aims to summarize the recent advances in host-fungal interactions, focusing on the mechanisms of anti-fungal immunity and the relationship between immune deficiency and chronic dermatophytosis, in order to facilitate novel diagnostic and therapeutic approaches to improve the outcomes of these patients.
Collapse
Affiliation(s)
- Ruixin Deng
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Xiaowen Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| |
Collapse
|
4
|
Komoto TT, Nishimura FG, Evangelista AF, de Freitas AJA, da Silva G, Silva WA, Peronni K, Marques MMC, Marins M, Fachin AL. Exploring the Therapeutic Potential of trans-Chalcone: Modulation of MicroRNAs Linked to Breast Cancer Progression in MCF-7 Cells. Int J Mol Sci 2023; 24:10785. [PMID: 37445965 DOI: 10.3390/ijms241310785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer is responsible for 25% of all cancers that affect women. Due to its high heterogeneity pattern in clinical diagnosis and its molecular profile differences, researchers have been seeking new targets and therapies, with more specificity and fewer side effects. Thus, one compound that has garnered our attention is trans-chalcone, which is naturally occurring in various plants and possesses promising biological properties, including antitumor effects. MiRNA is an extensive class of non-coding small, endogenous, and single-stranded RNAs, and it is involved in post-translational gene regulation. Therefore, the objective of this study was to investigate the effects of TChal on miRNAs expression and its relationship with anticancer activity against MCF-7. Initially, the trans-chalcone IC50 value was established by MTT assay for MCF-7and HaCat (non-cancer cell), in which we found out that it was 53.73 and 44.18 μM, respectively. Subsequently, we treated MCF-7 cells with trans-chalcone at its IC50 concentration and performed Mi-seq analysis, which unveiled 23 differentially expressed miRNAs. From this set, we selected five miRNAs (miR-25-5p, miR-27a-3p, miR-891a, miR-449a, and miR-4485) for further validation using qRT-PCR, guided by in silico analysis and their known association with tumorigenesis. In conclusion, our research provides valuable insights into the potential use of TChal to reveal MicroRNAs molecular targets that can be applied in breast cancer therapy.
Collapse
Affiliation(s)
- Tatiana Takahasi Komoto
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto 14096-900, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos 14784-400, Brazil
| | - Felipe Garcia Nishimura
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto 14096-900, Brazil
| | - Adriane Feijó Evangelista
- Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Manguinhos, Rio de Janeiro 21040-361, Brazil
| | - Ana Julia Aguiar de Freitas
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos 14784-400, Brazil
| | - Gabriel da Silva
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto 14096-900, Brazil
| | - Wilson Araujo Silva
- Center for Medical Genomics at the Clinics Hospital of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Kamila Peronni
- Center for Medical Genomics at the Clinics Hospital of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | | | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto 14096-900, Brazil
| | - Ana Lucia Fachin
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto 14096-900, Brazil
| |
Collapse
|
5
|
Yan L, Li Y, Qing Y, Tao X, Wang H, Lai X, Zhang Y. Integrative Analysis of Genes Involved in the Global Response to Potato Wart Formation. FRONTIERS IN PLANT SCIENCE 2022; 13:865716. [PMID: 35845669 PMCID: PMC9277394 DOI: 10.3389/fpls.2022.865716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Synchytrium endobioticum, the causal agent of potato wart disease, poses a major threat to commercial potato production. Understanding the roles of transcriptionally regulated genes following pathogen infection is necessary for understanding the system-level host response to pathogen. Although some understanding of defense mechanisms against S. endobioticum infection has been gained for incompatible interactions, the genes and signaling pathways involved in the compatible interaction remain unclear. Based on the collection of wart diseased tubers of a susceptible cultivar, we performed phenotypic and dual RNA-Seq analyses of wart lesions in seven stages of disease progression. We totally detected 5,052 differentially expressed genes (DEGs) by comparing the different stages of infection to uninfected controls. The tendency toward differential gene expression was active rather than suppressed under attack by the pathogen. The number of DEGs step-up along with the development of the disease and the first, third and seventh of the disease stages showed substantially increase of DEGs in comparison of the previous stage. The important functional groups identified via Gene ontology (GO) and KEGG enrichment were those responsible for plant-pathogen interaction, fatty acid elongation and phenylpropanoid biosynthesis. Gene coexpression networks, composed of 17 distinct gene modules that contained between 25 and 813 genes, revealed high interconnectivity of the induced response and led to the identification of a number of hub genes enriched at different stages of infection. These results provide a comprehensive perspective on the global response of potato to S. endobioticum infection and identify a potential transcriptional regulatory network underlying this susceptible response, which contribute to a better understanding of the potato-S. endobioticum pathosystem.
Collapse
Affiliation(s)
- Lang Yan
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Liangshan, China
| | - Yan Li
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yuan Qing
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Liangshan, China
| | - Xiang Tao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Haiyan Wang
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xianjun Lai
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Liangshan, China
| | - Yizheng Zhang
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Xu X, Hu X, Dong J, Xue Y, Liu T, Jin Q. Proteome-Wide Identification and Functional Analysis of Lysine Crotonylation in Trichophyton rubrum Conidial and Mycelial Stages. Front Genet 2022; 13:832668. [PMID: 35356433 PMCID: PMC8960058 DOI: 10.3389/fgene.2022.832668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Lysine crotonylation is a newly discovered post-translational modification (PTM) with key roles in various important regulatory pathways. Despite its functional significance, there is limited knowledge about crotonylation in fungi. Trichophyton rubrum is the most common fungal pathogen in human infection and is considered a model organism of dermatophytes and human pathogenic filamentous fungi. In this study, we obtained a proteome-wide crotonylation profile of T. rubrum, leading to the identification of 14,019 crotonylated sites on 3144 proteins. The crotonylated proteins were significantly involved in translation and in various metabolic and biosynthetic processes. Some proteins related to fungal pathogenicity were also found to be targets of crotonylation. In addition, extensive crotonylation was found on histones, suggesting a role in epigenetic regulation. Furthermore, about half of the crotonylated proteins were specific to either the conidial or the mycelial stage, and functional enrichment analysis showed some differences between the two stages. The results suggest that the difference in crotonylation between the two stages is not due to differences in protein abundance. Crosstalk of crotonylation with acetylation, propionylation, and succinylation suggests distinct regulatory roles. This study is the first crotonylation analysis in dermatophytes and human pathogenic filamentous fungi. These results represent a solid foundation for further research on PTM regulatory mechanisms in fungi and should facilitate improved antifungal strategies against these medical important species.
Collapse
Affiliation(s)
| | | | | | | | - Tao Liu
- *Correspondence: Tao Liu, ; Qi Jin,
| | - Qi Jin
- *Correspondence: Tao Liu, ; Qi Jin,
| |
Collapse
|
7
|
Cao X, Xu X, Dong J, Xue Y, Sun L, Zhu Y, Liu T, Jin Q. Genome-wide identification and functional analysis of circRNAs in Trichophyton rubrum conidial and mycelial stages. BMC Genomics 2022; 23:21. [PMID: 34983376 PMCID: PMC8725419 DOI: 10.1186/s12864-021-08184-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/18/2021] [Indexed: 12/28/2022] Open
Abstract
Background Circular RNAs (circRNAs) are a group of noncoding RNAs that participate in gene expression regulation in various pathways. The essential roles of circRNAs have been revealed in many species. However, knowledge of circRNAs in fungi is still not comprehensive. Results Trichophyton rubrum (T. rubrum) is considered a model organism of human pathogenic filamentous fungi and dermatophytes. In this study, we performed a genome-wide investigation of circRNAs in T. rubrum based on high-throughput sequencing and ultimately identified 4254 circRNAs. Most of these circRNAs were specific to the conidial or mycelial stage, revealing a developmental stage-specific expression pattern. In addition, 940 circRNAs were significantly differentially expressed between the conidial and mycelial stages. PCR experiments conducted on seven randomly selected differentially expressed (DE-) circRNAs confirmed the circularized structures and relative expression levels of these circRNAs. Based on their genome locations, most circRNAs originated from intergenic regions, unlike those in plants and animals. Furthermore, we constructed circRNA-miRNA-mRNA regulatory networks that included 661 DE-circRNAs targeting 140 miRNAs and further regulating 2753 mRNAs. The relative expression levels of two randomly selected circRNA-miRNA-mRNA axes were investigated by qRT-PCR, and the competing endogenous RNA (ceRNA) network theory was validated. Functional enrichment analysis of the target genes suggested that they were significantly involved in posttranscriptional processes and protein synthesis as well as some small-molecule metabolism processes. CircRNAs are relatively more conserved in closely related dermatophytes but rarely conserved in distantly related species. Tru_circ07138_001 is a highly conserved circRNA that was conserved in all ten dermatophytes analyzed in our study and three distantly related species. Its host gene TERG_07138 was also highly conserved in two of these distantly related species Gallus gallus and Caenorhabditis elegans. The specific role of this circRNA deserves further exploration. Conclusions Our study is the first to provide a global profile of circRNAs in T. rubrum as well as dermatophytes. These results could serve as valuable resources for research on circRNA regulatory mechanisms in fungi and reveal new insights for further investigation of the physical characteristics of these significant human fungal pathogens. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08184-y.
Collapse
Affiliation(s)
- Xingwei Cao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xingye Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Ying Xue
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Lilian Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yafang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Tao Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
8
|
Comprehensive Assessment of the Virulence Factors sub 3, sub 6 and mcpA in the Zoonotic Dermatophyte Trichophyton benhamiae Using FISH and qPCR. J Fungi (Basel) 2021; 8:jof8010024. [PMID: 35049964 PMCID: PMC8778074 DOI: 10.3390/jof8010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
Skin infections by keratinophilic fungi are commonly referred to as dermatophytosis and represent a major health burden worldwide. Although patient numbers are on the rise, data on virulence factors, their function and kinetics are scarce. We employed an ex vivo infection model based on guinea pig skin explants (GPSE) for the zoonotic dermatophyte Trichophyton (T.) benhamiae to investigate kinetics of the virulence factors subtilisin (sub) 3, sub 6, metallocarboxypeptidase A (mcpA) and isocitrate lyase (isol) at gene level for ten days. Fluorescence in situ hybridization (FISH) and quantitative polymerase chain reaction (qPCR) were used to detect and quantify the transcripts, respectively. Kingdom-spanning, species-specific and virulence factor-specific probes were successfully applied to isolated fungal elements showing inhomogeneous fluorescence signals along hyphae. Staining results for inoculated GPSE remained inconsistent despite thorough optimization. qPCR revealed a significant increase of sub 3- and mcpA-transcripts toward the end of culture, sub 6 and isol remained at a low level throughout the entire culture period. Sub 3 is tightly connected to the de novo formation of conidia during culture. Since sub 6 is considered an in vivo disease marker. However, the presented findings urgently call for further research on the role of certain virulence factors during infection and disease.
Collapse
|
9
|
State-of-the-Art Dermatophyte Infections: Epidemiology Aspects, Pathophysiology, and Resistance Mechanisms. J Fungi (Basel) 2021; 7:jof7080629. [PMID: 34436168 PMCID: PMC8401872 DOI: 10.3390/jof7080629] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/23/2022] Open
Abstract
The burden of fungal infections is not widely appreciated. Although these infections are responsible for over one million deaths annually, it is estimated that one billion people are affected by severe fungal diseases. Mycoses of nails and skin, primarily caused by fungi known as dermatophytes, are the most common fungal infections. Trichophyton rubrum appears to be the most common causative agent of dermatophytosis, followed by Trichophyton interdigitale. An estimated 25% of the world’s population suffers from dermatomycosis. Although these infections are not lethal, they compromise the quality of life of infected patients. The outcome of antidermatophytic treatments is impaired by various conditions, such as resistance and tolerance of certain dermatophyte strains. The adage “know your enemy” must be the focus of fungal research. There is an urgent need to increase awareness about the significance of these infections with precise epidemiological data and to improve knowledge regarding fungal biology and pathogenesis, with an emphasis on adaptive mechanisms to tackle adverse conditions from host counteractions. This review outlines the current knowledge about dermatophyte infections, with a focus on signaling pathways required for fungal infection establishment and a broad perspective on cellular and molecular factors involved in antifungal resistance and tolerance.
Collapse
|
10
|
Ciesielska A, Kawa A, Kanarek K, Soboń A, Szewczyk R. Metabolomic analysis of Trichophyton rubrum and Microsporum canis during keratin degradation. Sci Rep 2021; 11:3959. [PMID: 33597693 PMCID: PMC7889620 DOI: 10.1038/s41598-021-83632-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/04/2021] [Indexed: 11/12/2022] Open
Abstract
Keratin is important and needed for the growth of dermatophytes in the host tissue. In turn, the ability to invade keratinised tissues is defined as a pivotal virulence attribute of this group of medically important fungi. The host–dermatophyte interaction is accompanied by an adaptation of fungal metabolism that allows them to adhere to the host tissue as well as utilize the available nutrients necessary for their survival and growth. Dermatophyte infections pose a significant epidemiological and clinical problem. Trichophyton rubrum is the most common anthropophilic dermatophyte worldwide and its typical infection areas include skin of hands or feet and nail plate. In turn, Microsporum canis is a zoophilic pathogen, and mostly well known for ringworm in pets, it is also known to infect humans. The aim of the study was to compare the intracellular metabolite content in the T. rubrum and M. canis during keratin degradation using liquid chromatography system coupled with tandem mass spectrometer (LC-MS/MS). The metabolite “fingerprints” revealed compounds associated with amino acids metabolism, carbohydrate metabolism related to the glycolysis and the tricarboxylic acid cycle (TCA), as well as nucleotide and energy metabolism. The metabolites such as kynurenic acid, l-alanine and cysteine in case of T. rubrum as well as cysteine and riboflavin in case of M. canis were detected only during keratin degradation what may suggest that these compounds may play a key role in the interactions of T. rubrum and M. canis with the host tissue. The metabolomic results were completed by qPCR gene expression assay. Our findings suggest that metabolomic analysis of T. rubrum and M. canis growing in culture media that mimic the dermatophyte infection could allow the understanding of processes involved in the pathogenesis of dermatophytes.
Collapse
Affiliation(s)
- Anita Ciesielska
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| | - Anna Kawa
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Katarzyna Kanarek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Adrian Soboń
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | | |
Collapse
|
11
|
Cellular and Molecular Response of Macrophages THP-1 during Co-Culture with Inactive Trichophyton rubrum Conidia. J Fungi (Basel) 2020; 6:jof6040363. [PMID: 33322794 PMCID: PMC7770574 DOI: 10.3390/jof6040363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
Trichophyton rubrum is causing an increasing number of invasive infections, especially in immunocompromised and diabetic patients. The fungal invasive infectious process is complex and has not yet been fully elucidated. Therefore, this study aimed to understand the cellular and molecular mechanisms during the interaction of macrophages and T. rubrum. For this purpose, we used a co-culture of previously germinated and heat-inactivated T. rubrum conidia placed in contact with human macrophages cell line THP-1 for 24 h. This interaction led to a higher level of release of interleukins IL-6, IL-2, nuclear factor kappa beta (NF-κB) and an increase in reactive oxygen species (ROS) production, demonstrating the cellular defense by macrophages against dead fungal elements. Cell viability assays showed that 70% of macrophages remained viable during co-culture. Human microRNA expression is involved in fungal infection and may modulate the immune response. Thus, the macrophage expression profile of microRNAs during co-culture revealed the modulation of 83 microRNAs, with repression of 33 microRNAs and induction of 50 microRNAs. These data were analyzed using bioinformatics analysis programs and the modulation of the expression of some microRNAs was validated by qRT-PCR. In silico analysis showed that the target genes of these microRNAs are related to the inflammatory response, oxidative stress, apoptosis, drug resistance, and cell proliferation.
Collapse
|
12
|
Ciesielska A, Stączek P. Selection and validation of reference genes for qPCR in the human dermatophyte Trichophyton rubrum exposed to different carbon sources which promote adhesion-inducing conditions. Mycoses 2020; 64:300-308. [PMID: 33210789 DOI: 10.1111/myc.13215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The present study aimed to identify reference genes for qPCR analysis of T. rubrum growth in culture media which promote adhesion-inducing conditions to the host tissue. METHODS We investigated the suitability of six candidate reference genes: β-act, β-tub, ef1-α, gapdh, sdha and rpl2 in reference strain of Trichophyton rubrum in response to different environmental stimuli. The stability of these genes was determined by NormFinder, geNorm and BestKeeper software. RESULTS Our data obtained from the three algorithms revealed that mRNA expression levels of two candidate reference genes, ef1-α and β-tub, remained the most stable in response to different carbon sources, while different sample sets had their own most stable reference genes, highlighting the importance of the choice of internal controls in qPCR experiments. We then checked the stability of ef1-α and β-tub reference genes expression in different T. rubrum strains, suggesting that these two genes are reliable for normalisation of qPCR. Finally, we validated the suitability of selected reference genes as internal controls for target gene (SUB3) using the 2-ΔΔCt method. The best result indicating an increase of SUB3 transcript of T. rubrum was found when the two the most stable reference (ef1-α and β-tub ) genes were used, as revealed by all three algorithms. CONCLUSIONS We recommend the use of ef1-α and β-tub as reference genes for qPCR analysis of target gene expression in T. rubrum exposed to different carbon sources which promote adhesion-inducing conditions.
Collapse
Affiliation(s)
- Anita Ciesielska
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Paweł Stączek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
13
|
Petrucelli MF, de Abreu MH, Cantelli BAM, Segura GG, Nishimura FG, Bitencourt TA, Marins M, Fachin AL. Epidemiology and Diagnostic Perspectives of Dermatophytoses. J Fungi (Basel) 2020; 6:E310. [PMID: 33238603 PMCID: PMC7712040 DOI: 10.3390/jof6040310] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Dermatophytoses affect about 25% of the world population, and the filamentous fungus Trichophyton rubrum is the main causative agent of this group of diseases. Dermatomycoses are caused by pathogenic fungi that generally trigger superficial infections and that feed on keratinized substrates such as skin, hair, and nails. However, there are an increasing number of reports describing dermatophytes that invade deep layers such as the dermis and hypodermis and that can cause deep infections in diabetic and immunocompromised patients, as well as in individuals with immunodeficiency. Despite the high incidence and importance of dermatophytes in clinical mycology, the diagnosis of this type of infection is not always accurate. The conventional methods most commonly used for mycological diagnosis are based on the identification of microbiological and biochemical features. However, in view of the limitations of these conventional methods, molecular diagnostic techniques are increasingly being used because of their higher sensitivity, specificity and rapidity and have become more accessible. The most widely used molecular techniques are conventional PCR, quantitative PCR, multiplex PCR, nested, PCR, PCR-RFLP, and PCR-ELISA. Another promising technique for the identification of microorganisms is the analysis of protein profiles by MALDI-TOF MS. Molecular techniques are promising but it is necessary to improve the quality and availability of the information in genomic and proteomic databases in order to streamline the use of bioinformatics in the identification of dermatophytes of clinical interest.
Collapse
Affiliation(s)
- Monise Fazolin Petrucelli
- Biotechnology Unit, Unaerp, Av. Costábile Romano, 2201, Ribeirão Preto SP 14096-900, Brazil; (M.F.P.); (M.H.d.A.); (B.A.M.C.); (G.G.S.); (F.G.N.); (T.A.B.); (M.M.)
| | - Mariana Heinzen de Abreu
- Biotechnology Unit, Unaerp, Av. Costábile Romano, 2201, Ribeirão Preto SP 14096-900, Brazil; (M.F.P.); (M.H.d.A.); (B.A.M.C.); (G.G.S.); (F.G.N.); (T.A.B.); (M.M.)
| | - Bruna Aline Michelotto Cantelli
- Biotechnology Unit, Unaerp, Av. Costábile Romano, 2201, Ribeirão Preto SP 14096-900, Brazil; (M.F.P.); (M.H.d.A.); (B.A.M.C.); (G.G.S.); (F.G.N.); (T.A.B.); (M.M.)
| | - Gabriela Gonzalez Segura
- Biotechnology Unit, Unaerp, Av. Costábile Romano, 2201, Ribeirão Preto SP 14096-900, Brazil; (M.F.P.); (M.H.d.A.); (B.A.M.C.); (G.G.S.); (F.G.N.); (T.A.B.); (M.M.)
| | - Felipe Garcia Nishimura
- Biotechnology Unit, Unaerp, Av. Costábile Romano, 2201, Ribeirão Preto SP 14096-900, Brazil; (M.F.P.); (M.H.d.A.); (B.A.M.C.); (G.G.S.); (F.G.N.); (T.A.B.); (M.M.)
| | - Tamires Aparecida Bitencourt
- Biotechnology Unit, Unaerp, Av. Costábile Romano, 2201, Ribeirão Preto SP 14096-900, Brazil; (M.F.P.); (M.H.d.A.); (B.A.M.C.); (G.G.S.); (F.G.N.); (T.A.B.); (M.M.)
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto SP 14049-900, Brazil
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto SP 14049-900, Brazil
| | - Mozart Marins
- Biotechnology Unit, Unaerp, Av. Costábile Romano, 2201, Ribeirão Preto SP 14096-900, Brazil; (M.F.P.); (M.H.d.A.); (B.A.M.C.); (G.G.S.); (F.G.N.); (T.A.B.); (M.M.)
| | - Ana Lúcia Fachin
- Biotechnology Unit, Unaerp, Av. Costábile Romano, 2201, Ribeirão Preto SP 14096-900, Brazil; (M.F.P.); (M.H.d.A.); (B.A.M.C.); (G.G.S.); (F.G.N.); (T.A.B.); (M.M.)
| |
Collapse
|
14
|
Baumbach CM, Michler JK, Nenoff P, Uhrlaß S, Schrödl W. Visualising virulence factors: Trichophyton benhamiaes subtilisins demonstrated in a guinea pig skin ex vivo model. Mycoses 2020; 63:970-978. [PMID: 32620041 DOI: 10.1111/myc.13136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Dermatophytoses rank among the most frequent communicable diseases in humans, and the zoonotic transmission is increasing. The zoophilic dermatophyte Trichophyton (T.) benhamiae is nowadays one of the main causes of tinea faciei et corporis in children. However, scientific data on molecular pathomechanisms and specific virulence factors enabling this ubiquitous occurrence are scarce. OBJECTIVES To study tissue invasion and the expression of important virulence factors of T. benhamiae, isolates that were recovered from two groups of hosts (humans vs. guinea pigs (GP)) using an ex vivo skin model. METHODS After confirmation of species identity by ITS sequencing, CFU suspensions of dermatophyte isolates (n = 20) were applied to the skin infection model and cultured. Employing specific immunofluorescence staining techniques, the expression of subtilisin 3 and 6 and metallocarboxypeptidase A was analysed. The general mode of invasion was explored. Results were compared with biopsies of naturally infected GP. RESULTS All isolates were successfully recovered and proliferated well after application to the infection model. Progressive invasion of hyphae through all skin structures and destruction of explants were observed with early events being comparable to natural infection. An increasing expression of the examined virulence factors towards the end of culture was noticed but no difference between the two groups of isolates. CONCLUSIONS For the first time, important in vivo markers of dermatophytosis were visualised immunohistochemically in an ex vivo skin infection model and in skin biopsies of GP naturally infected with T. benhamiae. More research on the underlying pathomechanisms of dermatophyte infection is urgently needed.
Collapse
Affiliation(s)
- Christina-Marie Baumbach
- Institute of Bacteriology and Mycology, Centre of Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Jule Kristin Michler
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Pietro Nenoff
- Laboratory for Medical Microbiology, Mölbis, Germany
| | - Silke Uhrlaß
- Laboratory for Medical Microbiology, Mölbis, Germany
| | - Wieland Schrödl
- Institute of Bacteriology and Mycology, Centre of Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
15
|
de Abreu MH, Bitencourt TA, Franco ME, Moreli IS, Cantelli BAM, Komoto TT, Marins M, Fachin AL. Expression of genes containing tandem repeat patterns involved in the fungal-host interaction and in the response to antifungals in Trichophyton rubrum. Mycoses 2020; 63:610-616. [PMID: 32301521 DOI: 10.1111/myc.13088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/28/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Trichophyton rubrum is the most common aetiological agent of human dermatophytoses. These infections mainly occur in keratinised layers such as skin, hair and nails because the fungus uses keratin as a nutrient source. Fluconazole and amphotericin are antifungal agents most commonly used to treat dermatophytoses and acts on cell membrane ergosterol. Despite the clinical importance of T rubrum, the mechanisms underlying the fungal-host relationship have not yet been clarified. Tandem repeats (TRs) are short DNA sequences that are involved in a variety of adaptive functions, including the process of fungal infection. It is known that the larger the number of TRs in the genome, the greater the capacity of cell-cell junction and surface adhesion, especially when these repeats are present in regions encoding cell surface proteins. OBJECTIVES To identify in silico T rubrum genes containing TR patterns and to analyse the modulation of these genes in culture medium containing keratin (a model simulating skin infection) and antifungal drugs. METHODS The Dermatophyte Tandem Repeats Database (DTRDB) and the FaaPred tool were used to identify four T rubrum genes containing TR patterns. Quantitative real-time (RT) PCR was used to evaluate the gene expression during the growth of T rubrum on keratin and in the presence of fluconazole, amphotericin B and Congo red (acts in the cell wall). RESULTS The expression of these genes was found to be induced in culture medium containing keratin. In addition, these genes were induced in the presence of antifungal agents, especially fluconazole, indicating an adaptive response to the stress caused by this drug. CONCLUSION The results suggest an important role of genes containing TRs in the fungal-host interaction and in the susceptibility to inhibitory compounds, indicating these sequences as new potential targets for the development of antifungal agents.
Collapse
Affiliation(s)
| | | | | | - Igor Sawasaki Moreli
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| | | | | | - Mozart Marins
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| | - Ana Lúcia Fachin
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| |
Collapse
|
16
|
Bioactivities of Anethole, Astragalin and Cryptochlorogenic Acid Extracted from Anise Oil and Moringa oleifera on the Keratinase Gene Expression of Trichophyton rubrum. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Evaluation of an Explanted Porcine Skin Model to Investigate Infection with the Dermatophyte Trichophyton rubrum. Mycopathologia 2020; 185:233-243. [PMID: 32108288 DOI: 10.1007/s11046-020-00438-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/17/2020] [Indexed: 01/06/2023]
Abstract
Dermatophytosis is a fungal infection of skin, hair and nails, and the most frequently found causative agent is Trichophyton rubrum. The disease is very common and often recurring, and it is therefore difficult to eradicate. To develop and test novel treatments, infection models that are representative of the infection process are desirable. Several infection models have been developed, including the use of cultured cells, isolated corneocytes, explanted human skin or reconstituted human epidermis. However, these have various disadvantages, ranging from not being an accurate reflection of the site of infection, as is the case with, for example, cultured cells, to being difficult to scale up or having ethical issues (e.g., explanted human skin). We therefore sought to develop an infection model using explanted porcine skin, which is low cost and ethically neutral. We show that in our model, fungal growth is dependent on the presence of skin, and adherence of conidia is time-dependent with maximum adherence observed after ~ 2 h. Scanning electron microscopy suggested the production of fibril-like material that links conidia to each other and to skin. Prolonged incubation of infected skin leads to luxurious growth and invasion of the dermis, which is not surprising as the skin is not maintained in conditions to keep the tissue alive, and therefore is likely to lack an active immune system that would limit fungal growth. Therefore, the model developed seems useful to study the early stages of infection. Furthermore, we demonstrate that the model can be used to test novel treatment regimens for tinea infections.
Collapse
|
18
|
Bin Y, Wang X, Zhao L, Wen P, Xia J. An analysis of mutational signatures of synonymous mutations across 15 cancer types. BMC MEDICAL GENETICS 2019; 20:190. [PMID: 31815613 PMCID: PMC6900878 DOI: 10.1186/s12881-019-0926-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Synonymous mutations have been identified to play important roles in cancer development, although they do not modify the protein sequences. However, relatively little research has specifically delineated the functionality of synonymous mutations in cancer. Results We investigated the nucleotide-based and amino acid-based features of synonymous mutations across 15 cancer types from The Cancer Genome Atlas (TCGA), and revealed novel driver candidates by identifying hotspot mutations. Firstly, synonymous mutations were analyzed between TCGA and 1000 Genomes Project at nucleotide and amino acid levels. We found that C:G → T:A transitions were the most frequent single-base substitutions, and leucine underwent the largest number of synonymous mutations in TCGA due to prevalent C → T transition, which induced the transformation between optimal and non-optimal codons. Next, 97 synonymous hotspot mutations in 86 genes were nominated as candidate drivers with potential cancer risk by considering the mutational rates across different sequence contexts. We observed that non-CpG-island GC transition sequence context was positively selected across most of cancer types, and different sequence contexts under which hotspot mutations occur could be significance for genetic differences and functional features. We also found that the hotspots were more conserved than neutral mutations of hotspot-mutation-containing-genes and frequently happened at leucine. In addition, we mapped hotspots, neutral and non-hotspot mutations of hotspot-mutation-containing-genes to their respective protein domains and found ion transport domain was the most frequent one, which could mediate the cell interaction and had relevant implication for tumor therapy. And the signatures of synonymous hotspots were qualitatively similar with those of harmful missense variants. Conclusions We illustrated the preferences of cancer associated synonymous mutations, especially hotspots, and laid the groundwork for understanding the synonymous mutations act as drivers in cancer.
Collapse
Affiliation(s)
- Yannan Bin
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology, Anhui University, Hefei, 230601, Anhui, China
| | - Xiaojuan Wang
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology, Anhui University, Hefei, 230601, Anhui, China
| | - Le Zhao
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology, Anhui University, Hefei, 230601, Anhui, China
| | - Pengbo Wen
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology, Anhui University, Hefei, 230601, Anhui, China
| | - Junfeng Xia
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology, Anhui University, Hefei, 230601, Anhui, China.
| |
Collapse
|
19
|
Petrucelli MF, Matsuda JB, Peroni K, Sanches PR, Silva WA, Beleboni RO, Martinez-Rossi NM, Marins M, Fachin AL. The Transcriptional Profile of Trichophyton rubrum Co-Cultured with Human Keratinocytes Shows New Insights about Gene Modulation by Terbinafine. Pathogens 2019; 8:pathogens8040274. [PMID: 31795354 PMCID: PMC6963840 DOI: 10.3390/pathogens8040274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 11/16/2022] Open
Abstract
The dermatophyte Trichophyton rubrum is the main causative agent of dermatophytoses worldwide. Although a superficial mycosis, its incidence has been increasing especially among diabetic and immunocompromised patients. Terbinafine is commonly used for the treatment of infections caused by dermatophytes. However, cases of resistance of T. rubrum to this allylamine were reported even with the efficacy of this drug. The present study is the first to evaluate the effect of terbinafine using a co-culture model of T. rubrum and human keratinocytes, mimicking a fungus-host interaction, in conjunction with RNA-seq technique. Our data showed the repression of several genes involved in the ergosterol biosynthesis cascade and the induction of genes encoding major facilitator superfamily (MFS)- and ATP-binding cassette superfamily (ABC)-type membrane transporter which may be involved in T. rubrum mechanisms of resistance to this drug. We observed that some genes reported in the scientific literature as candidates of new antifungal targets were also modulated. In addition, we found the modulation of several genes that are hypothetical in T. rubrum but that possess known orthologs in other dermatophytes. Taken together, the results indicate that terbinafine can act on various targets related to the physiology of T. rubrum other than its main target of ergosterol biosynthetic pathway.
Collapse
Affiliation(s)
- Monise Fazolin Petrucelli
- Biotechnology Unit, University of Ribeirão Preto-UNAERP, Av. Costábile Romano 2201, Ribeirão Preto 14960-900, SP, Brazil; (M.F.P.); (J.B.M.); (R.O.B.); (M.M.)
| | - Josie Budag Matsuda
- Biotechnology Unit, University of Ribeirão Preto-UNAERP, Av. Costábile Romano 2201, Ribeirão Preto 14960-900, SP, Brazil; (M.F.P.); (J.B.M.); (R.O.B.); (M.M.)
| | - Kamila Peroni
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-Based Therapy, Ribeirão Preto 14051-140, SP, Brazil; (K.P.)
| | - Pablo Rodrigo Sanches
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (P.R.S.); (N.M.M.-R.)
| | - Wilson Araújo Silva
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-Based Therapy, Ribeirão Preto 14051-140, SP, Brazil; (K.P.)
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (P.R.S.); (N.M.M.-R.)
- Center for Integrative System Biology-CISBi-NAP/USP, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
- Center for Medical Genomics, University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14015-010, SP, Brazil
| | - Rene Oliveira Beleboni
- Biotechnology Unit, University of Ribeirão Preto-UNAERP, Av. Costábile Romano 2201, Ribeirão Preto 14960-900, SP, Brazil; (M.F.P.); (J.B.M.); (R.O.B.); (M.M.)
| | - Nilce Maria Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (P.R.S.); (N.M.M.-R.)
| | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto-UNAERP, Av. Costábile Romano 2201, Ribeirão Preto 14960-900, SP, Brazil; (M.F.P.); (J.B.M.); (R.O.B.); (M.M.)
| | - Ana Lúcia Fachin
- Biotechnology Unit, University of Ribeirão Preto-UNAERP, Av. Costábile Romano 2201, Ribeirão Preto 14960-900, SP, Brazil; (M.F.P.); (J.B.M.); (R.O.B.); (M.M.)
- Correspondence: or ; Fax: +55-16-36037030
| |
Collapse
|
20
|
Alternative Splicing in Heat Shock Protein Transcripts as a Mechanism of Cell Adaptation in Trichophyton rubrum. Cells 2019; 8:cells8101206. [PMID: 31590387 PMCID: PMC6830096 DOI: 10.3390/cells8101206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Heat shock proteins (HSPs) are involved in critical processes like host tissue invasion, resistance, and pathogenicity in dermatophytes. RNA-Seq analysis of Trichophyton rubrum exposed to undecanoic acid (UDA) revealed intron retention events in HSP transcripts. Because HSPs are modulated in response to various stimuli and as alternative splicing (AS) can result in a broad diversity in the proteome of eukaryotic cells, our objective was to confirm the aforementioned retention events, investigating their consequences and extent. Furthermore, we aimed to determine: (1) the expression profile of HSP genes in an infection-like scenario and (2) the importance of Hsp90 for the keratinolytic potential of T. rubrum. RT and qPCR analyses comparing the exposure to UDA and terbinafine (TRB) confirmed the presence of two mRNA isoforms of the hsp7-like gene, with distinct expression patterns in response to UDA and TRB. The HSP expression profile revealed two upregulated, three downregulated, and four unmodulated transcripts; Hsp90 inhibition by 17-AAG resulted in a significant decrease in keratinolytic potential at 37 °C. Altogether, these results broaden the current knowledge on the importance of HSP-mediated pathways for cell adaptation and other aspects of dermatophyte biology, indicating that HSP network proteins can be potential targets for antifungal therapy.
Collapse
|
21
|
Zheng H, Blechert O, Mei H, Ge L, Liu J, Tao Y, Li D, de Hoog GS, Liu W. Whole-genome resequencing of Trichophyton rubrum provides insights into population differentiation and drug resistance. Mycopathologia 2019; 185:103-112. [PMID: 31538279 DOI: 10.1007/s11046-019-00384-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 09/07/2019] [Indexed: 12/13/2022]
Abstract
Trichophyton rubrum (T. rubrum) is anthropophilic fungus and thus a very common cause of dermatophyte infections around the world. Infection of T. rubrum could result in conditions such as tinea capitis, tinea corporis, tinea inguinalis, tinea manus, tinea unguium, or tinea pedis. Because of this, the resistance of T. rubrum to antifungal therapies has drawn extensive research interest. However, the pathogenic characteristics of T. rubrum, such as site of infections, geographic location and host groups, have yet to be explored. In this study, the whole genome of 48 strains from different regions is resequenced and the population structure and association of single nucleotide polymorphism with resistance to six widely used antifungal drugs are analyzed. A total of 23,394 genomic variations are detected, which cover 2165 genes with only 15.14% of the variations located in exons. The population structure of T. rubrum is monomorphic, and genetic diversity is very low. Population structure analysis shows that the 48 sampled strains can be divided into two sub-populations. The gene TERG_08771 harboring the highest SNPs density is found to be associated with resistance to voriconazole. Although many proteins have yet to be identified and explored, association studies could still be useful to identify drug resistance or drug-susceptible loci, which would warrant further insightful investigations.
Collapse
Affiliation(s)
- Hailin Zheng
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Oliver Blechert
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, Jiangsu, People's Republic of China
| | - Huan Mei
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, Jiangsu, People's Republic of China
| | - Liyu Ge
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, Jiangsu, People's Republic of China
| | - Jia Liu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, Jiangsu, People's Republic of China
| | - Ye Tao
- Shanghai Biozeron Biotechnology Co., Ltd, Shanghai, China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - G S de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Weida Liu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, Jiangsu, People's Republic of China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China.
| |
Collapse
|
22
|
Cold Atmospheric Pressure Plasma Jet Reduces Trichophyton rubrum Adherence and Infection Capacity. Mycopathologia 2019; 184:585-595. [DOI: 10.1007/s11046-019-00375-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022]
|
23
|
Kaplan E, Gonca S, Kandemir H, Döğen A, Hilmioğlu-Polat S, Ilkit M, Tanaka R, Yaguchi T, Uhrlaβ S, Nenoff P. Genes Encoding Proteolytic Enzymes Fungalysin and Subtilisin in Dermatophytes of Human and Animal Origin: A Comparative Study. Mycopathologia 2019; 185:137-144. [PMID: 31376040 DOI: 10.1007/s11046-019-00367-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/30/2019] [Accepted: 07/20/2019] [Indexed: 02/25/2023]
Abstract
Dermatophytes are among the most successful fungal pathogens in humans, but their virulence mechanisms have not yet been fully characterized. Dermatophytic fungi secrete proteases in vivo, which are responsible for fungal colonization and degradation of the keratinized tissue during infection. In the present study, we used PCR to investigate the presence of genes encoding fungalysins (MEP) and subtilisins (SUB) in three dermatophyte species whose incidence is increasing in Europe: the anthropophilic Trichophyton rubrum (n = 58), zoophilic Microsporum canis (n = 33), and Trichophyton benhamiae (n = 6). MEP2 and SUB4 genes were significantly correlated with T. rubrum; MEP3 and SUB1 were mostly frequently harbored by M. canis; and MEP1, 2, and 4 and SUB3-7 were most frequently harbored by T. benhamiae isolates (p < 0.05). Furthermore, MEP1-5 and SUB1-3 genes were significantly more prevalent among human clinical isolates of M. canis (n = 17) than among asymptomatic cat isolates of M. canis (n = 16; p < 0.05). Unidentified MEP and/or SUB genes in some isolates in the current study may suggest that other gene repertoires may be involved in the degradation of keratin. The presented analysis of the incidence of MEP and SUB virulence genes in three dermatophyte species of diverse origins provides an insight into the host-fungus interaction and dermatophyte pathogenesis.
Collapse
Affiliation(s)
- Engin Kaplan
- Advanced Technology Education, Research, and Application Center, Mersin University, Mersin, Turkey.,Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Zonguldak Bülent Ecevit, Zonguldak, Turkey
| | - Serpil Gonca
- Advanced Technology Education, Research, and Application Center, Mersin University, Mersin, Turkey
| | - Hazal Kandemir
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey.,Centre of Expertise in Mycology, Radboud University Medical Centre/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Aylin Döğen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Mersin, Turkey.
| | | | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Reiko Tanaka
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Silke Uhrlaβ
- Laboratory for Medical Microbiology, Mölbis, Germany
| | - Pietro Nenoff
- Laboratory for Medical Microbiology, Mölbis, Germany
| |
Collapse
|
24
|
Mercer DK, Stewart CS. Keratin hydrolysis by dermatophytes. Med Mycol 2019; 57:13-22. [PMID: 29361043 DOI: 10.1093/mmy/myx160] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/06/2017] [Indexed: 12/31/2022] Open
Abstract
Dermatophytes are the most common cause of superficial fungal infections (tinea infections) and are a specialized group of filamentous fungi capable of infecting and degrading keratinised tissues, including skin, hair, and nail. Essential to their pathogenicity and virulence is the production of a broad spectrum of proteolytic enzymes and other key proteins involved in keratin biodegradation and utilization of its breakdown products. The initial stage of biodegradation of native keratin is considered to be sulfitolysis, in which the extensive disulfide bridges present in keratin are hydrolyzed, although some secreted subtilisins can degrade dye-impregnated keratin azure without prior reduction (Sub3 and Sub4). Sulfitolysis facilitates the extracellular biodegradation of keratin by the dermatophytes' extensive array of endo- and exoproteases. The importance of dermatophyte proteases in infection is widely recognized, and these enzymes have also been identified as important virulence determinants and allergens. Finally, the short peptide and amino acid breakdown products are taken up by the dermatophytes, using as yet poorly characterised transporters, and utilized for metabolism. In this review, we describe the process of keratin biodegradation by dermatophytes, with an especial focus on recent developments in cutting edge molecular biology and '-omic' studies that are helping to dissect the complex process of keratin breakdown and utilization.
Collapse
Affiliation(s)
- Derry K Mercer
- NovaBiotics Ltd, Cruickshank Building, Craibstone, Aberdeen, AB21 9TR, United Kingdom
| | | |
Collapse
|
25
|
Bitencourt TA, Macedo C, Franco ME, Rocha MC, Moreli IS, Cantelli BAM, Sanches PR, Beleboni RO, Malavazi I, Passos GA, Marins M, Fachin AL. Trans-chalcone activity against Trichophyton rubrum relies on an interplay between signaling pathways related to cell wall integrity and fatty acid metabolism. BMC Genomics 2019; 20:411. [PMID: 31117938 PMCID: PMC6532161 DOI: 10.1186/s12864-019-5792-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/10/2019] [Indexed: 11/10/2022] Open
Abstract
Background Trichophyton rubrum is the main etiological agent of skin and nail infections worldwide. Because of its keratinolytic activity and anthropophilic nature, infection models based on the addition of protein substrates have been employed to assess transcriptional profiles and to elucidate aspects related to host-pathogen interactions. Chalcones are widespread compounds with pronounced activity against dermatophytes. The toxicity of trans-chalcone towards T. rubrum is not fully understood but seems to rely on diverse cellular targets. Within this context, a better understanding of the mode of action of trans-chalcone may help identify new strategies of antifungal therapy and reveal new chemotherapeutic targets. This work aimed to assess the transcriptional profile of T. rubrum grown on different protein sources (keratin or elastin) to mimic natural infection sites and exposed to trans-chalcone in order to elucidate the mechanisms underlying the antifungal activity of trans-chalcone. Results Overall, the use of different protein sources caused only slight differences in the transcriptional profile of T. rubrum. The main differences were the modulation of proteases and lipases in gene categories when T. rubrum was grown on keratin and elastin, respectively. In addition, some genes encoding heat shock proteins were up-regulated during the growth of T. rubrum on keratin. The transcriptional profile of T. rubrum exposed to trans-chalcone included four main categories: fatty acid and lipid metabolism, overall stress response, cell wall integrity pathway, and alternative energy metabolism. Consistently, T. rubrum Mapk was strongly activated during the first hours of trans-chalcone exposure. Noteworthy, trans-chalcone inhibited genes involved in keratin degradation. The results also showed effects of trans-chalcone on fatty acid synthesis and metabolic pathways involved in acetyl-CoA supply. Conclusion Our results suggest that the mode of action of trans-chalcone is related to pronounced changes in fungal metabolism, including an imbalance between fatty acid synthesis and degradation that interferes with cell membrane and cell wall integrity. In addition, this compound exerts activity against important virulence factors. Taken together, trans-chalcone acts on targets related to dermatophyte physiology and the infection process. Electronic supplementary material The online version of this article (10.1186/s12864-019-5792-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tamires Aparecida Bitencourt
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costábile Romano 2201, Ribeirão Preto, SP, 14096-900, Brazil.,Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Claudia Macedo
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Matheus Eloy Franco
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costábile Romano 2201, Ribeirão Preto, SP, 14096-900, Brazil.,Instituto Federal do Sul de Minas - Campus Machado, Machado, Brazil
| | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos, São Carlos, Brazil
| | - Igor Sawasaki Moreli
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costábile Romano 2201, Ribeirão Preto, SP, 14096-900, Brazil
| | - Bruna Aline Micheloto Cantelli
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costábile Romano 2201, Ribeirão Preto, SP, 14096-900, Brazil
| | - Pablo Rodrigo Sanches
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Rene Oliveira Beleboni
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costábile Romano 2201, Ribeirão Preto, SP, 14096-900, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de São Carlos, São Carlos, Brazil
| | - Geraldo Aleixo Passos
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Mozart Marins
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costábile Romano 2201, Ribeirão Preto, SP, 14096-900, Brazil
| | - Ana Lúcia Fachin
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costábile Romano 2201, Ribeirão Preto, SP, 14096-900, Brazil.
| |
Collapse
|
26
|
Bitencourt TA, Oliveira FB, Sanches PR, Rossi A, Martinez-Rossi NM. The prp4 kinase gene and related spliceosome factor genes in Trichophyton rubrum respond to nutrients and antifungals. J Med Microbiol 2019; 68:591-599. [PMID: 30900975 DOI: 10.1099/jmm.0.000967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Trichophyton rubrum is a dermatophyte that causes most human superficial mycoses worldwide. The spliceosome, a large ribonucleoprotein complex responsible for pre-mRNA processing, may confer adaptive advantages to deal with different stresses. Here, we assessed the structural aspects of the Prp4 kinase protein and other pre-mRNA-splicing factors (Prps) in T. rubrum grown in different protein sources and exposed to antifungal drugs. METHODOLOGY Quantitative Reverse Transcription PCR (RT-PCR) assessed the modulation of prp1, prp31, prp8 and prp4 kinase genes after exposure of T. rubrum to sub-lethal doses of amphotericin B, caspofungin and acriflavine, or after T. rubrum growth on keratin sources for 48 and 72 h. We also performed the in silico analysis of the domain organization of Prps orthologues from filamentous fungi and yeasts. RESULTS The prp4 gene was modulated in a time-dependent manner. Transcription levels were mostly up-regulated when T. rubrum was grown on keratin for 72 h, while exposure to amphotericin B promoted prp4 gene down-regulation at the same time point. We also observed co-expression of prp1 and prp31, and their down-regulation after amphotericin B exposure. In silico analysis revealed a conserved domain organization for most Prps orthologues with slight differences, which were mostly related to structural elements such as repetition domains in Prp1 and complexity in motif assembly for the Prp4 kinase. These differences were mainly observed in dermatophyte species and may alter protein interactions and substrate affinity. CONCLUSION Our results improve the understanding of spliceosome proteins in fungi as well as their roles in adaptation to different environmental situations.
Collapse
Affiliation(s)
- Tamires A Bitencourt
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Felipe B Oliveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Pablo R Sanches
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nilce M Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
27
|
Komoto TT, Bernardes TM, Mesquita TB, Bortolotto LFB, Silva G, Bitencourt TA, Baek SJ, Marins M, Fachin AL. Chalcones Repressed the AURKA and MDR Proteins Involved in Metastasis and Multiple Drug Resistance in Breast Cancer Cell Lines. Molecules 2018; 23:molecules23082018. [PMID: 30104527 PMCID: PMC6222917 DOI: 10.3390/molecules23082018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 11/16/2022] Open
Abstract
In the present investigation, trans-chalcone and licochalcone A were tested against MCF-7 and BT-20 breast cancer cell lines for anti-tumor activity. We found that both chalcones down regulated important genes associated to cancer development and inhibited cell migration of metastatic cells (BT-20). Finally, we observed that licochalcone A reduces the MDR-1 protein, while both chalcones suppress the AURKA protein in a dose-dependent manner. In conclusion, we observed the trans-chalcone and licochalcone A affected the cell viability of breast cancer cell lines MCF-7 and BT-20 and presents anti-metastatic and anti-resistance potential, by the repression of AUKA and MDR-1 proteins.
Collapse
Affiliation(s)
- Tatiana Takahasi Komoto
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto, SP, CEP 14096-900, Brazil.
| | - Tayná Minervina Bernardes
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto, SP, CEP 14096-900, Brazil.
| | - Thaís Balthazar Mesquita
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto, SP, CEP 14096-900, Brazil.
| | - Luis Felipe Buso Bortolotto
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto, SP, CEP 14096-900, Brazil.
| | - Gabriel Silva
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto, SP, CEP 14096-900, Brazil.
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA.
| | - Tamires Aparecida Bitencourt
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto, SP, CEP 14096-900, Brazil.
| | - Seung Joon Baek
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA.
| | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto, SP, CEP 14096-900, Brazil.
| | - Ana Lúcia Fachin
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto, SP, CEP 14096-900, Brazil.
| |
Collapse
|
28
|
Petrucelli MF, Peronni K, Sanches PR, Komoto TT, Matsuda JB, Silva Junior WAD, Beleboni RO, Martinez-Rossi NM, Marins M, Fachin AL. Dual RNA-Seq Analysis of Trichophyton rubrum and HaCat Keratinocyte Co-Culture Highlights Important Genes for Fungal-Host Interaction. Genes (Basel) 2018; 9:genes9070362. [PMID: 30029541 PMCID: PMC6070946 DOI: 10.3390/genes9070362] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
The dermatophyte Trichophyton rubrum is the major fungal pathogen of skin, hair, and nails that uses keratinized substrates as the primary nutrients during infection. Few strategies are available that permit a better understanding of the molecular mechanisms involved in the interaction of T. rubrum with the host because of the limitations of models mimicking this interaction. Dual RNA-seq is a powerful tool to unravel this complex interaction since it enables simultaneous evaluation of the transcriptome of two organisms. Using this technology in an in vitro model of co-culture, this study evaluated the transcriptional profile of genes involved in fungus-host interactions in 24 h. Our data demonstrated the induction of glyoxylate cycle genes, ERG6 and TERG_00916, which encodes a carboxylic acid transporter that may improve the assimilation of nutrients and fungal survival in the host. Furthermore, genes encoding keratinolytic proteases were also induced. In human keratinocytes (HaCat) cells, the SLC11A1, RNASE7, and CSF2 genes were induced and the products of these genes are known to have antimicrobial activity. In addition, the FLG and KRT1 genes involved in the epithelial barrier integrity were inhibited. This analysis showed the modulation of important genes involved in T. rubrum–host interaction, which could represent potential antifungal targets for the treatment of dermatophytoses.
Collapse
Affiliation(s)
| | - Kamila Peronni
- Laboratory of Molecular Genetics and Bioinformatics, Regional Hemotherapy Center of Ribeirão Preto, Ribeirão Preto 2501, Brazil.
| | - Pablo Rodrigo Sanches
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil.
| | | | - Josie Budag Matsuda
- Biotechnology Unit, University of Ribeirão Preto-UNAERP, São Paulo 2201, Brazil.
| | - Wilson Araújo da Silva Junior
- Laboratory of Molecular Genetics and Bioinformatics, Regional Hemotherapy Center of Ribeirão Preto, Ribeirão Preto 2501, Brazil.
| | | | - Nilce Maria Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil.
| | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto-UNAERP, São Paulo 2201, Brazil.
| | - Ana Lúcia Fachin
- Biotechnology Unit, University of Ribeirão Preto-UNAERP, São Paulo 2201, Brazil.
| |
Collapse
|
29
|
Faway É, Cambier L, Mignon B, Poumay Y, Lambert de Rouvroit C. Modeling dermatophytosis in reconstructed human epidermis: A new tool to study infection mechanisms and to test antifungal agents. Med Mycol 2018; 55:485-494. [PMID: 27760830 DOI: 10.1093/mmy/myw111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/30/2016] [Indexed: 01/13/2023] Open
Abstract
Dermatophytosis is a superficial fungal infection of keratinized structures that exhibits an increasing prevalence in humans and is thus requesting novel prophylactic strategies and therapies. However, precise mechanisms used by dermatophytes to adhere at the surface of the human epidermis and invade its stratum corneum are still incompletely identified, as well as the responses provided by the underlying living keratinocytes during the infection. We hereby report development of an in vitro model of human dermatophytosis through infection of reconstructed human epidermis (RHE) by arthroconidia of the anthropophilic Trichophyton rubrum species or of the zoophilic Microsporum canis and Arthroderma benhamiae species. By modulating density of arthroconidia in the inoculum and duration of exposure to such pathogens, fungal infection limited to the stratum corneum was obtained, mimicking severe but typical in vivo situation. Fungal elements in infected RHE were monitored over time by histochemical analysis using periodic-acid Schiff-staining or quantified by qPCR-detection of fungal genes inside RHE lysates. This model brings improvements to available ones, dedicated to better understand how dermatophytes and epidermis interact, as well as to evaluate preventive and therapeutic agents. Indeed, miconazole topically added to RHE was demonstrated to inhibit fungal infection in this model.
Collapse
Affiliation(s)
- Émilie Faway
- URPHYM-NARILIS, University of Namur, Namur, Belgium
| | - Ludivine Cambier
- FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Bernard Mignon
- FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Yves Poumay
- URPHYM-NARILIS, University of Namur, Namur, Belgium
| | | |
Collapse
|
30
|
Brandão IDSL, Oliveira-Moraes HMDS, Souza Motta CMD, Oliveira NTD, Magalhães OMC. Elastin increases biofilm and extracellular matrix production of Aspergillus fumigatus. Braz J Microbiol 2018; 49:675-682. [PMID: 29452851 PMCID: PMC6066782 DOI: 10.1016/j.bjm.2017.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 09/23/2017] [Accepted: 10/02/2017] [Indexed: 11/18/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic saprobe fungus that accounts for 90% of cases of pulmonary aspergillosis in immunosuppressed patients and is known for its angiotropism. When it reaches the respiratory tract, A. fumigatus interacts with structural components and blood vessels of the lungs, such as elastin. To understand the effect of this structural component, we examined the effect of elastin on the production and development of the biofilm of A. fumigatus. In RPMI containing 10 mg/mL of elastin, a significant increase (absorbance p < 0.0001; dry weight p < 0.0001) in the production of biofilm was observed in comparison to when RPMI was used alone, reaching a maximum growth of 18.8 mg (dry weight) of biofilm in 72 h. In addition, elastin stimulates the production (p = 0.0042) of extracellular matrix (ECM) and decreases (p = 0.005) the hydrophobicity during the development of the biofilm. These results suggest that elastin plays an important role in the growth of A. fumigatus and that it participates in the formation of thick biofilm.
Collapse
Affiliation(s)
- Ildnay de Souza Lima Brandão
- Universidade Federal de Pernambuco, Centro de Ciências Biológicas, Departamento de Micologia, Cidade Universitária, PE, Brazil
| | | | - Cristina Maria de Souza Motta
- Universidade Federal de Pernambuco, Centro de Ciências Biológicas, Departamento de Micologia, Pernambuco, PE, Brazil
| | - Neiva Tinti de Oliveira
- Universidade Federal de Pernambuco, Centro de Ciências Biológicas, Departamento de Micologia, Pernambuco, PE, Brazil
| | - Oliane Maria Correia Magalhães
- Universidade Federal de Pernambuco, Centro de Ciências Biológicas, Departamento de Micologia, Cidade Universitária, PE, Brazil.
| |
Collapse
|
31
|
Transcriptome-wide survey of gene expression changes and alternative splicing in Trichophyton rubrum in response to undecanoic acid. Sci Rep 2018; 8:2520. [PMID: 29410524 PMCID: PMC5802734 DOI: 10.1038/s41598-018-20738-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/18/2018] [Indexed: 12/29/2022] Open
Abstract
While fatty acids are known to be toxic to dermatophytes, key physiological aspects of the Trichophyton rubrum response to undecanoic acid (UDA), a medium chain saturated fatty acid (C11:0), are not well understood. Thus, we analysed RNA-seq data from T. rubrum exposed to sub-lethal doses of UDA for 3 and 12 h. Three putative pathways were primarily involved in UDA detoxification: lipid metabolism and cellular membrane composition, oxidative stress, and pathogenesis. Biochemical assays showed cell membrane impairment, reductions in ergosterol content, and an increase in keratinolytic activity following UDA exposure. Moreover, we assessed differential exon usage and intron retention following UDA exposure. A key enzyme supplying guanine nucleotides to cells, inosine monophosphate dehydrogenase (IMPDH), showed high levels of intron 2 retention. Additionally, phosphoglucomutase (PGM), which is involved in the glycogen synthesis and degradation as well as cell wall biosynthesis, exhibited a significant difference in exon 4 usage following UDA exposure. Owing to the roles of these enzymes in fungal cells, both have emerged as promising antifungal targets. We showed that intron 2 retention in impdh and exon 4 skipping in pgm might be related to an adaptive strategy to combat fatty acid toxicity. Thus, the general effect of UDA fungal toxicity involves changes to fungal metabolism and mechanisms for regulating pre-mRNA processing events.
Collapse
|
32
|
Franco ME, Bitencourt TA, Marins M, Fachin AL. In silico characterization of tandem repeats in Trichophyton rubrum and related dermatophytes provides new insights into their role in pathogenesis. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2017:3866792. [PMID: 29220431 PMCID: PMC5502367 DOI: 10.1093/database/bax035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/28/2017] [Indexed: 01/01/2023]
Abstract
Trichophyton rubrum is the most common etiological agent of dermatophytoses worldwide, which is able to degrade keratinized tissues. The sequencing of the genome of different dermatophyte species has provided a large amount of data, including tandem repeats that may play a role in genetic variability and in the pathogenesis of these fungi. Tandem repeats are adjacent DNA sequences of 2–200 nucleotides in length, which exert regulatory and adaptive functions. These repetitive DNA sequences are found in different classes of fungal proteins, especially those involved in cell adhesion, a determinant factor for the establishment of fungal infection. The objective of this study was to develop a Dermatophyte Tandem Repeat Database (DTRDB) for the storage and identification of tandem repeats in T. rubrum and six other dermatophyte species. The current version of the database contains 35 577 tandem repeats detected in 16 173 coding sequences. The repeats can be searched using entry parameters such as repeat unit length (nt—nucleotide), repeat number, variability score, and repeat sequence motif. These data were used to study the relative frequency and distribution of repeats in the sequences, as well as their possible functions in dermatophytes. A search of the database revealed that these repeats occur in 22–33% of genes transcribed in dermatophytes where they could be involved in the success of adaptation to the host tissue and establishment of infection. The repeats were detected in transcripts that are mainly related to three biological processes: regulation, adhesion, and metabolism. The database developed enables users to identify and analyse tandem repeat regions in target genes related to pathogenicity and fungal–host interactions in dermatophytes and may contribute to the discovery of new targets for the development of antifungal agents. Database URL:http://comp.mch.ifsuldeminas.edu.br/dtrdb/
Collapse
Affiliation(s)
- Matheus Eloy Franco
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costabile Romano 2201, 14096-900, Ribeirao Preto SP, Brazil.,Federal Institute of Education, Science and Technology of South of Minas Gerais - IFSULDEMINAS, 37750-000, Brazil
| | - Tamires Aparecida Bitencourt
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costabile Romano 2201, 14096-900, Ribeirao Preto SP, Brazil.,Departamento de Genetica, 049-900, FMRP-USP, SP, Brazil
| | - Mozart Marins
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costabile Romano 2201, 14096-900, Ribeirao Preto SP, Brazil.,Curso de Medicina, Universidade de Ribeirão Preto, SP, Brazil
| | - Ana Lúcia Fachin
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Av: Costabile Romano 2201, 14096-900, Ribeirao Preto SP, Brazil.,Curso de Medicina, Universidade de Ribeirão Preto, SP, Brazil
| |
Collapse
|
33
|
Almeida MC, Brand AC. Thigmo Responses: The Fungal Sense of Touch. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0040-2016. [PMID: 28884680 PMCID: PMC11687469 DOI: 10.1128/microbiolspec.funk-0040-2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 01/18/2023] Open
Abstract
The growth and development of most fungi take place on a two-dimensional surface or within a three-dimensional matrix. The fungal sense of touch is therefore critical for fungi in the interpretation of their environment and often signals the switch to a new developmental state. Contact sensing, or thigmo-based responses, include thigmo differentiation, such as the induction of invasion structures by plant pathogens in response to topography; thigmonasty, where contact with a motile prey rapidly triggers its capture; and thigmotropism, where the direction of hyphal growth is guided by physical features in the environment. Like plants and some bacteria, fungi grow as walled cells. Despite the well-demonstrated importance of thigmo responses in numerous stages of fungal growth and development, it is not known how fungal cells sense contact through the relatively rigid structure of the cell wall. However, while sensing mechanisms at the molecular level are not entirely understood, the downstream signaling pathways that are activated by contact sensing are being elucidated. In the majority of cases, the response to contact is complemented by chemical cues and both are required, either sequentially or simultaneously, to elicit normal developmental responses. The importance of a sense of touch in the lifestyles and development of diverse fungi is highlighted in this review, and the candidate molecular mechanisms that may be involved in fungal contact sensing are discussed.
Collapse
Affiliation(s)
- Mariana Cruz Almeida
- MRC Centre for Medical Mycology, University of Aberdeen, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, Aberdeenshire AB25 2ZD, United Kingdom
| | - Alexandra C Brand
- MRC Centre for Medical Mycology, University of Aberdeen, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, Aberdeenshire AB25 2ZD, United Kingdom
| |
Collapse
|