1
|
Su QY, Cao YX, Zhang HY, Li YZ, Zhang SX. Leveraging machine learning for drug repurposing in rheumatoid arthritis. Drug Discov Today 2025; 30:104327. [PMID: 40081521 DOI: 10.1016/j.drudis.2025.104327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Rheumatoid arthritis (RA) presents a significant challenge in clinical management because of the dearth of effective drugs despite advances in understanding its mechanisms. Drug repurposing has emerged as a promising strategy to address this gap, offering potential cost savings and expediting drug discovery. Notably, computational methods, particularly machine learning (ML), have shown promise in RA drug repurposing. In this review, we survey various drug-repurposing approaches, both classical and contemporary, highlighting the pivotal role of ML. We summarize RA candidate drugs identified through computational strategies and discuss prevailing challenges in this domain. Leveraging ML, alongside a deepening understanding of RA mechanisms, holds promise for enhancing pharmacological treatment options for patients with RA.
Collapse
Affiliation(s)
- Qin-Yi Su
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi-Xin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China
| | - He-Yi Zhang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China
| | - Yong-Zhi Li
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China
| | - Sheng-Xiao Zhang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Shanxi Province, Taiyuan, China.
| |
Collapse
|
2
|
Waseem T, Rajput TA, Mushtaq MS, Babar MM, Rajadas J. Computational biology approaches for drug repurposing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:91-109. [PMID: 38789189 DOI: 10.1016/bs.pmbts.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The drug discovery and development (DDD) process greatly relies on the data available in various forms to generate hypotheses for novel drug design. The complex and heterogeneous nature of biological data makes it difficult to utilize or gather meaningful information as such. Computational biology techniques have provided us with opportunities to better understand biological systems through refining and organizing large amounts of data into actionable and systematic purviews. The drug repurposing approach has been utilized to overcome the expansive time periods and costs associated with traditional drug development. It deals with discovering new uses of already approved drugs that have an established safety and efficacy profile, thereby, requiring them to go through fewer development phases. Thus, drug repurposing through computational biology provides a systematic approach to drug development and overcomes the constraints of traditional processes. The current chapter covers the basics, approaches and tools of computational biology that can be employed to effectively develop repurposing profile of already approved drug molecules.
Collapse
Affiliation(s)
- Tanya Waseem
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Tausif Ahmed Rajput
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | | | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute and Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States.
| | - Jayakumar Rajadas
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute and Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
3
|
Rajan JR, McDonald S, Bjourson AJ, Zhang SD, Gibson DS. An AI Approach to Identifying Novel Therapeutics for Rheumatoid Arthritis. J Pers Med 2023; 13:1633. [PMID: 38138860 PMCID: PMC10744895 DOI: 10.3390/jpm13121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder that has a significant impact on quality of life and work capacity. Treatment of RA aims to control inflammation and alleviate pain; however, achieving remission with minimal toxicity is frequently not possible with the current suite of drugs. This review aims to summarise current treatment practices and highlight the urgent need for alternative pharmacogenomic approaches for novel drug discovery. These approaches can elucidate new relationships between drugs, genes, and diseases to identify additional effective and safe therapeutic options. This review discusses how computational approaches such as connectivity mapping offer the ability to repurpose FDA-approved drugs beyond their original treatment indication. This review also explores the concept of drug sensitisation to predict co-prescribed drugs with synergistic effects that produce enhanced anti-disease efficacy by involving multiple disease pathways. Challenges of this computational approach are discussed, including the availability of suitable high-quality datasets for comprehensive analysis and other data curation issues. The potential benefits include accelerated identification of novel drug combinations and the ability to trial and implement established treatments in a new index disease. This review underlines the huge opportunity to incorporate disease-related data and drug-related data to develop methods and algorithms that have strong potential to determine novel and effective treatment regimens.
Collapse
Affiliation(s)
- Jency R. Rajan
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK; (J.R.R.); (A.J.B.); (S.-D.Z.)
| | - Stephen McDonald
- Rheumatology Department, Altnagelvin Hospital, Western Health and Social Care Trust, Londonderry BT47 6SB, UK;
| | - Anthony J. Bjourson
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK; (J.R.R.); (A.J.B.); (S.-D.Z.)
| | - Shu-Dong Zhang
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK; (J.R.R.); (A.J.B.); (S.-D.Z.)
| | - David S. Gibson
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK; (J.R.R.); (A.J.B.); (S.-D.Z.)
| |
Collapse
|
4
|
Kubat Oktem E, Aydin B, Yazar M, Arga KY. Integrative Analysis of Motor Neuron and Microglial Transcriptomes from SOD1 G93A Mice Models Uncover Potential Drug Treatments for ALS. J Mol Neurosci 2022; 72:2360-2376. [PMID: 36178612 DOI: 10.1007/s12031-022-02071-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/19/2022] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease of motor neurons that mainly affects the motor cortex, brainstem, and spinal cord. Under disease conditions, microglia could possess two distinct profiles, M1 (toxic) and M2 (protective), with the M2 profile observed at disease onset. SOD1 (superoxide dismutase 1) gene mutations account for up to 20% of familial ALS cases. Comparative gene expression differences in M2-protective (early) stage SOD1G93A microglia and age-matched SOD1G93A motor neurons are poorly understood. We evaluated the differential gene expression profiles in SOD1G93A microglia and SOD1G93A motor neurons utilizing publicly available transcriptomics data and bioinformatics analyses, constructed biomolecular networks around them, and identified gene clusters as potential drug targets. Following a drug repositioning strategy, 5 small compounds (belinostat, auranofin, BRD-K78930611, AZD-8055, and COT-10b) were repositioned as potential ALS therapeutic candidates that mimic the protective state of microglia and reverse the toxic state of motor neurons. We anticipate that this study will provide new insights into the ALS pathophysiology linking the M2 state of microglia and drug repositioning.
Collapse
Affiliation(s)
- Elif Kubat Oktem
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Kuzey Yerleşkesi H Blok, Ünalan Sk. D100 Karayolu Yanyol 34700, Istanbul, Turkey.
| | - Busra Aydin
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, Konya, Turkey
| | - Metin Yazar
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey.,Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey.,Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| |
Collapse
|
5
|
Zhou M, Wang Q, Zheng C, John Rush A, Volkow ND, Xu R. Drug repurposing for opioid use disorders: integration of computational prediction, clinical corroboration, and mechanism of action analyses. Mol Psychiatry 2021; 26:5286-5296. [PMID: 33432189 PMCID: PMC7797705 DOI: 10.1038/s41380-020-01011-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
Morbidity and mortality from opioid use disorders (OUD) and other substance use disorders (SUD) is a major public health crisis, yet there are few medications to treat them. There is an urgency to accelerate SUD medication development. We present an integrated drug repurposing strategy that combines computational prediction, clinical corroboration using electronic health records (EHRs) of over 72.9 million patients and mechanisms of action analysis. Among top-ranked repurposed candidate drugs, tramadol, olanzapine, mirtazapine, bupropion, and atomoxetine were associated with increased odds of OUD remission (adjusted odds ratio: 1.51 [1.38-1.66], 1.90 [1.66-2.18], 1.38 [1.31-1.46], 1.37 [1.29-1.46], 1.48 [1.25-1.76], p value < 0.001, respectively). Genetic and functional analyses showed these five candidate drugs directly target multiple OUD-associated genes including BDNF, CYP2D6, OPRD1, OPRK1, OPRM1, HTR1B, POMC, SLC6A4 and OUD-associated pathways, including opioid signaling, G-protein activation, serotonin receptors, and GPCR signaling. In summary, we developed an integrated drug repurposing approach and identified five repurposed candidate drugs that might be of value for treating OUD patients, including those suffering from comorbid conditions.
Collapse
Affiliation(s)
- Mengshi Zhou
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University, Cleveland, OH, USA
- Department of Mathematics & Statistics, Saint Cloud State University, Saint Cloud, MN, USA
| | - QuanQiu Wang
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University, Cleveland, OH, USA
| | - Chunlei Zheng
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University, Cleveland, OH, USA
| | - A John Rush
- Duke University School of Medicine, Durham, NC, USA
- Duke-National University of Singapore, Singapore, Singapore
- Texas-Tech Health Sciences Center, Permian Basin, Odessa, TX, USA
| | - Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
6
|
Al-Taie Z, Liu D, Mitchem JB, Papageorgiou C, Kaifi JT, Warren WC, Shyu CR. Explainable artificial intelligence in high-throughput drug repositioning for subgroup stratifications with interventionable potential. J Biomed Inform 2021; 118:103792. [PMID: 33915273 DOI: 10.1016/j.jbi.2021.103792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023]
Abstract
Enabling precision medicine requires developing robust patient stratification methods as well as drugs tailored to homogeneous subgroups of patients from a heterogeneous population. Developing de novo drugs is expensive and time consuming with an ultimately low FDA approval rate. These limitations make developing new drugs for a small portion of a disease population unfeasible. Therefore, drug repositioning is an essential alternative for developing new drugs for a disease subpopulation. This shows the importance of developing data-driven approaches that find druggable homogeneous subgroups within the disease population and reposition the drugs for these subgroups. In this study, we developed an explainable AI approach for patient stratification and drug repositioning. Contrast pattern mining and network analysis were used to discover homogeneous subgroups within a disease population. For each subgroup, a biomedical network analysis was done to find the drugs that are most relevant to a given subgroup of patients. The set of candidate drugs for each subgroup was ranked using an aggregated drug score assigned to each drug. The proposed method represents a human-in-the-loop framework, where medical experts use the data-driven results to generate hypotheses and obtain insights into potential therapeutic candidates for patients who belong to a subgroup. Colorectal cancer (CRC) was used as a case study. Patients' phenotypic and genotypic data was utilized with a heterogeneous knowledge base because it gives a multi-view perspective for finding new indications for drugs outside of their original use. Our analysis of the top candidate drugs for the subgroups identified by medical experts showed that most of these drugs are cancer-related, and most of them have the potential to be a CRC regimen based on studies in the literature.
Collapse
Affiliation(s)
- Zainab Al-Taie
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Department of Computer Science, College of Science for Women, University of Baghdad, Baghdad, Iraq
| | - Danlu Liu
- Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO 65211, USA
| | - Jonathan B Mitchem
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA.
| | - Christos Papageorgiou
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Jussuf T Kaifi
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA
| | - Wesley C Warren
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - Chi-Ren Shyu
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO 65211, USA; Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
7
|
Zhou M, Zheng C, Xu R. Combining phenome-driven drug-target interaction prediction with patients' electronic health records-based clinical corroboration toward drug discovery. Bioinformatics 2021; 36:i436-i444. [PMID: 32657406 PMCID: PMC7355254 DOI: 10.1093/bioinformatics/btaa451] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Motivation Predicting drug–target interactions (DTIs) using human phenotypic data have the potential in eliminating the translational gap between animal experiments and clinical outcomes in humans. One challenge in human phenome-driven DTI predictions is integrating and modeling diverse drug and disease phenotypic relationships. Leveraging large amounts of clinical observed phenotypes of drugs and diseases and electronic health records (EHRs) of 72 million patients, we developed a novel integrated computational drug discovery approach by seamlessly combining DTI prediction and clinical corroboration. Results We developed a network-based DTI prediction system (TargetPredict) by modeling 855 904 phenotypic and genetic relationships among 1430 drugs, 4251 side effects, 1059 diseases and 17 860 genes. We systematically evaluated TargetPredict in de novo cross-validation and compared it to a state-of-the-art phenome-driven DTI prediction approach. We applied TargetPredict in identifying novel repositioned candidate drugs for Alzheimer’s disease (AD), a disease affecting over 5.8 million people in the United States. We evaluated the clinical efficiency of top repositioned drug candidates using EHRs of over 72 million patients. The area under the receiver operating characteristic (ROC) curve was 0.97 in the de novo cross-validation when evaluated using 910 drugs. TargetPredict outperformed a state-of-the-art phenome-driven DTI prediction system as measured by precision–recall curves [measured by average precision (MAP): 0.28 versus 0.23, P-value < 0.0001]. The EHR-based case–control studies identified that the prescriptions top-ranked repositioned drugs are significantly associated with lower odds of AD diagnosis. For example, we showed that the prescription of liraglutide, a type 2 diabetes drug, is significantly associated with decreased risk of AD diagnosis [adjusted odds ratios (AORs): 0.76; 95% confidence intervals (CI) (0.70, 0.82), P-value < 0.0001]. In summary, our integrated approach that seamlessly combines computational DTI prediction and large-scale patients’ EHRs-based clinical corroboration has high potential in rapidly identifying novel drug targets and drug candidates for complex diseases. Availability and implementation nlp.case.edu/public/data/TargetPredict.
Collapse
Affiliation(s)
- Mengshi Zhou
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chunlei Zheng
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Wang Q, Xu R. CoMNRank: An integrated approach to extract and prioritize human microbial metabolites from MEDLINE records. J Biomed Inform 2020; 109:103524. [PMID: 32791237 DOI: 10.1016/j.jbi.2020.103524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
MOTIVATION Trillions of bacteria in human body (human microbiota) affect human health and diseases by controlling host functions through small molecule metabolites.An accurate and comprehensive catalog of the metabolic output from human microbiota is critical for our deep understanding of how microbial metabolism contributes to human health.The large number of published biomedical research articles is a rich resource of microbiome studies.However, automatically extracting microbial metabolites from free-text documents and differentiating them from other human metabolites is a challenging task.Here we developed an integrated approach called Co-occurrence Metabolite Network Ranking (CoMNRank) by combining named entity extraction, network construction and topic sensitive network-based prioritization to extract and prioritize microbial metabolites from biomedical articles. METHODS The text data included 28,851,232 MEDLINE records.CoMNRank consists of three steps: (1) extraction of human metabolites from MEDLINE records; (2) construction of a weighted co-occurrence metabolite network (CoMN); (3) prioritization and differentiation of microbial metabolites from other human metabolites. RESULTS For the first step of CoMNRank, we extracted 11,846 human metabolites from MEDLINE articles, with a baseline performance of precision of 0.014, recall of 0.959 and F1 of 0.028.We then constructed a weighted CoMN of 6,996 nodes and 986,186 edges.CoMNRank effectively prioritized microbial metabolites: the precision of top ranked metabolites is 0.45, a 31-fold enrichment as compared to the overall precision of 0.014.Manual curation of top 100 metabolites showed a true precision of 0.67, among which 48% true positives are not captured by existing databases. CONCLUSION Our study sets the foundation for future tasks of microbial entity and relationship extractions as well as data-driven studies of how microbial metabolism contributes to human health and diseases.
Collapse
Affiliation(s)
- QuanQiu Wang
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
9
|
Drug repurposing to improve treatment of rheumatic autoimmune inflammatory diseases. Nat Rev Rheumatol 2019; 16:32-52. [PMID: 31831878 DOI: 10.1038/s41584-019-0337-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2019] [Indexed: 02/08/2023]
Abstract
The past century has been characterized by intensive efforts, within both academia and the pharmaceutical industry, to introduce new treatments to individuals with rheumatic autoimmune inflammatory diseases (RAIDs), often by 'borrowing' treatments already employed in one RAID or previously used in an entirely different disease, a concept known as drug repurposing. However, despite sharing some clinical manifestations and immune dysregulation, disease pathogenesis and phenotype vary greatly among RAIDs, and limited understanding of their aetiology has made repurposing drugs for RAIDs challenging. Nevertheless, the past century has been characterized by different 'waves' of repurposing. Early drug repurposing occurred in academia and was based on serendipitous observations or perceived disease similarity, often driven by the availability and popularity of drug classes. Since the 1990s, most biologic therapies have been developed for one or several RAIDs and then tested among the others, with varying levels of success. The past two decades have seen data-driven repurposing characterized by signature-based approaches that rely on molecular biology and genomics. Additionally, many data-driven strategies employ computational modelling and machine learning to integrate multiple sources of data. Together, these repurposing periods have led to advances in the treatment for many RAIDs.
Collapse
|
10
|
Systematic analysis of genes and diseases using PheWAS-Associated networks. Comput Biol Med 2019; 109:311-321. [PMID: 31128465 DOI: 10.1016/j.compbiomed.2019.04.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 02/08/2023]
|
11
|
GNS HS, GR S, Murahari M, Krishnamurthy M. An update on Drug Repurposing: Re-written saga of the drug’s fate. Biomed Pharmacother 2019; 110:700-716. [DOI: 10.1016/j.biopha.2018.11.127] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/16/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
|
12
|
Wang Q, Xu R. Disease comorbidity-guided drug repositioning: a case study in schizophrenia. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2018; 2018:1300-1309. [PMID: 30815174 PMCID: PMC6371343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The key to any computational drug repositioning is the availability of relevant data in machine-understandable format. While large amount of genetic, genomic and chemical data are publicly available, large-scale higher-level disease and drug phenotypic data are limited. We recently constructed a large-scale disease-comorbidity relationship knowledge base (dCombKB) and a comprehensive drug-treatment relationship knowledge base (TreatKB) from 21 million biomedical research articles and other resources. In this study, we demonstrated the potential of dCombKB and TreatKB in drug repositioning for schizophrenia, one of the top ten illnesses contributing to the global burden of disease. dCombKB contains 121,359 unique disease-disease comorbidity pairs for 23,041 diseases. TreatKB contains 208,330 unique drug-disease treatment pairs for 2,484 drugs and 24,511 diseases. We constructed a phenotypic comorbidity disease network (PDN) of 14,645 disease nodes and 101,275 edges based on dCombKB. We applied standard network-based ranking algorithm to find diseases that are phenotypically related to SCZ. We developed a drug prioritization system, PhenoPredict-CDN, to systematically reposition drugs for SCZ from diseases phenotypically related to SCZ. PhenoPredict-CDN found all 18 FDA-approved SCZ drugs and ranked them highly as tested in a de-novo validation setting (recall: 1.0, mean ranking: top 6.05%, median ranking: top 1.65%). When compared to PREDICT, a comprehensive drug repositioning system, for novel predictions, Pheno-Predict-CDN outperformed PREDICT in Precision-Recall (PR) curves across three different evaluation datasets. Compared to PREDICT, PhenoPredict-CDN showed a significant 110.0-230.0% improvements in mean average precision. In summary, large-scale higher-level disease-comorbidity relationships data extracted from biomedical literature has potential in drug discovery for SCZ, a complex disease with unknown pathophysiological mechanisms. All the data are publicly available: dCombKB at http://nlp. CASE edu/public/data/dCombKB, TreatKB at http://nlp. CASE edu/public/data/treatKB/, and predictions for SCZ at http://nlp. CASE edu/public/data/SCZ_CDN/.
Collapse
Affiliation(s)
- QuanQiu Wang
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland OH 44106
| | - Rong Xu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland OH 44106
| |
Collapse
|
13
|
Glaab E. Computational systems biology approaches for Parkinson's disease. Cell Tissue Res 2018; 373:91-109. [PMID: 29185073 PMCID: PMC6015628 DOI: 10.1007/s00441-017-2734-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is a prime example of a complex and heterogeneous disorder, characterized by multifaceted and varied motor- and non-motor symptoms and different possible interplays of genetic and environmental risk factors. While investigations of individual PD-causing mutations and risk factors in isolation are providing important insights to improve our understanding of the molecular mechanisms behind PD, there is a growing consensus that a more complete understanding of these mechanisms will require an integrative modeling of multifactorial disease-associated perturbations in molecular networks. Identifying and interpreting the combinatorial effects of multiple PD-associated molecular changes may pave the way towards an earlier and reliable diagnosis and more effective therapeutic interventions. This review provides an overview of computational systems biology approaches developed in recent years to study multifactorial molecular alterations in complex disorders, with a focus on PD research applications. Strengths and weaknesses of different cellular pathway and network analyses, and multivariate machine learning techniques for investigating PD-related omics data are discussed, and strategies proposed to exploit the synergies of multiple biological knowledge and data sources. A final outlook provides an overview of specific challenges and possible next steps for translating systems biology findings in PD to new omics-based diagnostic tools and targeted, drug-based therapeutic approaches.
Collapse
Affiliation(s)
- Enrico Glaab
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
14
|
Wang Q, Li L, Xu R. A systems biology approach to predict and characterize human gut microbial metabolites in colorectal cancer. Sci Rep 2018; 8:6225. [PMID: 29670137 PMCID: PMC5906656 DOI: 10.1038/s41598-018-24315-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/26/2018] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths. It is estimated that about half the cases of CRC occurring today are preventable. Recent studies showed that human gut microbiota and their collective metabolic outputs play important roles in CRC. However, the mechanisms by which human gut microbial metabolites interact with host genetics in contributing CRC remain largely unknown. We hypothesize that computational approaches that integrate and analyze vast amounts of publicly available biomedical data have great potential in better understanding how human gut microbial metabolites are mechanistically involved in CRC. Leveraging vast amount of publicly available data, we developed a computational algorithm to predict human gut microbial metabolites for CRC. We validated the prediction algorithm by showing that previously known CRC-associated gut microbial metabolites ranked highly (mean ranking: top 10.52%; median ranking: 6.29%; p-value: 3.85E-16). Moreover, we identified new gut microbial metabolites likely associated with CRC. Through computational analysis, we propose potential roles for tartaric acid, the top one ranked metabolite, in CRC etiology. In summary, our data-driven computation-based study generated a large amount of associations that could serve as a starting point for further experiments to refute or validate these microbial metabolite associations in CRC cancer.
Collapse
Affiliation(s)
| | - Li Li
- Department of Family Medicine and Community Health, Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Rong Xu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio, 44106, USA.
| |
Collapse
|
15
|
Using a novel computational drug-repositioning approach (DrugPredict) to rapidly identify potent drug candidates for cancer treatment. Oncogene 2017; 37:403-414. [PMID: 28967908 PMCID: PMC5799769 DOI: 10.1038/onc.2017.328] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 12/25/2022]
Abstract
Computation-based drug-repurposing/repositioning approaches can greatly speed up the traditional drug discovery process. To date, systematic and comprehensive computation-based approaches to identify and validate drug-repositioning candidates for epithelial ovarian cancer (EOC) have not been undertaken. Here, we present a novel drug discovery strategy that combines a computational drug-repositioning system (DrugPredict) with biological testing in cell lines in order to rapidly identify novel drug candidates for EOC. DrugPredict exploited unique repositioning opportunities rendered by a vast amount of disease genomics, phenomics, drug treatment, and genetic pathway and uniquely revealed that non-steroidal anti-inflammatories (NSAIDs) rank just as high as currently used ovarian cancer drugs. As epidemiological studies have reported decreased incidence of ovarian cancer associated with regular intake of NSAIDs, we assessed whether NSAIDs could have chemoadjuvant applications in EOC and found that (i) NSAID Indomethacin induces robust cell death in primary patient-derived platinum-sensitive and platinum- resistant ovarian cancer cells and ovarian cancer stem cells and (ii) downregulation of β-catenin is partially driving effects of Indomethacin in cisplatin-resistant cells. In summary, we demonstrate that DrugPredict represents an innovative computational drug- discovery strategy to uncover drugs that are routinely used for other indications that could be effective in treating various cancers, thus introducing a potentially rapid and cost-effective translational opportunity. As NSAIDs are already in routine use in gynecological treatment regimens and have acceptable safety profile, our results will provide with a rationale for testing NSAIDs as potential chemoadjuvants in EOC patient trials.
Collapse
|
16
|
Vogrinc D, Kunej T. Drug repositioning: computational approaches and research examples classified according to the evidence level. Discoveries (Craiova) 2017; 5:e75. [PMID: 32309593 PMCID: PMC6941545 DOI: 10.15190/d.2017.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 01/04/2023] Open
Abstract
Increasing need for novel drugs and their application for treating diseases are the main reasons for the development of bioinformatics platforms for drug repositioning. The use of existing approved drugs for treating other diseases reduces cost and time needed for a drug to come to clinical use. Different strategies for drug repositioning have been reported. The use of several omics types is becoming increasingly important in drug repositioning. Although there are several public databases intended for drug repositioning, not many successful cases of novel use of drugs have been reported in the literature and transferred to clinical use. Additionally, the study approaches in published literature are very heterogeneous. A classification scheme - Drug Repositioning Evidence Level (DREL) - for drug repositioning projects, according to the level of scientific evidence has been proposed previously. In the present study, we have reviewed main databases and bioinformatics approaches enabling drug repositioning studies. We also reviewed six published studies and evaluated them according to the DREL classification. The evaluated cases used drug repositioning approach for therapy of rheumatoid arthritis, cancer, coronary artery disease, diabetes, and gulf war illness. The drug repositioning study field could benefit from clearer definition in published articles therefore including drug repositioning DREL classification scheme could be included in published original and review studies. Novel bioinformatics approaches to improve prediction of drug-target interactions, continuous updating of the databases, and development of novel validation techniques are needed to facilitate the development of the drug repositioning field. Although there are still many challenges in drug repositioning and personalized medicine, stratification of patients based on their molecular signatures and testing of signature-targeting drugs should improve drug efficacy in clinical trials.
Collapse
Affiliation(s)
- David Vogrinc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Slovenia
| |
Collapse
|
17
|
Huang K, Liu Y, Huang Y, Li L, Cooper L, Ruan J, Zhao Z. Intelligent biology and medicine in 2015: advancing interdisciplinary education, collaboration, and data science. BMC Genomics 2016; 17 Suppl 7:524. [PMID: 27556295 PMCID: PMC5001210 DOI: 10.1186/s12864-016-2893-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We summarize the 2015 International Conference on Intelligent Biology and Medicine (ICIBM 2015) and the editorial report of the supplement to BMC Genomics. The supplement includes 20 research articles selected from the manuscripts submitted to ICIBM 2015. The conference was held on November 13-15, 2015 at Indianapolis, Indiana, USA. It included eight scientific sessions, three tutorials, four keynote presentations, three highlight talks, and a poster session that covered current research in bioinformatics, systems biology, computational biology, biotechnologies, and computational medicine.
Collapse
Affiliation(s)
- Kun Huang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210 USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Yufei Huang
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Lang Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Lee Cooper
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322 USA
- Department of Biomedical Engineering, Emory University / Georgia Institute of Technology, Atlanta, GA 30322 USA
| | - Jianhua Ruan
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249 USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| |
Collapse
|