1
|
Bhardwaj RG, Khalaf ME, Karched M. Secretome analysis and virulence assessment in Abiotrophia defectiva. J Oral Microbiol 2024; 16:2307067. [PMID: 38352067 PMCID: PMC10863525 DOI: 10.1080/20002297.2024.2307067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
Background Abiotrophia defectiva, although infrequently occurring, is a notable cause of culture-negative infective endocarditis with limited research on its virulence. Associated with oral infections such as dental caries, exploring its secretome may provide insights into virulence mechanisms. Our study aimed to analyze and characterize the secretome of A. defectiva strain CCUG 27639. Methods Secretome of A. defectiva was prepared from broth cultures and subjected to mass spectrometry and proteomics for protein identification. Inflammatory potential of the secretome was assessed by ELISA. Results Eighty-four proteins were identified, with diverse subcellular localizations predicted by PSORTb. Notably, 20 were cytoplasmic, 12 cytoplasmic membrane, 5 extracellular, and 9 cell wall-anchored proteins. Bioinformatics tools revealed 54 proteins secreted via the 'Sec' pathway and 8 via a non-classical pathway. Moonlighting functions were found in 23 proteins, with over 20 exhibiting potential virulence properties, including peroxiredoxin and oligopeptide ABC transporter substrate-binding protein. Gene Ontology and KEGG analyses categorized protein sequences in various pathways. STRING analysis revealed functional protein association networks. Cytokine profiling demonstrated significant proinflammatory cytokine release (IL-8, IL-1β, and CCL5) from human PBMCs. Conclusions Our study provides a comprehensive understanding of A. defectiva's secretome, laying the foundation for insights into its pathogenicity.
Collapse
Affiliation(s)
- Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences College of Dentistry, Kuwait University, Safat, Kuwait
| | - Mai E Khalaf
- Department of General Dental Practice, College of Dentistry, Kuwait University, Safat, Kuwait
| | - Maribasappa Karched
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences College of Dentistry, Kuwait University, Safat, Kuwait
| |
Collapse
|
2
|
Carreón-Anguiano KG, Gómez-Tah R, Pech-Balan E, Ek-Hernández GE, De los Santos-Briones C, Islas-Flores I, Canto-Canché B. Pseudocercospora fijiensis Conidial Germination Is Dominated by Pathogenicity Factors and Effectors. J Fungi (Basel) 2023; 9:970. [PMID: 37888226 PMCID: PMC10607838 DOI: 10.3390/jof9100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Conidia play a vital role in the survival and rapid spread of fungi. Many biological processes of conidia, such as adhesion, signal transduction, the regulation of oxidative stress, and autophagy, have been well studied. In contrast, the contribution of pathogenicity factors during the development of conidia in fungal phytopathogens has been poorly investigated. To date, few reports have centered on the pathogenicity functions of fungal phytopathogen conidia. Pseudocercospora fijiensis is a hemibiotrophic fungus and the causal agent of the black Sigatoka disease in bananas and plantains. Here, a conidial transcriptome of P. fijiensis was characterized computationally. Carbohydrates, amino acids, and lipid metabolisms presented the highest number of annotations in Gene Ontology. Common conidial functions were found, but interestingly, pathogenicity factors and effectors were also identified. Upon analysis of the resulting proteins against the Pathogen-Host Interaction (PHI) database, 754 hits were identified. WideEffHunter and EffHunter effector predictors identified 618 effectors, 265 of them were shared with the PHI database. A total of 1107 conidial functions devoted to pathogenesis were found after our analysis. Regarding the conidial effectorome, it was found to comprise 40 canonical and 578 non-canonical effectors. Effectorome characterization revealed that RXLR, LysM, and Y/F/WxC are the largest effector families in the P. fijiensis conidial effectorome. Gene Ontology classification suggests that they are involved in many biological processes and metabolisms, expanding our current knowledge of fungal effectors.
Collapse
Affiliation(s)
- Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Rufino Gómez-Tah
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Efren Pech-Balan
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Gemaly Elisama Ek-Hernández
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - César De los Santos-Briones
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico;
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| |
Collapse
|
3
|
Kiss A, Hariri Akbari F, Marchev A, Papp V, Mirmazloum I. The Cytotoxic Properties of Extreme Fungi's Bioactive Components-An Updated Metabolic and Omics Overview. Life (Basel) 2023; 13:1623. [PMID: 37629481 PMCID: PMC10455657 DOI: 10.3390/life13081623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are the most diverse living organisms on planet Earth, where their ubiquitous presence in various ecosystems offers vast potential for the research and discovery of new, naturally occurring medicinal products. Concerning human health, cancer remains one of the leading causes of mortality. While extensive research is being conducted on treatments and their efficacy in various stages of cancer, finding cytotoxic drugs that target tumor cells with no/less toxicity toward normal tissue is a significant challenge. In addition, traditional cancer treatments continue to suffer from chemical resistance. Fortunately, the cytotoxic properties of several natural products derived from various microorganisms, including fungi, are now well-established. The current review aims to extract and consolidate the findings of various scientific studies that identified fungi-derived bioactive metabolites with antitumor (anticancer) properties. The antitumor secondary metabolites identified from extremophilic and extremotolerant fungi are grouped according to their biological activity and type. It became evident that the significance of these compounds, with their medicinal properties and their potential application in cancer treatment, is tremendous. Furthermore, the utilization of omics tools, analysis, and genome mining technology to identify the novel metabolites for targeted treatments is discussed. Through this review, we tried to accentuate the invaluable importance of fungi grown in extreme environments and the necessity of innovative research in discovering naturally occurring bioactive compounds for the development of novel cancer treatments.
Collapse
Affiliation(s)
- Attila Kiss
- Agro-Food Science Techtransfer and Innovation Centre, Faculty for Agro, Food and Environmental Science, Debrecen University, 4032 Debrecen, Hungary;
| | - Farhad Hariri Akbari
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Andrey Marchev
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria
| | - Viktor Papp
- Department of Botany, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | - Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| |
Collapse
|
4
|
Noar RD, Thomas E, Daub ME. Genetic Characteristics and Metabolic Interactions between Pseudocercospora fijiensis and Banana: Progress toward Controlling Black Sigatoka. PLANTS (BASEL, SWITZERLAND) 2022; 11:948. [PMID: 35406928 PMCID: PMC9002641 DOI: 10.3390/plants11070948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 05/10/2023]
Abstract
The international importance of banana and severity of black Sigatoka disease have led to extensive investigations into the genetic characteristics and metabolic interactions between the Dothideomycete Pseudocercospora fijiensis and its banana host. P. fijiensis was shown to have a greatly expanded genome compared to other Dothideomycetes, due to the proliferation of retrotransposons. Genome analysis suggests the presence of dispensable chromosomes that may aid in fungal adaptation as well as pathogenicity. Genomic research has led to the characterization of genes and metabolic pathways involved in pathogenicity, including: secondary metabolism genes such as PKS10-2, genes for mitogen-activated protein kinases such as Fus3 and Slt2, and genes for cell wall proteins such as glucosyl phosphatidylinositol (GPI) and glycophospholipid surface (Gas) proteins. Studies conducted on resistance mechanisms in banana have documented the role of jasmonic acid and ethylene pathways. With the development of banana transformation protocols, strategies for engineering resistance include transgenes expressing antimicrobial peptides or hydrolytic enzymes as well as host-induced gene silencing (HIGS) targeting pathogenicity genes. Pseudocercospora fijiensis has been identified as having high evolutionary potential, given its large genome size, ability to reproduce both sexually and asexually, and long-distance spore dispersal. Thus, multiple control measures are needed for the sustainable control of black Sigatoka disease.
Collapse
Affiliation(s)
- Roslyn D. Noar
- NSF Center for Integrated Pest Management, North Carolina State University, Raleigh, NC 27606, USA
| | - Elizabeth Thomas
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA; (E.T.); (M.E.D.)
| | - Margaret E. Daub
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA; (E.T.); (M.E.D.)
| |
Collapse
|
5
|
Dumartinet T, Ravel S, Roussel V, Perez-Vicente L, Aguayo J, Abadie C, Carlier J. Complex adaptive architecture underlies adaptation to quantitative host resistance in a fungal plant pathogen. Mol Ecol 2021; 31:1160-1179. [PMID: 34845779 DOI: 10.1111/mec.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022]
Abstract
Plant pathogens often adapt to plant genetic resistance so characterization of the architecture underlying such an adaptation is required to understand the adaptive potential of pathogen populations. Erosion of banana quantitative resistance to a major leaf disease caused by polygenic adaptation of the causal agent, the fungus Pseudocercospora fijiensis, was recently identified in the northern Caribbean region. Genome scan and quantitative genetics approaches were combined to investigate the adaptive architecture underlying this adaptation. Thirty-two genomic regions showing host selection footprints were identified by pool sequencing of isolates collected from seven plantation pairs of two cultivars with different levels of quantitative resistance. Individual sequencing and phenotyping of isolates from one pair revealed significant and variable levels of correlation between haplotypes in 17 of these regions with a quantitative trait of pathogenicity (the diseased leaf area). The multilocus pattern of haplotypes detected in the 17 regions was found to be highly variable across all the population pairs studied. These results suggest complex adaptive architecture underlying plant pathogen adaptation to quantitative resistance with a polygenic basis, redundancy, and a low level of parallel evolution between pathogen populations. Candidate genes involved in quantitative pathogenicity and host adaptation of P. fijiensis were identified in genomic regions by combining annotation analysis with available biological data.
Collapse
Affiliation(s)
- Thomas Dumartinet
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Sébastien Ravel
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Véronique Roussel
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
| | | | - Jaime Aguayo
- ANSES, Laboratoire de la Santé des Végétaux (LSV), Unité de Mycologie, Malzéville, France
| | - Catherine Abadie
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Jean Carlier
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
6
|
A polyketide synthase gene cluster required for pathogenicity of Pseudocercospora fijiensis on banana. PLoS One 2021; 16:e0258981. [PMID: 34705882 PMCID: PMC8550591 DOI: 10.1371/journal.pone.0258981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/09/2021] [Indexed: 11/19/2022] Open
Abstract
Pseudocercospora fijiensis is the causal agent of the highly destructive black Sigatoka disease of banana. Previous research has focused on polyketide synthase gene clusters in the fungus, given the importance of polyketide pathways in related plant pathogenic fungi. A time course study of expression of the previously identified PKS7-1, PKS8-2, and PKS10-2 gene clusters showed high expression of all three PKS genes and the associated clustered genes in infected banana plants from 2 weeks post-inoculation through 9 weeks. Engineered transformants silenced for PKS8-2 and PKS10-2 were developed and tested for pathogenicity. Inoculation of banana plants with silencing transformants for PKS10-2 showed significant reduction in disease symptoms and severity that correlated with the degree of silencing in the conidia used for inoculation, supporting a critical role for PKS10-2 in disease development. Unlike PKS10-2, a clear role for PKS8-2 could not be determined. Two of four PKS8-2 silencing transformants showed reduced disease development, but disease did not correlate with the degree of PKS8-2 silencing in the transformants. Overall, the degree of silencing obtained for the PKS8-2 transformants was less than that obtained for the PKS10-2 transformants, which may have limited the utility of the silencing strategy to identify a role for PKS8-2 in disease. Orthologous PKS10-2 clusters had previously been identified in the related banana pathogens Pseudocercospora musae and Pseudocercospora eumusae. Genome analysis identified orthologous gene clusters to that of PKS10-2 in the newly sequenced genomes of Pseudocercospora fuligena and Pseudocercospora cruenta, pathogens of tomato and cowpea, respectively. Our results support an important role for the PKS10-2 polyketide pathway in pathogenicity of Pseudocercospora fijiensis, and suggest a possible role for this pathway in disease development by other Pseudocercospora species.
Collapse
|
7
|
Abstract
Plant pathogens can adapt to quantitative resistance, eroding its effectiveness. The aim of this work was to reveal the genomic basis of adaptation to such a resistance in populations of the fungus Pseudocercospora fijiensis, a major devastating pathogen of banana, by studying convergent adaptation on different cultivars. Samples from P. fijiensis populations showing a local adaptation pattern on new banana hybrids with quantitative resistance were compared, based on a genome scan approach, with samples from traditional and more susceptible cultivars in Cuba and the Dominican Republic. Whole-genome sequencing of pools of P. fijiensis isolates (pool-seq) sampled from three locations per country was conducted according to a paired population design. The findings of different combined analyses highly supported the existence of convergent adaptation on the study cultivars between locations within but not between countries. Five to six genomic regions involved in this adaptation were detected in each country. An annotation analysis and available biological data supported the hypothesis that some genes within the detected genomic regions may play a role in quantitative pathogenicity, including gene regulation. The results suggested that the genetic basis of fungal adaptation to quantitative plant resistance is at least oligogenic, while highlighting the existence of specific host-pathogen interactions for this kind of resistance.IMPORTANCE Understanding the genetic basis of pathogen adaptation to quantitative resistance in plants has a key role to play in establishing durable strategies for resistance deployment. In this context, a population genomic approach was developed for a major plant pathogen (the fungus Pseudocercospora fijiensis causing black leaf streak disease of banana) whereby samples from new resistant banana hybrids were compared with samples from more susceptible conventional cultivars in two countries. A total of 11 genomic regions for which there was strong evidence of selection by quantitative resistance were detected. An annotation analysis and available biological data supported the hypothesis that some of the genes within these regions may play a role in quantitative pathogenicity. These results suggested a polygenic basis of quantitative pathogenicity in this fungal pathogen and complex molecular plant-pathogen interactions in quantitative disease development involving several genes on both sides.
Collapse
|
8
|
Chí Manzanero B, Carreón Anguiano KG, Anna Todd JN, Gómez Tah R, Grijalva Arango R, Tzec Simá MA, Canto Canché B. Analysis of Pseudocercospora fijiensis genes upregulated during early interaction with Musa acuminata (var. Dwarf Cavendish). BIONATURA 2021. [DOI: 10.21931/rb/2021.06.01.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Pseudocercospora fijiensis is a filamentous, hemi[B1] biotrophic fungus whose infection process in banana comprises biotrophic and necrotrophic phases; the biotrophic phase is the longer and less damaging of the two but is nonetheless a crucial stage of fungal establishment in the host. To discover the genes essential in this stage, we conducted an interaction experiment to isolate the transcriptome of the P. fijiensis and Musa acuminata interaction during the first 9 days of infection. Of more than 7000 P. fijiensis genes identified, the fifteen most highly expressed genes (RPKM>500) were analyzed. Specific non-canonical effector candidates were identified following in silico characterization which may be fundamental to pathogenicity. This report reveals essential details of a poorly-elucidated stage of the P. fijiensis-Musa sp. pathosystem.
Collapse
Affiliation(s)
- Bartolomé Chí Manzanero
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| | - Karla Gisel Carreón Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| | - Jewel Nicole Anna Todd
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| | - Rufino Gómez Tah
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| | - Rosa Grijalva Arango
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| | - Miguel A. Tzec Simá
- Unidad de Boquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| | - Blondy Canto Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| |
Collapse
|
9
|
Proteomics of extracellular vesicles produced by Granulicatella adiacens, which causes infective endocarditis. PLoS One 2020; 15:e0227657. [PMID: 33216751 PMCID: PMC7679012 DOI: 10.1371/journal.pone.0227657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
When oral bacteria accidentally enter the bloodstream due to transient tissue damage during dental procedures, they have the potential to attach to the endocardium or an equivalent surface of an indwelling prosthesis and cause infection. Many bacterial species produce extracellular vesicles (EVs) as part of normal physiology, but also use it as a virulence strategy. In this study, it was hypothesized that Granulicatella adiacens produce EVs that possibly help it in virulence. Therefore, the objectives were to isolate and characterize EVs produced by G. adiacens and to investigate its immune-stimulatory effects. The reference strain G. adiacens CCUG 27809 was cultured on chocolate blood agar for 2 days. From subsequent broth culture, the EVs were isolated using differential centrifugation and filtration protocol and then observed using scanning electron microscopy. Proteins in the vesicle preparation were identified by nano LC-ESI-MS/MS. The EVs proteome was analyzed and characterized using different bioinformatics tools. The immune-stimulatory effect of the EVs was studied via ELISA quantification of IL-8, IL-1β and CCL5, major proinflammatory cytokines, produced from stimulated human PBMCs. It was revealed that G. adiacens produced EVs, ranging in diameter from 30 to 250 nm. Overall, G. adiacens EVs contained 112 proteins. The proteome consists of several ribosomal proteins, DNA associated proteins, binding proteins, and metabolic enzymes. It was also shown that these EVs carry putative virulence factors including moonlighting proteins. These EVs were able to induce the production of IL-8, IL-1β and CCL5 from human PBMCs. Further functional characterization of the G. adiacens EVs may provide new insights into virulence mechanisms of this important but less studied oral bacterial species.
Collapse
|
10
|
Akinsanmi OA, Carvalhais LC. Draft Genome of the Macadamia Husk Spot Pathogen, Pseudocercospora macadamiae. PHYTOPATHOLOGY 2020; 110:1503-1506. [PMID: 32343617 DOI: 10.1094/phyto-12-19-0460-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pseudocercospora macadamiae causes husk spot in macadamia in Australia. Lack of genomic resources for this pathogen has restricted acquiring knowledge on the mechanism of disease development, spread, and its role in fruit abscission. To address this gap, we sequenced the genome of P. macadamiae. The sequence was de novo assembled into a draft genome of 40 Mb, which is comparable to closely related species in the family Mycosphaerellaceae. The draft genome comprises 212 scaffolds, of which 99 scaffolds are over 50 kb. The genome has a 49% GC content and is predicted to contain 15,430 protein-coding genes. This draft genome sequence is the first for P. macadamiae and represents a valuable resource for understanding genome evolution and plant disease resistance.
Collapse
Affiliation(s)
- Olufemi A Akinsanmi
- The University of Queensland, Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, Ecosciences Precinct, GPO 267, Brisbane 4001, Queensland, Australia
| | - Lilia C Carvalhais
- The University of Queensland, Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, Ecosciences Precinct, GPO 267, Brisbane 4001, Queensland, Australia
| |
Collapse
|
11
|
González-Montiel GA, Kaweesa EN, Feau N, Hamelin RC, Stone JK, Loesgen S. Chemical, Bioactivity, and Biosynthetic Screening of Epiphytic Fungus Zasmidium pseudotsugae. Molecules 2020; 25:molecules25102358. [PMID: 32438585 PMCID: PMC7287617 DOI: 10.3390/molecules25102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/26/2022] Open
Abstract
We report the first secondary metabolite, 8,8′-bijuglone, obtained from pure cultures of the slow growing Douglas fir- (Pseudotsuga menziesii var. menziesii) foliage-associated fungus Zasmidium pseudotsugae. The quinone was characterized using extensive LC/MS and NMR-based spectroscopic methods. 8,8′-Bijuglone exhibited moderate antibiotic activity against Gram-positive pathogens and weak cytotoxic activity in the NCI-60 cell line panel and in our in-house human colon carcinoma (HCT-116) cell line. An analysis of the fungal genome sequence to assess its metabolic potential was implemented using the bioinformatic tool antiSMASH. In total, 36 putative biosynthetic gene clusters were found with a majority encoding for polyketides (17), followed by non-ribosomal peptides (14), terpenes (2), ribosomal peptides (1), and compounds with mixed biosynthetic origin (2). This study demonstrates that foliage associated fungi of conifers produce antimicrobial metabolites and suggests this guild of fungi may present a rich source of novel molecules.
Collapse
Affiliation(s)
| | - Elizabeth N. Kaweesa
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (G.A.G.-M.); (E.N.K.)
- Whitney Laboratory for Marine Bioscience and Department of Chemistry, University of Florida, St. Augustine, FL 32080, USA
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1ZA, Canada;
| | - Richard C. Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1ZA, Canada;
- Faculté de Foresterie et Géomatique, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada;
| | - Jeffrey K. Stone
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
| | - Sandra Loesgen
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (G.A.G.-M.); (E.N.K.)
- Whitney Laboratory for Marine Bioscience and Department of Chemistry, University of Florida, St. Augustine, FL 32080, USA
- Correspondence: ; Tel.: +904-201-8437
| |
Collapse
|
12
|
Noar RD, Thomas E, Xie DY, Carter ME, Ma D, Daub ME. A polyketide synthase gene cluster associated with the sexual reproductive cycle of the banana pathogen, Pseudocercospora fijiensis. PLoS One 2019; 14:e0220319. [PMID: 31344104 PMCID: PMC6657885 DOI: 10.1371/journal.pone.0220319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/12/2019] [Indexed: 11/19/2022] Open
Abstract
Disease spread of Pseudocercospora fijiensis, causal agent of the black Sigatoka disease of banana, depends on ascospores produced through the sexual reproductive cycle. We used phylogenetic analysis to identify P. fijiensis homologs (PKS8-4 and Hybrid8-3) to the PKS4 polyketide synthases (PKS) from Neurospora crassa and Sordaria macrospora involved in sexual reproduction. These sequences also formed a clade with lovastatin, compactin, and betaenone-producing PKS sequences. Transcriptome analysis showed that both the P. fijiensis Hybrid8-3 and PKS8-4 genes have higher expression in infected leaf tissue compared to in culture. Domain analysis showed that PKS8-4 is more similar than Hybrid8-3 to PKS4. pPKS8-4:GFP transcriptional fusion transformants showed expression of GFP in flask-shaped structures in mycelial cultures as well as in crosses between compatible and incompatible mating types. Confocal microscopy confirmed expression in spermagonia in leaf substomatal cavities, consistent with a role in sexual reproduction. A disruption mutant of pks8-4 retained normal pathogenicity on banana, and no differences were observed in growth, conidial production, and spermagonia production. GC-MS profiling of the mutant and wild type did not identify differences in polyketide metabolites, but did identify changes in saturated fatty acid methyl esters and alkene and alkane derivatives. To our knowledge, this is the first report of a polyketide synthase pathway associated with spermagonia.
Collapse
Affiliation(s)
- Roslyn D. Noar
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, United States of America
| | - Elizabeth Thomas
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States of America
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States of America
| | - Morgan E. Carter
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States of America
| | - Dongming Ma
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States of America
| | - Margaret E. Daub
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
13
|
Burgos-Canul YY, Canto-Canché B, Berezovski MV, Mironov G, Loyola-Vargas VM, Barba de Rosa AP, Tzec-Simá M, Brito-Argáez L, Carrillo-Pech M, Grijalva-Arango R, Muñoz-Pérez G, Islas-Flores I. The cell wall proteome from two strains of Pseudocercospora fijiensis with differences in virulence. World J Microbiol Biotechnol 2019; 35:105. [PMID: 31267317 DOI: 10.1007/s11274-019-2681-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/20/2019] [Indexed: 11/25/2022]
Abstract
Pseudocercospora fijiensis causes black Sigatoka disease, the most important threat to banana. The cell wall is crucial for fungal biological processes, including pathogenesis. Here, we performed cell wall proteomics analyses of two P. fijiensis strains, the highly virulent Oz2b, and the less virulent C1233 strains. Strains were starved from nitrogen to mimic the host environment. Interestingly, in vitro cultures of the C1233 strain grew faster than Oz2b in PDB medium, suggesting that C1233 survives outside the host better than the highly virulent Oz2b strain. Both strains were submitted to nitrogen starvation and the cell wall proteins were isolated and subjected to nano-HPLC-MS/MS. A total of 2686 proteins were obtained from which only 240 had a known function and thus, bioinformatics analyses were performed on this group. We found that 90 cell wall proteins were shared by both strains, 21 were unique for Oz2b and 39 for C1233. Shared proteins comprised 24 pathogenicity factors, including Avr4 and Ecp6, two effectors from P. fijiensis, while the unique proteins comprised 16 virulence factors in C1233 and 11 in Oz2b. The P. fijiensis cell wall proteome comprised canonical proteins, but thirty percent were atypical, a feature which in other phytopathogens has been interpreted as contamination. However, a comparison with the identities of atypical proteins in other reports suggests that the P. fijiensis proteins we detected were not contaminants. This is the first proteomics analysis of the P. fijiensis cell wall and our results expands the understanding of the fundamental biology of fungal phytopathogens and will help to decipher the molecular mechanisms of pathogenesis and virulence in P. fijiensis.
Collapse
Affiliation(s)
- Yamily Y Burgos-Canul
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON, K1N 6N5, Canada
| | - Gleb Mironov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON, K1N 6N5, Canada
| | - Víctor M Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Ana Paulina Barba de Rosa
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, S.L.P., Mexico
| | - Miguel Tzec-Simá
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Ligia Brito-Argáez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Mildred Carrillo-Pech
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Rosa Grijalva-Arango
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Gilberto Muñoz-Pérez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
14
|
Noar RD, Thomas E, Daub ME. A novel polyketide synthase gene cluster in the plant pathogenic fungus Pseudocercospora fijiensis. PLoS One 2019; 14:e0212229. [PMID: 30735556 PMCID: PMC6368318 DOI: 10.1371/journal.pone.0212229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/29/2019] [Indexed: 12/30/2022] Open
Abstract
Pseudocercospora fijiensis, causal agent of black Sigatoka of banana, produces polyketide synthase (PKS) pathways shown to be important in disease development by related Dothideomycete fungi. Genome analysis of the P. fijiensis PKS8-1 gene identified it as part of a gene cluster including genes encoding two transcription factors, a regulatory protein, a glyoxylase/beta-lactamase-like protein, an MFS transporter, a cytochrome P450, two aldo/keto reductases, a dehydrogenase, and a decarboxylase. Genome analysis of the related pathogens Pseudocercospora musae, Pseudocercospora eumusae, and Pseudocercospora pini-densiflorae, identified orthologous clusters containing a nearly identical combination of genes. Phylogenetic analysis of PKS8-1 identified homology to PKS proteins in the monodictyphenone and cladofulvin pathways in Aspergillus nidulans and Cladosporium fulvum, respectively. Analysis of clustered genes showed that the PKS8-1 cluster shares genes for enzymes involved in the production of the emodin intermediate in the monodictyphenone and cladofulvin pathways, but differs in many genes, suggesting production of a different metabolic product. Time course analysis of gene expression in infected banana showed up-regulation of PKS8-1 and four of eight clustered genes as early as 2 weeks post-inoculation and remaining high through 9 weeks. Overexpression of the pathway through constitutive expression of an aflR-like transcription factor gene in the cluster resulted in increased expression in culture of PKS8-1 as well as the four clustered genes that are up-regulated in infected plants. No differences were seen in timing or severity of disease symptoms with the overexpression strains relative to controls, however gene expression analysis showed no difference in expression in planta by an overexpression strain relative to controls. Thus constitutive expression of the aflR-like gene is not sufficient to upregulate the pathway above normal expression in planta. Pathway expression during all phases of disease development and conservation of the pathway in related Pseudocercospora species support a role for this pathway in disease.
Collapse
Affiliation(s)
- Roslyn D. Noar
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, United States of America
| | - Elizabeth Thomas
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States of America
| | - Margaret E. Daub
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
15
|
Liu L, Xu L, Jia Q, Pan R, Oelmüller R, Zhang W, Wu C. Arms race: diverse effector proteins with conserved motifs. PLANT SIGNALING & BEHAVIOR 2019; 14:1557008. [PMID: 30621489 PMCID: PMC6351098 DOI: 10.1080/15592324.2018.1557008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Effector proteins play important roles in the infection by pathogenic oomycetes and fungi or the colonization by endophytic and mycorrhizal fungi. They are either translocated into the host plant cells via specific translocation mechanisms and function in the host's cytoplasm or nucleus, or they reside in the apoplast of the plant cells and act at the extracellular host-microbe interface. Many effector proteins possess conserved motifs (such as the RXLR, CRN, LysM, RGD, DELD, EAR, RYWT, Y/F/WXC or CFEM motifs) localized in their N- or C-terminal regions. Analysis of the functions of effector proteins, especially so-called "core effectors", is crucial for the understanding of pathogenicity/symbiosis mechanisms and plant defense strategies, and helps to develop breeding strategies for pathogen-resistant cultivars, and to increase crop yield and quality as well as abiotic stress resistance. This review summarizes current knowledge about these effector proteins with the conversed motifs and their involvement in pathogenic or mutualistic plant/fungal interactions.
Collapse
Affiliation(s)
- Liping Liu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Qie Jia
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
- CONTACT Wenying Zhang Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou 434025, China; Chu Wu College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
- Institute of Plant Ecology and Environmental Restoration, Yangtze University, Jingzhou, China
| |
Collapse
|
16
|
Tazawa A, Ye Y, Ozaki T, Liu C, Ogasawara Y, Dairi T, Higuchi Y, Kato N, Gomi K, Minami A, Oikawa H. Total Biosynthesis of Brassicicenes: Identification of a Key Enzyme for Skeletal Diversification. Org Lett 2018; 20:6178-6182. [PMID: 30230338 DOI: 10.1021/acs.orglett.8b02654] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The biosynthetic pathway of brassicicenes, derived from the phytopathogen Pseudocercospora fijiensis, was fully reconstituted. Heterologous expression of the eight genes highly expressed in infected leaf tissues generated a new brassicicene derivative as a final product. Together with the characterization of P450 from Alternaria brassicicola, a late stage of the biosynthetic pathway, which generates remarkable structural diversity, has been proposed. Notably, a unique P450 that converts 3 to the structurally distinct 4 and 6 was identified.
Collapse
Affiliation(s)
- Akihiro Tazawa
- Department of Chemistry, Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan
| | - Ying Ye
- Department of Chemistry, Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan
| | - Taro Ozaki
- Department of Chemistry, Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan
| | - Chengwei Liu
- Department of Chemistry, Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan
| | - Yasushi Ogasawara
- Graduate School of Engineering , Hokkaido University , Sapporo 060-8628 , Japan
| | - Tohru Dairi
- Graduate School of Engineering , Hokkaido University , Sapporo 060-8628 , Japan
| | - Yusuke Higuchi
- The Institute of Scientific and Industrial Research , Osaka University , Ibaraki , Osaka 567-0047 , Japan
| | - Nobuo Kato
- The Institute of Scientific and Industrial Research , Osaka University , Ibaraki , Osaka 567-0047 , Japan
| | - Katsuya Gomi
- Graduate School of Agricultural Science , Tohoku University , Sendai 981-8555 , Japan
| | - Atsushi Minami
- Department of Chemistry, Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan
| |
Collapse
|
17
|
Targeted and random genetic modification of the black Sigatoka pathogen Pseudocercospora fijiensis by Agrobacterium tumefaciens-mediated transformation. J Microbiol Methods 2018; 148:127-137. [PMID: 29654806 DOI: 10.1016/j.mimet.2018.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
|