1
|
Wang J, Li Y, Niu Y, Liu Y, Zhang Q, Lv Y, Li S, Wang X, Bao Y. Characterization of tomato autophagy-related SlCOST family genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112032. [PMID: 38354756 DOI: 10.1016/j.plantsci.2024.112032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/12/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Autophagy is a eukaryote-specific cellular process that can engulf unwanted targets with double-membrane autophagosomes and subject them to the vacuole or lysosome for breaking down and recycling, playing dual roles in plant growth and environmental adaptions. However, perception of specific environmental signals for autophagy induction is largely unknown, limiting its application in agricultural usage. Identification of plant-unique DUF641 family COST1 (Constitutively Stressed 1) protein directly links drought perception and autophagy induction, shedding light on manipulating autophagy for breeding stress tolerant crops. In this study, we performed a genome-wide analysis of DUF641/COST family in tomato, and identified five SlCOST genes SlCOST1, -2, -3, -4, and -5. SlCOST genes show both overlapping and distinct expression patterns in plant growth and stress responding. In addition, SlCOST1, -3, -4, -5 proteins demonstrate co-localization with autophagy adaptor protein ATG8e, and all five SlCOST proteins show interactions ATG8e in planta. However, only SlCOST1, the closest ortholog of Arabidopsis AtCOST1, can restore cost1 mutant to WT level, suggesting conserved role of COST1 and functional diversification of SlCOST family in tomato. Our study provides clues for future investigation of autophagy-related COST family and its promising implementations in breeding crops with robust environmental plasticity.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanjie Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Niu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yonglun Lv
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuxia Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xinhua Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Bao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Xue B, Rhee SY. Status of genome function annotation in model organisms and crops. PLANT DIRECT 2023; 7:e499. [PMID: 37426891 PMCID: PMC10326244 DOI: 10.1002/pld3.499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 05/08/2023] [Indexed: 07/11/2023]
Abstract
Since the entry into genome-enabled biology several decades ago, much progress has been made in determining, describing, and disseminating the functions of genes and their products. Yet, this information is still difficult to access for many scientists and for most genomes. To provide easy access and a graphical summary of the status of genome function annotation for model organisms and bioenergy and food crop species, we created a web application (https://genomeannotation.rheelab.org) to visualize, search, and download genome annotation data for 28 species. The summary graphics and data tables will be updated semi-annually, and snapshots will be archived to provide a historical record of the progress of genome function annotation efforts. Clear and simple visualization of up-to-date genome function annotation status, including the extent of what is unknown, will help address the grand challenge of elucidating the functions of all genes in organisms.
Collapse
Affiliation(s)
- Bo Xue
- Department of Plant BiologyCarnegie Institution for ScienceStanfordCaliforniaUSA
- Present address:
Plant Resilience InstituteMichigan State UniversityEast LansingMI 4882
| | - Seung Y. Rhee
- Department of Plant BiologyCarnegie Institution for ScienceStanfordCaliforniaUSA
- Present address:
Plant Resilience InstituteMichigan State UniversityEast LansingMI 4882
| |
Collapse
|
3
|
Ginzburg DN, Bossi F, Rhee SY. Uncoupling differential water usage from drought resistance in a dwarf Arabidopsis mutant. PLANT PHYSIOLOGY 2022; 190:2115-2121. [PMID: 36053183 PMCID: PMC9706424 DOI: 10.1093/plphys/kiac411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Understanding the molecular and physiological mechanisms of how plants respond to drought is paramount to breeding more drought-resistant crops. Certain mutations or allelic variations result in plants with altered water-use requirements. To correctly identify genetic differences which confer a drought phenotype, plants with different genotypes must be subjected to equal levels of drought stress. Many reports of advantageous mutations conferring drought resistance do not control for soil water content (SWC) variations across genotypes and may therefore need to be re-examined. Here, we reassessed the drought phenotype of the Arabidopsis (Arabidopsis thaliana) dwarf mutant, chiquita1-1 (chiq1-1, also called constitutively stressed 1 (cost1)), by growing mutant seedlings together with the wild-type to ensure uniform soil water availability across genotypes. Our results demonstrate that the dwarf phenotype conferred by loss of CHIQ1 function results in constitutively lower water usage per plant, but not increased drought resistance. Our study provides an easily reproducible, low-cost method to measure and control for SWC and to compare drought-resistant genotypes more accurately.
Collapse
Affiliation(s)
- Daniel N Ginzburg
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Flavia Bossi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| |
Collapse
|
4
|
Bossi F, Jin B, Lazarus E, Cartwright H, Dorone Y, Rhee SY. CHIQUITA1 maintains the temporal transition between proliferation and differentiation in Arabidopsis thaliana. Development 2022; 149:275423. [DOI: 10.1242/dev.200565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/29/2022] [Indexed: 01/17/2023]
Abstract
ABSTRACT
Body size varies widely among species, populations and individuals, depending on the environment. Transitioning between proliferation and differentiation is a crucial determinant of final organ size, but how the timing of this transition is established and maintained remains unknown. Using cell proliferation markers and genetic analysis, we show that CHIQUITA1 (CHIQ1) is required to maintain the timing of the transition from proliferation to differentiation in Arabidopsis thaliana. Combining kinematic and cell lineage-tracking studies, we found that the number of actively dividing cells in chiquita1-1 plants decreases prematurely compared with wild-type plants, suggesting CHIQ1 maintains the proliferative capacity in dividing cells and ensures that cells divide a specific number of times. CHIQ1 belongs to a plant-specific gene family of unknown molecular function and genetically interacts with three close members of its family to control the timing of proliferation exit. Our work reveals the interdependency between cellular and organ-level processes underlying final organ size determination.
Collapse
Affiliation(s)
- Flavia Bossi
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| | - Benjamin Jin
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| | - Elena Lazarus
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| | - Heather Cartwright
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| | - Yanniv Dorone
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
- Stanford University 2 Department of Biology , , Stanford, CA 94305, USA
| | - Seung Y. Rhee
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| |
Collapse
|
5
|
Interdependent iron and phosphorus availability controls photosynthesis through retrograde signaling. Nat Commun 2021; 12:7211. [PMID: 34893639 PMCID: PMC8664907 DOI: 10.1038/s41467-021-27548-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022] Open
Abstract
Iron deficiency hampers photosynthesis and is associated with chlorosis. We recently showed that iron deficiency-induced chlorosis depends on phosphorus availability. How plants integrate these cues to control chlorophyll accumulation is unknown. Here, we show that iron limitation downregulates photosynthesis genes in a phosphorus-dependent manner. Using transcriptomics and genome-wide association analysis, we identify two genes, PHT4;4 encoding a chloroplastic ascorbate transporter and bZIP58, encoding a nuclear transcription factor, which prevent the downregulation of photosynthesis genes leading to the stay-green phenotype under iron-phosphorus deficiency. Joint limitation of these nutrients induces ascorbate accumulation by activating expression of an ascorbate biosynthesis gene, VTC4, which requires bZIP58. Furthermore, we demonstrate that chloroplastic ascorbate transport prevents the downregulation of photosynthesis genes under iron-phosphorus combined deficiency through modulation of ROS homeostasis. Our study uncovers a ROS-mediated chloroplastic retrograde signaling pathway to adapt photosynthesis to nutrient availability.
Collapse
|
6
|
Dorone Y, Boeynaems S, Flores E, Jin B, Hateley S, Bossi F, Lazarus E, Pennington JG, Michiels E, De Decker M, Vints K, Baatsen P, Bassel GW, Otegui MS, Holehouse AS, Exposito-Alonso M, Sukenik S, Gitler AD, Rhee SY. A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation. Cell 2021; 184:4284-4298.e27. [PMID: 34233164 PMCID: PMC8513799 DOI: 10.1016/j.cell.2021.06.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 03/22/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022]
Abstract
Many organisms evolved strategies to survive desiccation. Plant seeds protect dehydrated embryos from various stressors and can lay dormant for millennia. Hydration is the key trigger to initiate germination, but the mechanism by which seeds sense water remains unresolved. We identified an uncharacterized Arabidopsis thaliana prion-like protein we named FLOE1, which phase separates upon hydration and allows the embryo to sense water stress. We demonstrate that biophysical states of FLOE1 condensates modulate its biological function in vivo in suppressing seed germination under unfavorable environments. We find intragenic, intraspecific, and interspecific natural variation in FLOE1 expression and phase separation and show that intragenic variation is associated with adaptive germination strategies in natural populations. This combination of molecular, organismal, and ecological studies uncovers FLOE1 as a tunable environmental sensor with direct implications for the design of drought-resistant crops, in the face of climate change.
Collapse
Affiliation(s)
- Yanniv Dorone
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Steven Boeynaems
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eduardo Flores
- Department of Chemistry and Chemical Biology, UC Merced, Merced, CA 95340, USA
| | - Benjamin Jin
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Shannon Hateley
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Flavia Bossi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Elena Lazarus
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Janice G Pennington
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI 53706, USA
| | - Emiel Michiels
- EM-platform@VIB Bio Imaging Core and VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Mathias De Decker
- EM-platform@VIB Bio Imaging Core and VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Katlijn Vints
- EM-platform@VIB Bio Imaging Core and VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Pieter Baatsen
- EM-platform@VIB Bio Imaging Core and VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - George W Bassel
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Marisa S Otegui
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI 53706, USA; Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Shahar Sukenik
- Department of Chemistry and Chemical Biology, UC Merced, Merced, CA 95340, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Stanford BC, Clake DJ, Morris MR, Rogers SM. The power and limitations of gene expression pathway analyses toward predicting population response to environmental stressors. Evol Appl 2020; 13:1166-1182. [PMID: 32684953 PMCID: PMC7359838 DOI: 10.1111/eva.12935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Rapid environmental changes impact the global distribution and abundance of species, highlighting the urgency to understand and predict how populations will respond. The analysis of differentially expressed genes has elucidated areas of the genome involved in adaptive divergence to past and present environmental change. Such studies however have been hampered by large numbers of differentially expressed genes and limited knowledge of how these genes work in conjunction with each other. Recent methods (broadly termed "pathway analyses") have emerged that aim to group genes that behave in a coordinated fashion to a factor of interest. These methods aid in functional annotation and uncovering biological pathways, thereby collapsing complex datasets into more manageable units, providing more nuanced understandings of both the organism-level effects of modified gene expression, and the targets of adaptive divergence. Here, we reanalyze a dataset that investigated temperature-induced changes in gene expression in marine-adapted and freshwater-adapted threespine stickleback (Gasterosteus aculeatus), using Weighted Gene Co-expression Network Analysis (WGCNA) with PANTHER Gene Ontology (GO)-Slim overrepresentation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Six modules exhibited a conserved response and six a divergent response between marine and freshwater stickleback when acclimated to 7°C or 22°C. One divergent module showed freshwater-specific response to temperature, and the remaining divergent modules showed differences in height of reaction norms. PPARAa, a transcription factor that regulates fatty acid metabolism and has been implicated in adaptive divergence, was located in a module that had higher expression at 7°C and in freshwater stickleback. This updated methodology revealed patterns that were not found in the original publication. Although such methods hold promise toward predicting population response to environmental stressors, many limitations remain, particularly with regard to module expression representation, database resources, and cross-database integration.
Collapse
Affiliation(s)
| | - Danielle J. Clake
- Department of Biological SciencesUniversity of CalgaryCalgaryABCanada
| | | | - Sean M. Rogers
- Department of Biological SciencesUniversity of CalgaryCalgaryABCanada
- Bamfield Marine Sciences CentreBamfieldBCCanada
| |
Collapse
|
8
|
Kisko M, Bouain N, Safi A, Medici A, Akkers RC, Secco D, Fouret G, Krouk G, Aarts MGM, Busch W, Rouached H. LPCAT1 controls phosphate homeostasis in a zinc-dependent manner. eLife 2018; 7:e32077. [PMID: 29453864 PMCID: PMC5826268 DOI: 10.7554/elife.32077] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 02/15/2018] [Indexed: 12/25/2022] Open
Abstract
All living organisms require a variety of essential elements for their basic biological functions. While the homeostasis of nutrients is highly intertwined, the molecular and genetic mechanisms of these dependencies remain poorly understood. Here, we report a discovery of a molecular pathway that controls phosphate (Pi) accumulation in plants under Zn deficiency. Using genome-wide association studies, we first identified allelic variation of the Lyso-PhosphatidylCholine (PC) AcylTransferase 1 (LPCAT1) gene as the key determinant of shoot Pi accumulation under Zn deficiency. We then show that regulatory variation at the LPCAT1 locus contributes significantly to this natural variation and we further demonstrate that the regulation of LPCAT1 expression involves bZIP23 TF, for which we identified a new binding site sequence. Finally, we show that in Zn deficient conditions loss of function of LPCAT1 increases the phospholipid Lyso-PhosphatidylCholine/PhosphatidylCholine ratio, the expression of the Pi transporter PHT1;1, and that this leads to shoot Pi accumulation.
Collapse
Affiliation(s)
- Mushtak Kisko
- BPMP, Univ Montpellier, CNRS, INRA, SupAgroMontpellierFrance
| | - Nadia Bouain
- BPMP, Univ Montpellier, CNRS, INRA, SupAgroMontpellierFrance
| | - Alaeddine Safi
- BPMP, Univ Montpellier, CNRS, INRA, SupAgroMontpellierFrance
| | - Anna Medici
- BPMP, Univ Montpellier, CNRS, INRA, SupAgroMontpellierFrance
| | - Robert C Akkers
- Laboratory of GeneticsWageningen UniversityWageningenNetherlands
| | - David Secco
- BPMP, Univ Montpellier, CNRS, INRA, SupAgroMontpellierFrance
| | | | - Gabriel Krouk
- BPMP, Univ Montpellier, CNRS, INRA, SupAgroMontpellierFrance
| | - Mark GM Aarts
- Laboratory of GeneticsWageningen UniversityWageningenNetherlands
| | - Wolfgang Busch
- Gregor Mendel InstituteAustrian Academy of Sciences, Vienna BiocenterViennaAustria
- Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Hatem Rouached
- BPMP, Univ Montpellier, CNRS, INRA, SupAgroMontpellierFrance
| |
Collapse
|
9
|
Kisko M, Bouain N, Safi A, Medici A, Akkers RC, Secco D, Fouret G, Krouk G, Aarts MG, Busch W, Rouached H. LPCAT1 controls phosphate homeostasis in a zinc-dependent manner. eLife 2018; 7:32077. [PMID: 29453864 DOI: 10.7554/elife.32077.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 02/15/2018] [Indexed: 05/22/2023] Open
Abstract
All living organisms require a variety of essential elements for their basic biological functions. While the homeostasis of nutrients is highly intertwined, the molecular and genetic mechanisms of these dependencies remain poorly understood. Here, we report a discovery of a molecular pathway that controls phosphate (Pi) accumulation in plants under Zn deficiency. Using genome-wide association studies, we first identified allelic variation of the Lyso-PhosphatidylCholine (PC) AcylTransferase 1 (LPCAT1) gene as the key determinant of shoot Pi accumulation under Zn deficiency. We then show that regulatory variation at the LPCAT1 locus contributes significantly to this natural variation and we further demonstrate that the regulation of LPCAT1 expression involves bZIP23 TF, for which we identified a new binding site sequence. Finally, we show that in Zn deficient conditions loss of function of LPCAT1 increases the phospholipid Lyso-PhosphatidylCholine/PhosphatidylCholine ratio, the expression of the Pi transporter PHT1;1, and that this leads to shoot Pi accumulation.
Collapse
Affiliation(s)
- Mushtak Kisko
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Nadia Bouain
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Alaeddine Safi
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Anna Medici
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Robert C Akkers
- Laboratory of Genetics, Wageningen University, Wageningen, Netherlands
| | - David Secco
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | | | - Gabriel Krouk
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Mark Gm Aarts
- Laboratory of Genetics, Wageningen University, Wageningen, Netherlands
| | - Wolfgang Busch
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Hatem Rouached
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| |
Collapse
|