1
|
Guo S, Song M, Gui M, Wu Q, Yu W, Chen C, Rao Z, Huang S. Transcriptome analysis reveals candidate genes involved in quercetin biosynthesis in Euphorbia maculata. Sci Rep 2025; 15:17164. [PMID: 40382417 DOI: 10.1038/s41598-025-00794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 04/30/2025] [Indexed: 05/20/2025] Open
Abstract
An investigation was conducted through transcriptome sequencing in various tissues at different stages to explore the quercetin biosynthesis pathway in Euphorbia maculata. A total of 83,028 unigenes was assembled utilizing Trinity software, with an N50 length of 1721 bp and a mean length of 1004 bp. Among these unigenes, 51,822 were annotated in six public databases. The transcriptome analysis revealed 45,727 CDS sequences and 56 TF families. Candidate genes involved in quercetin biosynthesis were also revealed, including phenylalanine ammonia-lyase (17 unigenes), cinnamate 4-hydroxylase (3 unigenes), 4-coumarate-CoA ligase (16 unigenes), chalcone synthase (5 unigenes), chalcone isomerase (4 unigenes), flavanone 3-hydroxylase (1 unigene), flavonoid 3'-hydroxylase (4 unigenes), and flavonol synthase (9 unigenes). Additionally, 42 key differentially expressed genes (DEGs) related to quercetin biosynthesis were identified in the same tissues at different stages, with 35 DEGs exhibiting down-regulated expression and 7 DEGs displaying up-regulated expression. These findings not only enhance the genetic knowledge of E. maculata, but also establish a basis for further investigating the mechanism of quercetin biosynthesis, and improving the quality of E. maculata.
Collapse
Affiliation(s)
- Sanbao Guo
- Department of Pharmacy, Jiangxi College of Traditional Chinese Medicine, Fuzhou, 344000, China.
| | - Meiling Song
- Department of Basic Medicine, Jiangxi College of Traditional Chinese Medicine, Fuzhou, 344000, China
| | - Mingming Gui
- Department of Basic Medicine, Jiangxi College of Traditional Chinese Medicine, Fuzhou, 344000, China
| | - Qingyang Wu
- Department of Basic Medicine, Jiangxi College of Traditional Chinese Medicine, Fuzhou, 344000, China
| | - Wuhua Yu
- Department of Pharmacy, Jiangxi College of Traditional Chinese Medicine, Fuzhou, 344000, China
| | - Chunxiang Chen
- Fuzhou Medical College, Nanchang University, Fuzhou, 344000, China
| | - Zechang Rao
- Fuzhou Medical College, Nanchang University, Fuzhou, 344000, China
| | - Shenghe Huang
- Department of Basic Medicine, Jiangxi College of Traditional Chinese Medicine, Fuzhou, 344000, China.
| |
Collapse
|
2
|
Huang J, Li Y, Yu C, Mo R, Zhu Z, Dong Z, Hu X, Deng W. Metabolome and Transcriptome Integrated Analysis of Mulberry Leaves for Insight into the Formation of Bitter Taste. Genes (Basel) 2023; 14:1282. [PMID: 37372462 DOI: 10.3390/genes14061282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Mulberry leaves are excellent for health care, confirmed as a 'drug homologous food' by the Ministry of Health, China. The bitter taste of mulberry leaves is one of the main problems that hinders the development of the mulberry food industry. The bitter, unique taste of mulberry leaves is difficult to eliminate by post-processing. In this study, the bitter metabolites in mulberry leaves were identified as flavonoids, phenolic acids, alkaloids, coumarins and L-amino acids by a combined analysis of the metabolome and transcriptome of mulberry leaves. The analysis of the differential metabolites showed that the bitter metabolites were diverse and the sugar metabolites were down-regulated, indicating that the bitter taste of mulberry leaves was a comprehensive reflection of various bitter-related metabolites. Multi-omics analysis showed that the main metabolic pathway related to bitter taste in mulberry leaves was galactose metabolism, indicating that soluble sugar was one of the main factors of bitter taste difference in mulberry leaves. Bitter metabolites play a great role in the medicinal and functional food of mulberry leaves, but the saccharides in mulberry leaves have a great influence on the bitter taste of mulberry. Therefore, we propose to retain bitter metabolites with drug activity in mulberry leaves and increase the content of sugars to improve the bitter taste of mulberry leaves as strategies for mulberry leaf food processing and mulberry breeding for vegetable use.
Collapse
Affiliation(s)
- Jin Huang
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yong Li
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Cui Yu
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Rongli Mo
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhixian Zhu
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhaoxia Dong
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xingming Hu
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wen Deng
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
3
|
Antioxidant Activity of Valeriana fauriei Protects against Dexamethasone-Induced Muscle Atrophy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3645431. [PMID: 35069972 PMCID: PMC8769843 DOI: 10.1155/2022/3645431] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/28/2022]
Abstract
Skeletal muscle atrophy is defined as wasting or loss of muscle. Although glucocorticoids (GCs) are well-known anti-inflammatory drugs, their long-term or high-dose use induces skeletal muscle atrophy. Valeriana fauriei (VF) is used to treat restlessness, anxiety, and sleep disorders; however, its effects on skeletal muscle health have not been investigated. This study investigated whether Valeriana fauriei could ameliorate muscle atrophy. We induced muscle atrophy in vitro and in vivo, by treatment with dexamethasone (DEX), a synthetic GC. In DEX-induced myotube atrophy, Valeriana fauriei treatment increased the fusion index and decreased the expression of muscle atrophic genes such as muscle atrophy F-box (MAFbx/Atrogin-1) and muscle RING-finger protein 1 (MuRF1). In DEX-treated mice with muscle atrophy, Valeriana fauriei supplementation increased the ability to exercise, muscle weight, and cross-sectional area, whereas it inhibited myosin heavy chain isoform transition and the expression of muscle atrophy biomarkers. Valeriana fauriei treatment led to via the downregulation of muscle atrophic genes via inhibition of GC receptor translocation. Valeriana fauriei was also found to act as a reactive oxygen species (ROS) scavenger. Didrovaltrate (DI), an iridoid compound from Valeriana fauriei, was found to downregulate atrophic genes and decrease ROS in the DEX-induced myotube atrophy. Consolidated, our results indicate that Valeriana fauriei prevents DEX-induced muscle atrophy by inhibiting GC receptor translocation. Further, Valeriana fauriei acts as a ROS scavenger, and its functional compound is didrovaltrate. We suggest that Valeriana fauriei and its functional compound didrovaltrate possess therapeutic potentials against muscle atrophy.
Collapse
|
4
|
Bolhassani M, Niazi A, Tahmasebi A, Moghadam A. Identification of key genes associated with secondary metabolites biosynthesis by system network analysis in Valeriana officinalis. JOURNAL OF PLANT RESEARCH 2021; 134:625-639. [PMID: 33829347 DOI: 10.1007/s10265-021-01277-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Valeriana officinalis is a medicinal plant, a source of bioactive chemical compounds and secondary metabolites which are applied in pharmaceutical industries. The advent of ethnomedicine has provided alternatives for disease treatment and has increased demands for natural products and bioactive compounds. A set of preliminary steps to answers for such demands can include integrative omics for systems metabolic engineering, as an approach that contributes to the understanding of cellular metabolic status. There is a growing trend of this approach for genetically engineering metabolic pathways in plant systems, by which natural and synthetic compounds can be produced. As in the case of most medicinal plants, there are no sufficient information about molecular mechanisms involved in the regulation of metabolic pathways in V. officinalis. In this research, systems biology was performed on the RNA-seq transcriptome and metabolome data to find key genes that contribute to the synthesis of major secondary metabolites in V. officinalis. The R Package Weighted Gene Co-Expression Network Analysis (WGCNA) was employed to analyze the data. Based on the results, some major modules and hub genes were identified to be associated with the valuable secondary metabolites. In addition, some TF-encoding genes, including AP2/ERF-ERF, WRKY and NAC TF families, as well as some regulatory factors including protein kinases and transporters were identified. The results showed that several novel hub genes, such as PCMP-H24, RPS24B, ANX1 and PXL1, may play crucial roles in metabolic pathways. The current findings provide an overall insight into the metabolic pathways of V. officinalis and can expand the potential for engineering genome-scale pathways and systems metabolic engineering to increase the production of bioactive compounds by plants.
Collapse
Affiliation(s)
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, 7144165186, Shiraz, Iran.
| | - Ahmad Tahmasebi
- Institute of Biotechnology, Shiraz University, 7144165186, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, 7144165186, Shiraz, Iran
| |
Collapse
|
5
|
Yi TG, Yeoung YR, Choi IY, Park NI. Transcriptome analysis of Asparagus officinalis reveals genes involved in the biosynthesis of rutin and protodioscin. PLoS One 2019; 14:e0219973. [PMID: 31329616 PMCID: PMC6645489 DOI: 10.1371/journal.pone.0219973] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/05/2019] [Indexed: 12/24/2022] Open
Abstract
Garden asparagus (Asparagus officinalis L.) is a popular vegetable cultivated worldwide. The secondary metabolites in its shoot are helpful for human health. We analyzed A. officinalis transcriptomes and identified differentially expressed genes (DEGs) involved in the biosynthesis of rutin and protodioscin, which are health-promoting functional compounds, and determined their association with stem color. We sequenced the complete mRNA transcriptome using the Illumina high-throughput sequencing platform in one white, three green, and one purple asparagus cultivars. A gene set was generated by de novo assembly of the transcriptome sequences and annotated using a BLASTx search. To investigate the relationship between the contents of rutin and protodioscin and their gene expression levels, rutin and protodioscin were analyzed using high-performance liquid chromatography. A secondary metabolite analysis using high-performance liquid chromatography showed that the rutin content was higher in green asparagus, while the protodioscin content was higher in white asparagus. We studied the genes associated with the biosynthesis of the rutin and protodioscin. The transcriptomes of the five cultivars generated 336 599 498 high-quality clean reads, which were assembled into 239 873 contigs with an average length of 694 bp, using the Trinity v2.4.0 program. The green and white asparagus cultivars showed 58 932 DEGs. A comparison of rutin and protodioscin biosynthesis genes revealed that 12 of the 57 genes associated with rutin and two of the 50 genes associated with protodioscin showed more than four-fold differences in expression. These DEGs might have caused a variation in the contents of these two metabolites between green and white asparagus. The present study is possibly the first to report transcriptomic gene sets in asparagus. The DEGs putatively involved in rutin and protodioscin biosynthesis might be useful for molecular engineering in asparagus.
Collapse
Affiliation(s)
- Tae Gyu Yi
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Young Rog Yeoung
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, Republic of Korea
- * E-mail: (IYC); (NIP)
| | - Nam-Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
- * E-mail: (IYC); (NIP)
| |
Collapse
|
6
|
Comparative transcriptome among Euscaphis konishii Hayata tissues and analysis of genes involved in flavonoid biosynthesis and accumulation. BMC Genomics 2019; 20:24. [PMID: 30626333 PMCID: PMC6327468 DOI: 10.1186/s12864-018-5354-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 12/09/2018] [Indexed: 02/01/2023] Open
Abstract
BACHGROUND Euscaphis konishii Hayata, a member of the Staphyleaceae Family, is a plant that has been widely used in Traditional Chinese Medicine and it has been the source for several types of flavonoids. To identify candidate genes involved in flavonoid biosynthesis and accumulation, we analyzed transcriptome data from three E. konishii tissues (leaf, branch and capsule) using Illumina Hiseq 2000 platform. RESULTS A total of 91.7, 100.3 and 100.1million clean reads were acquired for the leaf, branch and capsule, respectively; and 85,342 unigenes with a mean length of 893.60 bp and N50 length of 1307 nt were assembled using Trinity program. BLASTx analysis allowed to annotate 40,218 unigenes using public protein databases, including NR, KOG/COG/eggNOG, Swiss-Prot, KEGG and GO. A total of 14,291 (16.75%) unigenes were assigned to 128 KEGG pathways, and 900 unigenes were annotated into 22 KEGG secondary metabolites, including flavonoid biosynthesis. The structure enzymes involved in flavonoid biosynthesis, such as phenylalanine ammonia lyase, cinnamate 4-hydroxylase, 4-coumarate CoA ligase, shikimate O-hydroxycinnamoyltransferase, coumaroylquinate 3'-monooxygenase, caffeoyl-CoA O-methyltransferase, chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase, flavonolsynthese, dihydroflavonol 4-reductase, anthocyanidinreductase, leucoanthocyanidin dioxygenase, leucoanthocyanidin reductase, were identified in the transcriptome data, 40 UDP-glycosyltransferase (UGT), 122 Cytochrome P450 (CYP) and 25 O-methyltransferase (OMT) unigenes were also found. A total of 295 unigenes involved in flavonoid transport and 220 transcription factors (97 MYB, 84 bHLH and 39 WD40) were identified. Furthermore, their expression patterns among different tissues were analyzed by DESeq, the differentially expressed genes may play important roles in tissues-specific synthesis, accumulation and modification of flavonoids. CONCLUSION We present here the de novo transcriptome analysis of E. konishii and the identification of candidate genes involved in biosynthesis and accumulation of flavonoid. In general, these results are an important resource for further research on gene expression, genomic and functional genomics in E. konishii and other related species.
Collapse
|
7
|
Tahmasebi A, Ebrahimie E, Pakniyat H, Ebrahimi M, Mohammadi-Dehcheshmeh M. Tissue-specific transcriptional biomarkers in medicinal plants: Application of large-scale meta-analysis and computational systems biology. Gene 2019; 691:114-124. [PMID: 30620887 DOI: 10.1016/j.gene.2018.12.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 12/01/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022]
Abstract
Biosynthesis of secondary metabolites in plant is a complex process, regulated by many genes and influenced by several factors. In recent years, the next-generation sequencing (NGS) technology and advanced statistical analysis such as meta-analysis and computational systems biology have provided novel opportunities to overcome biological complexity. Here, we performed a meta-analysis on publicly available transcriptome datasets of twelve economically significant medicinal plants to identify differentially expressed genes (DEGs) between shoot and root tissues and to find the key molecular features which may be effective in the biosynthesis of secondary metabolites. Meta-analysis identified a total of 880 genes with differential expression between two tissues. Functional enrichment and KEGG pathway analysis indicated that the functions of those DEGs are highly associated with the developmental process, starch metabolic process, response to stimulus, porphyrin and chlorophyll metabolism, biosynthesis of secondary metabolites and phenylalanine metabolism. In addition, systems biology analysis of the DEGs was applied to find protein-protein interaction network and discovery of significant modules. The detected modules were associated with hormone signal transduction, transcription repressor activity, response to light stimulus and epigenetic processes. Finally, analysis was extended to search for putative miRNAs that are associated with DEGs. A total of 31 miRNAs were detected which belonged to 16 conserved families. The present study provides a comprehensive view to better understand the tissue-specific expression of genes and mechanisms involved in secondary metabolites synthesis and may provide candidate genes for future researches to improve yield of secondary metabolites.
Collapse
Affiliation(s)
- Ahmad Tahmasebi
- Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz 7144165186, Iran
| | - Esmaeil Ebrahimie
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; Institute of Biotechnology, Shiraz University, Shiraz 7144165186, Iran; Division of Information Technology, Engineering and the Environment, School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide 5005, Australia; School of Biological Sciences, Faculty of Science and Engineering, Flinders University, Adelaide 5005, Australia.
| | - Hassan Pakniyat
- Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz 7144165186, Iran
| | - Mansour Ebrahimi
- Department of Biology, University of Qom, Qom, 371514661, Iran; Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Manijeh Mohammadi-Dehcheshmeh
- Institute of Biotechnology, Shiraz University, Shiraz 7144165186, Iran; Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
8
|
Deshmukh AB, Datir SS, Bhonde Y, Kelkar N, Samdani P, Tamhane VA. De novo root transcriptome of a medicinally important rare tree Oroxylum indicum for characterization of the flavonoid biosynthesis pathway. PHYTOCHEMISTRY 2018; 156:201-213. [PMID: 30317159 DOI: 10.1016/j.phytochem.2018.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Oroxylum indicum (L.) Kurz is a medicinally important and rare tree species of the family Bignoniaceae. It is rich in flavonoid content and its mature roots are extensively used in Ayurvedic formulations. O. indicum specific flavonoids like oroxylin B, prunetin and oroxindin possess antibacterial, antiproliferative, antioxidant and anticancerous properties, signifying its importance in modern medicine. In the present study, de novo transcriptome analysis of O. indicum root was performed to elucidate the genes involved in flavonoid metabolism. A total of 24,625,398 high quality reads were assembled into 121,286 transcripts with N50 value 1783. The BLASTx search of 81,002 clustered transcripts against Viridiplantae Uniprot database led to annotation of 46,517 transcripts. Furthermore, Gene ontology (GO) revealed that 34,231 transcripts mapped to 3049 GO terms and KEGG analysis demonstrated that 4570 transcripts plausibly involved in 132 biosynthetic pathways. The transcriptome data indicated that cinnamyl-alcohol dehydrogenase (OinCAD) was abundant in phenylpropanoid pathway genes while; naringenin chalcone synthase (OinCHS), flavone synthase (OinFNS) and flavonoid 3', 5'-methyltransferase (OinF35 MT) were abundant in flavonoid, isoflavonoid, flavone and flavonol biosynthesis pathways, respectively. Transcription factor analysis demonstrated the abundance of MYB, bHLH and WD40 transcription factor families, which regulate the flavonoid biosynthesis. Flavonoid pathway genes displayed differential expression in young and old roots of O. indicum. The transcriptome led to the identification of 31 diverse full length Cytochrome P450 (CYP450) genes which may be involved in biosynthesis of specialized metabolites and flavonoids like baicalein and baicalin. Thus, the information obtained in this study will be a valuable tool for identifying genes and developing system biology approaches for in vitro synthesis of specialized O. indicum metabolites.
Collapse
Affiliation(s)
- Aaditi B Deshmukh
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Ganeshkhind Road, Pune, 411007, Maharashtra, India
| | - Sagar S Datir
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007, India
| | - Yogesh Bhonde
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Ganeshkhind Road, Pune, 411007, Maharashtra, India
| | - Natasha Kelkar
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Ganeshkhind Road, Pune, 411007, Maharashtra, India
| | - Pawan Samdani
- Eumentis Cloud, Office, 310, Amenity Building, Rose Icon, Pimple Saudagar, Pune, 411027, India
| | - Vaijayanti A Tamhane
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Ganeshkhind Road, Pune, 411007, Maharashtra, India.
| |
Collapse
|
9
|
Cuong DM, Jeon J, Morgan AMA, Kim C, Kim JK, Lee SY, Park SU. Accumulation of Charantin and Expression of Triterpenoid Biosynthesis Genes in Bitter Melon (Momordica charantia). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7240-7249. [PMID: 28737900 DOI: 10.1021/acs.jafc.7b01948] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Charantin, a natural cucurbitane type triterpenoid, has been reported to have beneficial pharmacological functions such as anticancer, antidiabetic, and antibacterial activities. However, accumulation of charantin in bitter melon has been little studied. Here, we performed a transcriptome analysis to identify genes involved in the triterpenoid biosynthesis pathway in bitter melon seedlings. A total of 88,703 transcripts with an average length of 898 bp were identified in bitter melon seedlings. On the basis of a functional annotation, we identified 15 candidate genes encoding enzymes related to triterpenoid biosynthesis and analyzed their expression in different organs of mature plants. Most genes were highly expressed in flowers and/or fruit from the ripening stages. An HPLC analysis confirmed that the accumulation of charantin was highest in fruits from the ripening stage, followed by male flowers. The accumulation patterns of charantin coincide with the expression pattern of McSE and McCAS1, indicating that these genes play important roles in charantin biosynthesis in bitter melon. We also investigated optimum light conditions for enhancing charantin biosynthesis in bitter melon and found that red light was the most effective wavelength.
Collapse
Affiliation(s)
- Do Manh Cuong
- Department of Crop Science, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Jin Jeon
- Department of Crop Science, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Abubaker M A Morgan
- Department of Crop Science, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Changsoo Kim
- Department of Crop Science, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Jae Kwang Kim
- Division of Life Sciences and Bio-Resource and Environmental Center, Incheon National University , Yeonsu-gu, Incheon 406-772, Korea
| | - Sook Young Lee
- Regional Innovation Center for Dental Science & Engineering, Chosun University , 309 Pilmun-daero, Dong-gu, Gwangju 501-759, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| |
Collapse
|
10
|
Park YJ, Arasu MV, Al-Dhabi NA, Lim SS, Kim YB, Lee SW, Park SU. Expression of Terpenoid Biosynthetic Genes and Accumulation of Chemical Constituents in Valeriana fauriei. Molecules 2016; 21:E691. [PMID: 27240331 PMCID: PMC6274141 DOI: 10.3390/molecules21060691] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 11/16/2022] Open
Abstract
Valeriana fauriei (V. fauriei), which emits a characteristic and unpleasant odor, is important in traditional medicine. In this study, the expression of terpenoid biosynthetic genes was investigated in different organs that were also screened for volatile compounds including valerenic acid and its derivatives. Specific expression patterns from different parts of V. fauriei were observed using quantitative real-time PCR (qRT-PCR). The highest transcript levels of biosynthetic genes involved in mevalonic acid (MVA) and methylerythritol phosphate (MEP) production were found in the stem. Although the amounts of volatile compounds were varied by organ, most of the volatile terpenoids were accumulated in the root. Gas chromatography mass spectrometry (GC-MS) analysis identified 128 volatile compounds, which represented 65.33% to 95.66% of total volatiles. Certain compounds were only found in specific organs. For example, isovalerenic acid and valerenic acid and its derivatives were restricted to the root. Organs with high transcript levels did not necessarily have high levels of the corresponding chemical constituents. According to these results, we hypothesize that translocation may occur between different organs in V. fauriei.
Collapse
Affiliation(s)
- Yun Ji Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Soon Sung Lim
- Department of Food and Nutrition and Institute of Natural Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Yeon Bok Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Bisanro 92, Eumseong, Chungbuk 369-873, Korea.
| | - Sang Won Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Bisanro 92, Eumseong, Chungbuk 369-873, Korea.
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|