1
|
Burridge AJ, Winfield M, Przewieslik‐Allen A, Edwards KJ, Siddique I, Barral‐Arca R, Griffiths S, Cheng S, Huang Z, Feng C, Dreisigacker S, Bentley AR, Brown‐Guedira G, Barker GL. Development of a next generation SNP genotyping array for wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2235-2247. [PMID: 38520342 PMCID: PMC11258986 DOI: 10.1111/pbi.14341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
High-throughput genotyping arrays have provided a cost-effective, reliable and interoperable system for genotyping hexaploid wheat and its relatives. Existing, highly cited arrays including our 35K Wheat Breeder's array and the Illumina 90K array were designed based on a limited amount of varietal sequence diversity and with imperfect knowledge of SNP positions. Recent progress in wheat sequencing has given us access to a vast pool of SNP diversity, whilst technological improvements have allowed us to fit significantly more probes onto a 384-well format Axiom array than previously possible. Here we describe a novel Axiom genotyping array, the 'Triticum aestivum Next Generation' array (TaNG), largely derived from whole genome skim sequencing of 204 elite wheat lines and 111 wheat landraces taken from the Watkins 'Core Collection'. We used a novel haplotype optimization approach to select SNPs with the highest combined varietal discrimination and a design iteration step to test and replace SNPs which failed to convert to reliable markers. The final design with 43 372 SNPs contains a combination of haplotype-optimized novel SNPs and legacy cross-platform markers. We show that this design has an improved distribution of SNPs compared to previous arrays and can be used to generate genetic maps with a significantly higher number of distinct bins than our previous array. We also demonstrate the improved performance of TaNGv1.1 for Genome-wide association studies (GWAS) and its utility for Copy Number Variation (CNV) analysis. The array is commercially available with supporting marker annotations and initial genotyping results freely available.
Collapse
Affiliation(s)
| | - Mark Winfield
- School of Biological SciencesUniversity of BristolBristolUK
| | | | | | - Imteaz Siddique
- Thermo Fisher Scientific3450 Central ExpresswaySanta ClaraCAUSA
| | | | | | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Zejian Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Cong Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | | | | | - Gina Brown‐Guedira
- Plant Science Research UnitUSDA Agricultural Research ServiceRaleighNCUSA
| | - Gary L. Barker
- School of Biological SciencesUniversity of BristolBristolUK
| |
Collapse
|
2
|
Martina M, Acquadro A, Portis E, Barchi L, Lanteri S. Diversity analyses in two ornamental and large-genome Ranunculaceae species based on a low-cost Klenow NGS-based protocol. FRONTIERS IN PLANT SCIENCE 2023; 14:1187205. [PMID: 37360724 PMCID: PMC10289064 DOI: 10.3389/fpls.2023.1187205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Persian buttercup (Ranunculus asiaticus L.) and poppy anemone (Anemone coronaria L.) are ornamental, outcrossing, perennial species belonging to the Ranunculaceae family, characterized by large and highly repetitive genomes. We applied K-seq protocol in both species to generate high-throughput sequencing data and produce a large number of genetic polymorphisms. The technique entails the application of Klenow polymerase-based PCR using short primers designed by analyzing k-mer sets in the genome sequence. To date the genome sequence of both species has not been released, thus we designed primer sets based on the reference the genome sequence of the related species Aquilegia oxysepala var. kansuensis (Brühl). A whole of 11,542 SNPs were selected for assessing genetic diversity of eighteen commercial varieties of R. asiaticus, while 1,752 SNPs for assessing genetic diversity in six cultivars of A. coronaria. UPGMA dendrograms were constructed and in R. asiaticus integrated in with PCA analysis. This study reports the first molecular fingerprinting within Persian buttercup, while the results obtained in poppy anemone were compared with a previously published SSR-based fingerprinting, proving K-seq to be an efficient protocol for the genotyping of complex genetic backgrounds.
Collapse
|
3
|
Wang R, Xing S, Bourke PM, Qi X, Lin M, Esselink D, Arens P, Voorrips RE, Visser RG, Sun L, Zhong Y, Gu H, Li Y, Li S, Maliepaard C, Fang J. Development of a 135K SNP genotyping array for Actinidia arguta and its applications for genetic mapping and QTL analysis in kiwifruit. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:369-380. [PMID: 36333116 PMCID: PMC9884011 DOI: 10.1111/pbi.13958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 05/11/2023]
Abstract
Kiwifruit (Actinidia spp) is a woody, perennial and deciduous vine. In this genus, there are multiple ploidy levels but the main cultivated cultivars are polyploid. Despite the availability of many genomic resources in kiwifruit, SNP genotyping is still a challenge given these different levels of polyploidy. Recent advances in SNP array technologies have offered a high-throughput genotyping platform for genome-wide DNA polymorphisms. In this study, we developed a high-density SNP genotyping array to facilitate genetic studies and breeding applications in kiwifruit. SNP discovery was performed by genome-wide DNA sequencing of 40 kiwifruit genotypes. The identified SNPs were stringently filtered for sequence quality, predicted conversion performance and distribution over the available Actinidia chinensis genome. A total of 134 729 unique SNPs were put on the array. The array was evaluated by genotyping 400 kiwifruit individuals. We performed a multidimensional scaling analysis to assess the diversity of kiwifruit germplasm, showing that the array was effective to distinguish kiwifruit accessions. Using a tetraploid F1 population, we constructed an integrated linkage map covering 3060.9 cM across 29 linkage groups and performed QTL analysis for the sex locus that has been identified on Linkage Group 3 (LG3) in Actinidia arguta. Finally, our dataset presented evidence of tetrasomic inheritance with partial preferential pairing in A. arguta. In conclusion, we developed and evaluated a 135K SNP genotyping array for kiwifruit. It has the advantage of a comprehensive design that can be an effective tool in genetic studies and breeding applications in this high-value crop.
Collapse
Affiliation(s)
- Ran Wang
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Siyuan Xing
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
| | - Peter M. Bourke
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Xiuquan Qi
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Miaomiao Lin
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Danny Esselink
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Paul Arens
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | | | | | - Leiming Sun
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Yunpeng Zhong
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Hong Gu
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Yukuo Li
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Sikai Li
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Chris Maliepaard
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Jinbao Fang
- Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| |
Collapse
|
4
|
Voorrips RE, Tumino G. PolyHaplotyper: haplotyping in polyploids based on bi-allelic marker dosage data. BMC Bioinformatics 2022; 23:442. [PMID: 36274121 PMCID: PMC9590153 DOI: 10.1186/s12859-022-04989-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/16/2022] [Indexed: 11/18/2022] Open
Abstract
Background For genetic analyses, multi-allelic markers have an advantage over bi-allelic markers like SNPs (single nucleotide polymorphisms) in that they carry more information about the genetic constitution of individuals. This is especially the case in polyploids, where individuals carry more than two alleles at each locus. Haploblocks are multi-allelic markers that can be derived by phasing sets of closely-linked SNP markers. Phased haploblocks, similarly to other multi-allelic markers, will therefore be advantageous in genetic tasks like linkage mapping, QTL mapping and genome-wide association studies. Results We present a new method to reconstruct haplotypes from SNP dosages derived from genotyping arrays, which is applicable to polyploids. This method is implemented in the software package PolyHaplotyper. In contrast to existing packages for polyploids it makes use of full-sib families among the samples to guide the haplotyping process. We show that in this situation it is much more accurate than other available software, using experimental hexaploid data and simulated tetraploid data. Conclusions Our method and the software package PolyHaplotyper in which it is implemented extend the available tools for haplotyping in polyploids. They perform especially well in situations where one or more full-sib families are present. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04989-0.
Collapse
|
5
|
Sumitomo K, Shirasawa K, Isobe S, Hirakawa H, Harata A, Nakano M, Nakano Y, Yagi M, Hisamatsu T, Yamaguchi H, Taniguchi F. A genome-wide association and fine-mapping study of white rust resistance in hexaploid chrysanthemum cultivars with a wild diploid reference genome. HORTICULTURE RESEARCH 2022; 9:uhac170. [PMID: 36324641 PMCID: PMC9613985 DOI: 10.1093/hr/uhac170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
White rust caused by Puccinia horiana is one of the most serious diseases of chrysanthemum (Chrysanthemum × morifolium). In this study, we report the DNA markers associated with resistance against P. horiana via a simple approach using the genome of a wild diploid relative, Chrysanthemum seticuspe. First, we identified the important region of the genome in the resistant cultivar "Ariesu" via a genome-wide association study. Simplex single nucleotide polymorphism (SNP) markers mined from ddRAD-Seq were used in a biparental population originating from crosses between resistant "Ariesu" and susceptible "Yellow Queen". The C. seticuspe genome was used as a reference. For the fine mapping of P. horiana resistance locus 2 (Phr2), a comparative whole genome sequencing study was conducted. Although the genome sequences of chrysanthemum cultivars assembled via the short-read approach were fragmented, reliable genome alignments were reconstructed by mapping onto the chromosome level of the C. seticuspe pseudomolecule. Base variants were then identified by comparing the assembled genome sequences of resistant "Ariesu" and susceptible "Yellow Queen". Consequently, SNP markers that were closer to Phr2 compared with ddRAD-Seq markers were obtained. These SNP markers co-segregated with resistance in F1 progenies originating from resistant "Ariesu" and showed robust transferability for detecting Phr2-conferring resistance among chrysanthemum genetic resources. The wild C. seticuspe pseudomolecule, a de facto monoploid genome used for ddRAD-Seq analysis and assembled genome sequence comparison, demonstrated this method's utility as a model for developing DNA markers in hexaploid chrysanthemum cultivars.
Collapse
Affiliation(s)
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818 Japan
| | - Sachiko Isobe
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818 Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818 Japan
| | - Akiho Harata
- Kagoshima Prefectural Institute for Agricultural Development, Minamisatsuma, Kagoshima 899-3401, Japan
- CCS Inc., Kyoto, Kyoto 602-8019, Japan
| | - Michiharu Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yoshihiro Nakano
- Institute of Vegetable and Floriculture Science, NARO, Tsukuba, Ibaraki 305-0852, Japan
| | - Masafumi Yagi
- Institute of Vegetable and Floriculture Science, NARO, Tsukuba, Ibaraki 305-0852, Japan
| | - Tamotsu Hisamatsu
- Institute of Vegetable and Floriculture Science, NARO, Tsukuba, Ibaraki 305-0852, Japan
| | - Hiroyasu Yamaguchi
- Institute of Vegetable and Floriculture Science, NARO, Tsukuba, Ibaraki 305-0852, Japan
| | - Fumiya Taniguchi
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki 305-8605, Japan
| |
Collapse
|
6
|
Batista LG, Mello VH, Souza AP, Margarido GRA. Genomic prediction with allele dosage information in highly polyploid species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:723-739. [PMID: 34800132 DOI: 10.1007/s00122-021-03994-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Including allele, dosage can improve genomic selection in highly polyploid species under higher frequency of different heterozygous genotypic classes and high dominance degree levels. Several studies have shown how to leverage allele dosage information to improve the accuracy of genomic selection models in autotetraploid. In this study, we expanded the methodology used for genomic selection in autotetraploid to higher (and mixed) ploidy levels. We adapted the models to build covariance matrices of both additive and digenic dominance effects that are subsequently used in genomic selection models. We applied these models using estimates of ploidy and allele dosage to sugarcane and sweet potato datasets and validated our results by also applying the models in simulated data. For the simulated datasets, including allele dosage information led up to 140% higher mean predictive abilities in comparison to using diploidized markers. Including dominance effects were highly advantageous when using diploidized markers, leading to mean predictive abilities which were up to 115% higher in comparison to only including additive effects. When the frequency of heterozygous genotypes in the population was low, such as in the sugarcane and sweet potato datasets, there was little advantage in including allele dosage information in the models. Overall, we show that including allele dosage can improve genomic selection in highly polyploid species under higher frequency of different heterozygous genotypic classes and high dominance degree levels.
Collapse
Affiliation(s)
- Lorena G Batista
- Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Victor H Mello
- Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Anete P Souza
- Center of Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Gabriel R A Margarido
- Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
7
|
van Lieshout N, van Kaauwen M, Kodde L, Arens P, Smulders MJM, Visser RGF, Finkers R. De novo whole-genome assembly of Chrysanthemum makinoi, a key wild chrysanthemum. G3 (BETHESDA, MD.) 2022; 12:jkab358. [PMID: 34849775 PMCID: PMC8727959 DOI: 10.1093/g3journal/jkab358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 12/02/2022]
Abstract
Chrysanthemum is among the top 10 cut, potted, and perennial garden flowers in the world. Despite this, to date, only the genomes of two wild diploid chrysanthemums have been sequenced and assembled. Here, we present the most complete and contiguous chrysanthemum de novo assembly published so far, as well as a corresponding ab initio annotation. The cultivated hexaploid varieties are thought to originate from a hybrid of wild chrysanthemums, among which the diploid Chrysanthemum makinoi has been mentioned. Using a combination of Oxford Nanopore long reads, Pacific Biosciences long reads, Illumina short reads, Dovetail sequences, and a genetic map, we assembled 3.1 Gb of its sequence into nine pseudochromosomes, with an N50 of 330 Mb and a BUSCO complete score of 92.1%. Our ab initio annotation pipeline predicted 95,074 genes and marked 80.0% of the genome as repetitive. This genome assembly of C. makinoi provides an important step forward in understanding the chrysanthemum genome, evolution, and history.
Collapse
Affiliation(s)
- Natascha van Lieshout
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Martijn van Kaauwen
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Linda Kodde
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Paul Arens
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Marinus J M Smulders
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Richard Finkers
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| |
Collapse
|
8
|
Fan M, Gao Y, Wu Z, Haider S, Zhang Q. Evidence for hexasomic inheritance in Chrysanthemum morifolium Ramat. based on analysis of EST-SSR markers. Genome 2021; 65:75-81. [PMID: 34756106 DOI: 10.1139/gen-2020-0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chrysanthemums (Chrysanthemum morifolium Ramat.) are ornamental flowers, which are famous worldwide. The mode of inheritance has great implications for the genetic analysis of polyploid species. However, genetic analysis of chrysanthemum has been hampered because of its controversial inheritance mode (disomic or hexasomic). To classify the inheritance mode of chrysanthemums, an analysis of three approaches was carried out in an F1 progeny of 192 offspring using 223 expressed sequence tag-simple sequence repeat (EST-SSR) markers. The analysis included segregation analysis, the ratio of simplex marker alleles linked in coupling to repulsion, as well as the transmission and segregation patterns of EST-SSR marker alleles. After segregation analysis, 204 marker alleles fit hexasomic inheritance and 150 marker alleles fit disomic inheritance, showing that marker alleles were inherited predominantly in a hexasomic manner. Furthermore, the results of the analysis of allele configuration and segregation behavior of five EST-SSR markers also suggested random pairing of chromosomes. Additionally, the ratio of simplex marker alleles linked in coupling to repulsion was 1:0, further supporting hexasomic inheritance. Therefore, it could be inferred that chrysanthemum is a complete or near-complete hexasome.
Collapse
Affiliation(s)
- Min Fan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Centre for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Centre for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yike Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Centre for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Centre for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Zhiping Wu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Centre for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Centre for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Saba Haider
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Centre for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Centre for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Centre for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Centre for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
Nakano M, Hirakawa H, Fukai E, Toyoda A, Kajitani R, Minakuchi Y, Itoh T, Higuchi Y, Kozuka T, Bono H, Shirasawa K, Shiraiwa I, Sumitomo K, Hisamatsu T, Shibata M, Isobe S, Taniguchi K, Kusaba M. A chromosome-level genome sequence of Chrysanthemum seticuspe, a model species for hexaploid cultivated chrysanthemum. Commun Biol 2021; 4:1167. [PMID: 34620992 PMCID: PMC8497461 DOI: 10.1038/s42003-021-02704-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Chrysanthemums are one of the most industrially important cut flowers worldwide. However, their segmental allopolyploidy and self-incompatibility have prevented the application of genetic analysis and modern breeding strategies. We thus developed a model strain, Gojo-0 (Chrysanthemum seticuspe), which is a diploid and self-compatible pure line. Here, we present the 3.05 Gb chromosome-level reference genome sequence, which covered 97% of the C. seticuspe genome. The genome contained more than 80% interspersed repeats, of which retrotransposons accounted for 72%. We identified recent segmental duplication and retrotransposon expansion in C. seticuspe, contributing to arelatively large genome size. Furthermore, we identified a retrotransposon family, SbdRT, which was enriched in gene-dense genome regions and had experienced a very recent transposition burst. We also demonstrated that the chromosome-level genome sequence facilitates positional cloning in C. seticuspe. The genome sequence obtained here can greatly contribute as a reference for chrysanthemum in front-line breeding including genome editing.
Collapse
Affiliation(s)
- Michiharu Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | | | - Eigo Fukai
- Graduate School of Science and Technology, Niigata University, Niigata, Niigata, Japan
| | - Atsushi Toyoda
- National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Rei Kajitani
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | | | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Yohei Higuchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Toshiaki Kozuka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Hidemasa Bono
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | | | - Ippei Shiraiwa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Katsuhiko Sumitomo
- Institute of Floricultural Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Tamotsu Hisamatsu
- Institute of Floricultural Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Michio Shibata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sachiko Isobe
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Kenji Taniguchi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Makoto Kusaba
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
| |
Collapse
|
10
|
Bourke PM, Voorrips RE, Hackett CA, van Geest G, Willemsen JH, Arens P, Smulders MJM, Visser RGF, Maliepaard C. Detecting quantitative trait loci and exploring chromosomal pairing in autopolyploids using polyqtlR. Bioinformatics 2021; 37:3822-3829. [PMID: 34358315 PMCID: PMC8570814 DOI: 10.1093/bioinformatics/btab574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Motivation The investigation of quantitative trait loci (QTL) is an essential component in our understanding of how organisms vary phenotypically. However, many important crop species are polyploid (carrying more than two copies of each chromosome), requiring specialized tools for such analyses. Moreover, deciphering meiotic processes at higher ploidy levels is not straightforward, but is necessary to understand the reproductive dynamics of these species, or uncover potential barriers to their genetic improvement. Results Here, we present polyqtlR, a novel software tool to facilitate such analyses in (auto)polyploid crops. It performs QTL interval mapping in F1 populations of outcrossing polyploids of any ploidy level using identity-by-descent probabilities. The allelic composition of discovered QTL can be explored, enabling favourable alleles to be identified and tracked in the population. Visualization tools within the package facilitate this process, and options to include genetic co-factors and experimental factors are included. Detailed information on polyploid meiosis including prediction of multivalent pairing structures, detection of preferential chromosomal pairing and location of double reduction events can be performed. Availabilityand implementation polyqtlR is freely available from the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/package=polyqtlR. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Peter M Bourke
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Roeland E Voorrips
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Christine A Hackett
- Biomathematics and Statistics Scotland, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Geert van Geest
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands.,Deliflor Chrysanten B.V, Korte Kruisweg 163, Maasdijk, 2676BS, The Netherlands
| | - Johan H Willemsen
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Paul Arens
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Marinus J M Smulders
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Chris Maliepaard
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| |
Collapse
|
11
|
Sumitomo K, Shirasawa K, Isobe SN, Hirakawa H, Harata A, Kawabe M, Yagi M, Osaka M, Kunihisa M, Taniguchi F. DNA marker for resistance to Puccinia horiana in chrysanthemum ( Chrysanthemum morifolium Ramat.) "Southern Pegasus". BREEDING SCIENCE 2021; 71:261-267. [PMID: 34377074 PMCID: PMC8329880 DOI: 10.1270/jsbbs.20063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 01/04/2021] [Indexed: 06/13/2023]
Abstract
White rust caused by Puccinia horiana Henn. adversely affects chrysanthemum (Chrysanthemum morifolium Ramat.) production. The breeding of resistant varieties is effective in controlling the disease. Here we aimed to develop DNA markers for the strong resistance to P. horiana. We conducted a linkage analysis based on the genome-wide association study (GWAS) method. We employed a biparental population for the GWAS, wherein the single nucleotide polymorphism (SNP) allele frequency could be predicted. The population was derived from crosses between a strong resistant "Southern Pegasus" and a susceptible line. The GWAS used simplex and double-simplex SNP markers selected out of SNP candidates mined from ddRAD-Seq data of an F1 biparental population. These F1 individuals segregated in a 1:1 ratio of resistant to susceptible. Twenty-one simplex SNPs were significantly associated with P. horiana resistance in "Southern Pegasus" and generated one linkage group. These results show the presence of a single resistance gene in "Southern Pegasus". We identified the nearest SNP marker located 2.2 cM from P. horiana resistance locus and demonstrated this SNP marker-resistance link using an independent population. This is the first report of an effective DNA marker linked to a gene for P. horiana resistance in chrysanthemum.
Collapse
Affiliation(s)
- Katsuhiko Sumitomo
- Institute of Vegetable and Floriculture Science, NARO, Tsukuba, Ibaraki 305-0852, Japan
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | | | - Hideki Hirakawa
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Akiho Harata
- Kagoshima Prefectural Institute for Agricultural Development, Minamisatsuma, Kagoshima 899-3401, Japan
| | - Masato Kawabe
- Institute of Vegetable and Floriculture Science, NARO, Tsukuba, Ibaraki 305-0852, Japan
| | - Masafumi Yagi
- Institute of Vegetable and Floriculture Science, NARO, Tsukuba, Ibaraki 305-0852, Japan
| | - Masaaki Osaka
- Miyagi Prefectural Institute of Agriculture and Horticulture, Natori, Miyagi 981-1243, Japan
| | - Miyuki Kunihisa
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki 305-8605, Japan
| | - Fumiya Taniguchi
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki 305-8605, Japan
| |
Collapse
|
12
|
Linkage Map Development by EST-SSR Markers and QTL Analysis for Inflorescence and Leaf Traits in Chrysanthemum ( Chrysanthemum morifolium Ramat.). PLANTS 2020; 9:plants9101342. [PMID: 33050665 PMCID: PMC7600071 DOI: 10.3390/plants9101342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
Chrysanthemums (Chrysanthemum morifolium Ramat.) are famous ornamental crops with high medicinal and industrial values. The inflorescence and leaf traits are key factors that affect the yield and quality of chrysanthemum. However, the genetic improvement of those traits is slow within chrysanthemum because of its hexaploidy, high heterozygosity and enormous genome. To study the genetic control of the important traits and facilitate marker-assisted selection (MAS) in chrysanthemum, it is desirable to populate the genetic maps with an abundance of transferrable markers such as microsatellites (SSRs). A genetic map was constructed with expressed sequence tag–simple sequence repeat (EST-SSR) markers in an F1 progeny of 192 offspring. A total of 1000 alleles were generated from 223 EST-SSR primer pairs. The preliminary maternal and paternal maps consisted of 265 marker alleles arranged into 49 and 53 linkage groups (LGs), respectively. The recombined parental maps covered 906.3 and 970.1 cM of the genome, respectively. Finally, 264 polymorphic loci were allocated to nine LGs. The integrated map spanned 954.5 cM in length with an average genetic distance of 3.6 cM between two neighbouring loci. Quantitative trait loci (QTLs) analysis was performed using the integrated map for inflorescence diameter (ID), central disc flower diameter (CDFD), number of whorls of ray florets (NWRF), number of ray florets (NRF), number of disc florets (NDF), number of florets (NF), ray floret length (RFL), ray floret width (RFW), ray floret length/width (RFL/W), leaf length (LL), leaf width (LW) and leaf length/width (LL/W). Overall, 36 (21 major) QTLs were identified. The successful mapping of inflorescence and leaf traits QTL demonstrated the utility of the new integrated linkage map. This study is the first report of a genetic map based on EST-SSR markers in chrysanthemum. The EST-SSR markers, genetic map and QTLs reported here could be valuable resources in implementing MAS for chrysanthemums in breeding programs.
Collapse
|
13
|
Song X, Xu Y, Gao K, Fan G, Zhang F, Deng C, Dai S, Huang H, Xin H, Li Y. High-density genetic map construction and identification of loci controlling flower-type traits in Chrysanthemum ( Chrysanthemum × morifolium Ramat.). HORTICULTURE RESEARCH 2020; 7:108. [PMID: 32637136 PMCID: PMC7326996 DOI: 10.1038/s41438-020-0333-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/16/2020] [Accepted: 05/01/2020] [Indexed: 05/31/2023]
Abstract
Flower type is an important and extremely complicated trait of chrysanthemum. The corolla tube merged degree (CTMD) and the relative number of ray florets (RNRF) are the two key factors affecting chrysanthemum flower type. However, few reports have clarified the inheritance of these two complex traits, which limits directed breeding for flower-type improvement. In this study, 305 F1 hybrids were obtained from two parents with obvious differences in CTMD and RNRF performance. Using specific-locus amplified fragment sequencing (SLAF-seq) technology, we constructed a high-density genetic linkage map with an average map distance of 0.76 cM. Three major QTLs controlling CTMD and four major QTLs underlying RNRF were repeatedly detected in the 2 years. Moreover, the synteny between the genetic map and other Compositae species was investigated, and weak collinearity was observed. In QTL regions with a high degree of genomic collinearity, eight annotated genes were probed in the Helianthus annuus L. and Lactuca sativa L. var. ramosa Hort. genomes. Furthermore, 20 and 11 unigenes were identified via BLAST searches between the SNP markers of the QTL regions and the C. vestitum and C. lavandulifolium transcriptomes, respectively. These results lay a foundation for molecular marker-assisted breeding and candidate gene exploration in chrysanthemum without a reference assembly.
Collapse
Affiliation(s)
- Xuebin Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083 China
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109 Shandong China
| | - Yuhui Xu
- Biomarker Technologies Co., LTD, Beijing, 101300 China
- LC Science Co., LTD., Hangzhou, 310018 China
| | - Kang Gao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083 China
| | - Guangxun Fan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083 China
| | - Fan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083 China
| | - Chengyan Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083 China
| | - Silan Dai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083 China
| | - He Huang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083 China
| | - Huaigen Xin
- Biomarker Technologies Co., LTD, Beijing, 101300 China
| | - Yingying Li
- Biomarker Technologies Co., LTD, Beijing, 101300 China
| |
Collapse
|
14
|
Bourke PM, van Geest G, Voorrips RE, Jansen J, Kranenburg T, Shahin A, Visser RGF, Arens P, Smulders MJM, Maliepaard C. polymapR-linkage analysis and genetic map construction from F1 populations of outcrossing polyploids. Bioinformatics 2019; 34:3496-3502. [PMID: 29722786 PMCID: PMC6184683 DOI: 10.1093/bioinformatics/bty371] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
Motivation Polyploid species carry more than two copies of each chromosome, a condition found in many of the world’s most important crops. Genetic mapping in polyploids is more complex than in diploid species, resulting in a lack of available software tools. These are needed if we are to realize all the opportunities offered by modern genotyping platforms for genetic research and breeding in polyploid crops. Results polymapR is an R package for genetic linkage analysis and integrated genetic map construction from bi-parental populations of outcrossing autopolyploids. It can currently analyse triploid, tetraploid and hexaploid marker datasets and is applicable to various crops including potato, leek, alfalfa, blueberry, chrysanthemum, sweet potato or kiwifruit. It can detect, estimate and correct for preferential chromosome pairing, and has been tested on high-density marker datasets from potato, rose and chrysanthemum, generating high-density integrated linkage maps in all of these crops. Availability and implementation polymapR is freely available under the general public license from the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/package=polymapR. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Peter M Bourke
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Geert van Geest
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands.,Deliflor Chrysanten B.V, Maasdijk, BS, The Netherlands
| | - Roeland E Voorrips
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Johannes Jansen
- Biometris, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Twan Kranenburg
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Arwa Shahin
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands.,Van Zanten Breeding B. V, Rijsenhout, EW, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Paul Arens
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Marinus J M Smulders
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Chris Maliepaard
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| |
Collapse
|
15
|
Su J, Jiang J, Zhang F, Liu Y, Ding L, Chen S, Chen F. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. HORTICULTURE RESEARCH 2019; 6:109. [PMID: 31666962 PMCID: PMC6804895 DOI: 10.1038/s41438-019-0193-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 05/05/2023]
Abstract
Chrysanthemum (Chrysanthemum morifolium Ramat.) is a leading flower with applied value worldwide. Developing new chrysanthemum cultivars with novel characteristics such as new flower colors and shapes, plant architectures, flowering times, postharvest quality, and biotic and abiotic stress tolerance in a time- and cost-efficient manner is the ultimate goal for breeders. Various breeding strategies have been employed to improve the aforementioned traits, ranging from conventional techniques, including crossbreeding and mutation breeding, to a series of molecular breeding methods, including transgenic technology, genome editing, and marker-assisted selection (MAS). In addition, the recent extensive advances in high-throughput technologies, especially genomics, transcriptomics, proteomics, metabolomics, and microbiomics, which are collectively referred to as omics platforms, have led to the collection of substantial amounts of data. Integration of these omics data with phenotypic information will enable the identification of genes/pathways responsible for important traits. Several attempts have been made to use emerging molecular and omics methods with the aim of accelerating the breeding of chrysanthemum. However, applying the findings of such studies to practical chrysanthemum breeding remains a considerable challenge, primarily due to the high heterozygosity and polyploidy of the species. This review summarizes the recent achievements in conventional and modern molecular breeding methods and emerging omics technologies and discusses their future applications for improving the agronomic and horticultural characteristics of chrysanthemum.
Collapse
Affiliation(s)
- Jiangshuo Su
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
16
|
Nakano M, Taniguchi K, Masuda Y, Kozuka T, Aruga Y, Han J, Motohara K, Nakata M, Sumitomo K, Hisamatsu T, Nakano Y, Yagi M, Hirakawa H, Isobe SN, Shirasawa K, Nagashima Y, Na H, Chen L, Liang G, Chen R, Kusaba M. A pure line derived from a self-compatible Chrysanthemum seticuspe mutant as a model strain in the genus Chrysanthemum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110174. [PMID: 31481216 DOI: 10.1016/j.plantsci.2019.110174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
Asteraceae is the largest family of angiosperms, comprising approximately 24,000 species. Molecular genetic studies of Asteraceae are essential for understanding plant diversity. Chrysanthemum morifolium is the most industrially important ornamental species in Asteraceae. Most cultivars of C. morifolium are autohexaploid and self-incompatible. These properties are major obstacles to the genetic analysis and modern breeding of C. morifolium. Furthermore, high genome heterogeneity complicates molecular biological analyses. In this study, we developed a model strain in the genus Chrysanthemum. C. seticuspe is a diploid species with a similar flowering property and morphology to C. morifolium and can be subjected to Agrobacterium-mediated transformation. We isolated a natural self-compatible mutant of C. seticuspe and established a pure line through repeated selfing and selection. The resultant strain, named Gojo-0, was favorable for genetic analyses, including isolation of natural and induced mutants, and facilitated molecular biological analysis, including whole genome sequencing, owing to the simplicity and homogeneity of its genome. Interspecific hybridization with Chrysanthemum species was possible, enabling molecular genetic analysis of natural interspecific variations. The accumulation of research results and resources using Gojo-0 as a platform is expected to promote molecular genetic studies on the genus Chrysanthemum and the genetic improvement of chrysanthemum cultivars.
Collapse
Affiliation(s)
- Michiharu Nakano
- Graduate school of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Kenji Taniguchi
- Graduate school of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Yu Masuda
- Graduate school of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Toshiaki Kozuka
- Graduate school of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Yuki Aruga
- Graduate school of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Jin Han
- Graduate school of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Koichiro Motohara
- Graduate school of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Masashi Nakata
- Botanic Gardens of Toyama, Kamikutsuwada 42, Fuchu-machi, Toyama, 939-2713, Japan
| | - Katsuhiko Sumitomo
- Institute of Vegetable and Floriculture Sciences, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-0852, Japan
| | - Tamotsu Hisamatsu
- Institute of Vegetable and Floriculture Sciences, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-0852, Japan
| | - Yoshihiro Nakano
- Institute of Vegetable and Floriculture Sciences, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-0852, Japan
| | - Masafumi Yagi
- Institute of Vegetable and Floriculture Sciences, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-0852, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, 292-0818, Japan
| | - Sachiko N Isobe
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, 292-0818, Japan
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, 292-0818, Japan
| | - Yumi Nagashima
- Graduate school of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Haiyan Na
- College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Li Chen
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Guolu Liang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Ruiyan Chen
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Makoto Kusaba
- Graduate school of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.
| |
Collapse
|
17
|
Sumitomo K, Shirasawa K, Isobe S, Hirakawa H, Hisamatsu T, Nakano Y, Yagi M, Ohmiya A. Genome-wide association study overcomes the genome complexity in autohexaploid chrysanthemum and tags SNP markers onto the flower color genes. Sci Rep 2019; 9:13947. [PMID: 31558738 PMCID: PMC6763435 DOI: 10.1038/s41598-019-50028-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/04/2019] [Indexed: 12/02/2022] Open
Abstract
The use of DNA markers has revolutionized selection in crop breeding by linkage mapping and QTL analysis, but major problems still remain for polyploid species where marker-assisted selection lags behind the situation in diploids because of its high genome complexity. To overcome the complex genetic mode in the polyploids, we investigated the development of a strategy of genome-wide association study (GWAS) using single-dose SNPs, which simplify the segregation patterns associated polyploids, with respect to the development of DNA markers. In addition, we employed biparental populations for the GWAS, wherein the SNP allele frequency could be predicted. The research investigated whether the method could be used to effectively develop DNA markers for petal color in autohexaploid chrysanthemum (Chrysanthemum morifolium; 2n = 6x = 54). The causal gene for this trait is already-known CmCCD4a encoding a dioxygenase which cleaves carotenoids in petals. We selected 9,219 single-dose SNPs, out of total 52,489 SNPs identified by dd-RAD-Seq, showing simplex (1 × 0) and double-simplex (1 × 1) inheritance pattern according to alternative allele frequency with respect to the SNP loci in the F1 population. GWAS, using these single-dose SNPs, discovered highly reproducible SNP markers tightly linked to the causal genes. This is the first report of a straightforward GWAS-based marker developing system for use in autohexaploid species.
Collapse
Affiliation(s)
- Katsuhiko Sumitomo
- Institute of Vegetable and Floriculture Sciences, NARO, Tsukuba, Ibaraki, 305-0852, Japan.
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Sachiko Isobe
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Tamotsu Hisamatsu
- Institute of Vegetable and Floriculture Sciences, NARO, Tsukuba, Ibaraki, 305-0852, Japan
| | - Yoshihiro Nakano
- Institute of Vegetable and Floriculture Sciences, NARO, Tsukuba, Ibaraki, 305-0852, Japan
| | - Masafumi Yagi
- Institute of Vegetable and Floriculture Sciences, NARO, Tsukuba, Ibaraki, 305-0852, Japan
| | - Akemi Ohmiya
- Institute of Vegetable and Floriculture Sciences, NARO, Tsukuba, Ibaraki, 305-0852, Japan
| |
Collapse
|
18
|
Hirakawa H, Sumitomo K, Hisamatsu T, Nagano S, Shirasawa K, Higuchi Y, Kusaba M, Koshioka M, Nakano Y, Yagi M, Yamaguchi H, Taniguchi K, Nakano M, Isobe SN. De novo whole-genome assembly in Chrysanthemum seticuspe, a model species of Chrysanthemums, and its application to genetic and gene discovery analysis. DNA Res 2019; 26:195-203. [PMID: 30689773 PMCID: PMC6589549 DOI: 10.1093/dnares/dsy048] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/02/2019] [Indexed: 11/13/2022] Open
Abstract
Cultivated chrysanthemum (Chrysanthemum morifolium Ramat.) is one of the most economically important ornamental crops grown worldwide. It has a complex hexaploid genome (2n = 6x = 54) and large genome size. The diploid Chrysanthemum seticuspe is often used as a model of cultivated chrysanthemum, since the two species are closely related. To expand our knowledge of the cultivated chrysanthemum, we here performed de novo whole-genome assembly in C. seticuspe using the Illumina sequencing platform. XMRS10, a C. seticuspe accession developed by five generations of self-crossing from a self-compatible strain, AEV2, was used for genome sequencing. The 2.72 Gb of assembled sequences (CSE_r1.0), consisting of 354,212 scaffolds, covered 89.0% of the 3.06 Gb C. seticuspe genome estimated by k-mer analysis. The N50 length of scaffolds was 44,741 bp. For protein-encoding genes, 71,057 annotated genes were deduced (CSE_r1.1_cds). Next, based on the assembled genome sequences, we performed linkage map construction, gene discovery and comparative analyses for C. seticuspe and cultivated chrysanthemum. The generated C. seticuspe linkage map revealed skewed regions in segregation on the AEV2 genome. In gene discovery analysis, candidate flowering-related genes were newly found in CSE_r1.1_cds. Moreover, single nucleotide polymorphism identification and annotation on the C. × morifolium genome showed that the C. seticuspe genome was applicable to genetic analysis in cultivated chrysanthemums. The genome sequences assembled herein are expected to contribute to future chrysanthemum studies. In addition, our approach demonstrated the usefulness of short-read genome assembly and the importance of choosing an appropriate next genome sequencing technology based on the purpose of the post-genome analysis.
Collapse
Affiliation(s)
| | - Katsuhiko Sumitomo
- Institute of Vegetable and Floriculture Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Tamotsu Hisamatsu
- Institute of Vegetable and Floriculture Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Soichiro Nagano
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan.,Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Juo, Hitachi, Ibaraki, Japan
| | | | - Yohei Higuchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Makoto Kusaba
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Masaji Koshioka
- College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Yoshihiro Nakano
- Institute of Vegetable and Floriculture Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Masafumi Yagi
- Institute of Vegetable and Floriculture Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Hiroyasu Yamaguchi
- Institute of Vegetable and Floriculture Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Kenji Taniguchi
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Michiharu Nakano
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | | |
Collapse
|
19
|
Chong X, Su J, Wang F, Wang H, Song A, Guan Z, Fang W, Jiang J, Chen S, Chen F, Zhang F. Identification of favorable SNP alleles and candidate genes responsible for inflorescence-related traits via GWAS in chrysanthemum. PLANT MOLECULAR BIOLOGY 2019; 99:407-420. [PMID: 30701353 DOI: 10.1007/s11103-019-00826-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 01/19/2019] [Indexed: 05/21/2023]
Abstract
81 SNPs were identified for three inflorescence-related traits, in which 15 were highly favorable. Two dCAPS markers were developed for future MAS breeding, and six candidate genes were predicted. Chrysanthemum is a leading ornamental species worldwide and demonstrates a wealth of morphological variation. Knowledge about the genetic basis of its phenotypic variation for key horticultural traits can contribute to its effective management and genetic improvement. In this study, we conducted a genome-wide association study (GWAS) based on two years of phenotype data and a set of 92,617 single nucleotide polymorphisms (SNPs) using a panel of 107 diverse cut chrysanthemums to dissect the genetic control of three inflorescence-related traits. A total of 81 SNPs were significantly associated with the three inflorescence-related traits (capitulum diameter, number of ray florets and flowering time) in at least one environment, with an individual allele explaining 22.72-38.67% of the phenotypic variation. Fifteen highly favorable alleles were identified for the three target traits by computing the phenotypic effect values for the stable associations detected in 2 year-long trials at each locus. Dosage pyramiding effects of the highly favorable SNP alleles and significant linear correlations between highly favorable allele numbers and corresponding phenotypic performance were observed. Two highly favorable SNP alleles correlating to flowering time and capitulum diameter were converted to derived cleaved amplified polymorphic sequence (dCAPS) markers to facilitate future breeding. Finally, six putative candidate genes were identified that contribute to flowering time and capitulum diameter. These results serve as a foundation for analyzing the genetic mechanisms underlying important horticultural traits and provide valuable insights into molecular marker-assisted selection (MAS) in chrysanthemum breeding programs.
Collapse
Affiliation(s)
- Xinran Chong
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China
| | - Jiangshuo Su
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China
| | - Fan Wang
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China
| | - Fei Zhang
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
20
|
Bourke PM, van Geest G, Voorrips RE, Jansen J, Kranenburg T, Shahin A, Visser RGF, Arens P, Smulders MJM, Maliepaard C. polymapR-linkage analysis and genetic map construction from F1 populations of outcrossing polyploids. BIOINFORMATICS (OXFORD, ENGLAND) 2019; 35:540. [PMID: 30629112 DOI: 10.1101/228817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
AbstractMotivationPolyploid species carry more than two copies of each chromosome, a condition found in many of the world’s most important crops. Genetic mapping in polyploids is more complex than in diploid species, resulting in a lack of available software tools. These are needed if we are to realise all the opportunities offered by modern genotyping platforms for genetic research and breeding in polyploid crops.ResultspolymapR is an R package for genetic linkage analysis and integrated genetic map construction from bi-parental populations of outcrossing autopolyploids. It can currently analyse triploid, tetraploid and hexaploid marker datasets and is applicable to various crops including potato, leek, alfalfa, blueberry, chrysanthemum, sweet potato or kiwifruit. It can detect, estimate and correct for preferential chromosome pairing, and has been tested on high-density marker datasets from potato, rose and chrysanthemum, generating high-density integrated linkage maps in all of these crops.Availability and ImplementationpolymapR is freely available under the general public license from the Comprehensive R Archive Network (CRAN) athttp://cran.r-project.org/packages=polymapR.ContactChris Maliepaard chris.maliepaard@wur.nl or Roeland E. Voorrips roeland.voorrips@wur.nl
Collapse
|
21
|
Su J, Zhang F, Chong X, Song A, Guan Z, Fang W, Chen F. Genome-wide association study identifies favorable SNP alleles and candidate genes for waterlogging tolerance in chrysanthemums. HORTICULTURE RESEARCH 2019; 6:21. [PMID: 30729011 PMCID: PMC6355785 DOI: 10.1038/s41438-018-0101-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/06/2018] [Accepted: 10/09/2018] [Indexed: 05/05/2023]
Abstract
Chrysanthemums are sensitive to waterlogging stress, and the development of screening methods for tolerant germplasms or genes and the breeding of tolerant new varieties are of great importance in chrysanthemum breeding. To understand the genetic basis of waterlogging tolerance (WT) in chrysanthemums, we performed a genome-wide association study (GWAS) using 92,811 single nucleotide polymorphisms (SNPs) in a panel of 88 chrysanthemum accessions, including 64 spray cut and 24 disbud chrysanthemums. The results showed that the average MFVW (membership function value of waterlogging) of the disbud type (0.65) was significantly higher than that of the spray type (0.55) at P < 0.05, and the MFVW of the Asian accessions (0.65) was significantly higher than that of the European accessions (0.48) at P < 0.01. The GWAS performed using the general linear model (GLM) and mixed linear model (MLM) identified 137 and 14 SNP loci related to WT, respectively, and 11 associations were commonly predicted. By calculating the phenotypic effect values for 11 common SNP loci, six highly favorable SNP alleles that explained 12.85-21.85% of the phenotypic variations were identified. Furthermore, the dosage-pyramiding effects of the favorable alleles and the significant linear correlations between the numbers of highly favorable alleles and phenotypic values were identified (r 2 = 0.45; P < 0.01). A major SNP locus (Marker6619-75) was converted into a derived cleaved amplified polymorphic sequence (dCAPS) marker that cosegregated with WT with an average efficiency of 78.9%. Finally, four putative candidate genes in the WT were identified via quantitative real-time PCR (qRT-PCR). The results presented in this study provide insights for further research on WT mechanisms and the application of molecular marker-assisted selection (MAS) in chrysanthemum WT breeding programs.
Collapse
Affiliation(s)
- Jiangshuo Su
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Fei Zhang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Xinran Chong
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| |
Collapse
|
22
|
Su J, Zhang F, Chong X, Song A, Guan Z, Fang W, Chen F. Genome-wide association study identifies favorable SNP alleles and candidate genes for waterlogging tolerance in chrysanthemums. HORTICULTURE RESEARCH 2019. [PMID: 30729011 DOI: 10.1038/s41438-018-0101-107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Chrysanthemums are sensitive to waterlogging stress, and the development of screening methods for tolerant germplasms or genes and the breeding of tolerant new varieties are of great importance in chrysanthemum breeding. To understand the genetic basis of waterlogging tolerance (WT) in chrysanthemums, we performed a genome-wide association study (GWAS) using 92,811 single nucleotide polymorphisms (SNPs) in a panel of 88 chrysanthemum accessions, including 64 spray cut and 24 disbud chrysanthemums. The results showed that the average MFVW (membership function value of waterlogging) of the disbud type (0.65) was significantly higher than that of the spray type (0.55) at P < 0.05, and the MFVW of the Asian accessions (0.65) was significantly higher than that of the European accessions (0.48) at P < 0.01. The GWAS performed using the general linear model (GLM) and mixed linear model (MLM) identified 137 and 14 SNP loci related to WT, respectively, and 11 associations were commonly predicted. By calculating the phenotypic effect values for 11 common SNP loci, six highly favorable SNP alleles that explained 12.85-21.85% of the phenotypic variations were identified. Furthermore, the dosage-pyramiding effects of the favorable alleles and the significant linear correlations between the numbers of highly favorable alleles and phenotypic values were identified (r 2 = 0.45; P < 0.01). A major SNP locus (Marker6619-75) was converted into a derived cleaved amplified polymorphic sequence (dCAPS) marker that cosegregated with WT with an average efficiency of 78.9%. Finally, four putative candidate genes in the WT were identified via quantitative real-time PCR (qRT-PCR). The results presented in this study provide insights for further research on WT mechanisms and the application of molecular marker-assisted selection (MAS) in chrysanthemum WT breeding programs.
Collapse
Affiliation(s)
- Jiangshuo Su
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Fei Zhang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Xinran Chong
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| |
Collapse
|
23
|
Bourke PM, van Geest G, Voorrips RE, Jansen J, Kranenburg T, Shahin A, Visser RGF, Arens P, Smulders MJM, Maliepaard C. polymapR-linkage analysis and genetic map construction from F1 populations of outcrossing polyploids. BIOINFORMATICS (OXFORD, ENGLAND) 2018. [PMID: 29722786 DOI: 10.1093/bioinformatica/bty371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
MOTIVATION Polyploid species carry more than two copies of each chromosome, a condition found in many of the world's most important crops. Genetic mapping in polyploids is more complex than in diploid species, resulting in a lack of available software tools. These are needed if we are to realize all the opportunities offered by modern genotyping platforms for genetic research and breeding in polyploid crops. RESULTS polymapR is an R package for genetic linkage analysis and integrated genetic map construction from bi-parental populations of outcrossing autopolyploids. It can currently analyse triploid, tetraploid and hexaploid marker datasets and is applicable to various crops including potato, leek, alfalfa, blueberry, chrysanthemum, sweet potato or kiwifruit. It can detect, estimate and correct for preferential chromosome pairing, and has been tested on high-density marker datasets from potato, rose and chrysanthemum, generating high-density integrated linkage maps in all of these crops. AVAILABILITY AND IMPLEMENTATION polymapR is freely available under the general public license from the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/package=polymapR. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Peter M Bourke
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Geert van Geest
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
- Deliflor Chrysanten B.V, Maasdijk, BS, The Netherlands
| | - Roeland E Voorrips
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Johannes Jansen
- Biometris, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Twan Kranenburg
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Arwa Shahin
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
- Van Zanten Breeding B. V, Rijsenhout, EW, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Paul Arens
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Marinus J M Smulders
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Chris Maliepaard
- Plant Breeding, Wageningen University & Research, Wageningen, PB, The Netherlands
| |
Collapse
|
24
|
Kishi-Kaboshi M, Aida R, Sasaki K. Genome engineering in ornamental plants: Current status and future prospects. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 131:47-52. [PMID: 29709514 DOI: 10.1016/j.plaphy.2018.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 05/21/2023]
Abstract
Ornamental plants, like roses, carnations, and chrysanthemums, are economically important and are sold all over the world. In addition, numerous cut and garden flowers add colors to homes and gardens. Various strategies of plant breeding have been employed to improve traits of many ornamental plants. These approaches span from conventional techniques, such as crossbreeding and mutation breeding, to genetically modified plants. Recently, genome editing has become available as an efficient means for modifying traits in plant species. Genome editing technology is useful for genetic analysis and is poised to become a common breeding method for ornamental plants. In this review, we summarize the benefits and limitations of conventional breeding techniques and genome editing methods and discuss their future potential to accelerate the rate breeding programs in ornamental plants.
Collapse
Affiliation(s)
- Mitsuko Kishi-Kaboshi
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki, 305-0852, Japan
| | - Ryutaro Aida
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki, 305-0852, Japan
| | - Katsutomo Sasaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki, 305-0852, Japan.
| |
Collapse
|
25
|
Bourke PM, Voorrips RE, Visser RGF, Maliepaard C. Tools for Genetic Studies in Experimental Populations of Polyploids. FRONTIERS IN PLANT SCIENCE 2018; 9:513. [PMID: 29720992 PMCID: PMC5915555 DOI: 10.3389/fpls.2018.00513] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/04/2018] [Indexed: 05/19/2023]
Abstract
Polyploid organisms carry more than two copies of each chromosome, a condition rarely tolerated in animals but which occurs relatively frequently in the plant kingdom. One of the principal challenges faced by polyploid organisms is to evolve stable meiotic mechanisms to faithfully transmit genetic information to the next generation upon which the study of inheritance is based. In this review we look at the tools available to the research community to better understand polyploid inheritance, many of which have only recently been developed. Most of these tools are intended for experimental populations (rather than natural populations), facilitating genomics-assisted crop improvement and plant breeding. This is hardly surprising given that a large proportion of domesticated plant species are polyploid. We focus on three main areas: (1) polyploid genotyping; (2) genetic and physical mapping; and (3) quantitative trait analysis and genomic selection. We also briefly review some miscellaneous topics such as the mode of inheritance and the availability of polyploid simulation software. The current polyploid analytic toolbox includes software for assigning marker genotypes (and in particular, estimating the dosage of marker alleles in the heterozygous condition), establishing chromosome-scale linkage phase among marker alleles, constructing (short-range) haplotypes, generating linkage maps, performing genome-wide association studies (GWAS) and quantitative trait locus (QTL) analyses, and simulating polyploid populations. These tools can also help elucidate the mode of inheritance (disomic, polysomic or a mixture of both as in segmental allopolyploids) or reveal whether double reduction and multivalent chromosomal pairing occur. An increasing number of polyploids (or associated diploids) are being sequenced, leading to publicly available reference genome assemblies. Much work remains in order to keep pace with developments in genomic technologies. However, such technologies also offer the promise of understanding polyploid genomes at a level which hitherto has remained elusive.
Collapse
Affiliation(s)
| | | | | | - Chris Maliepaard
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
26
|
You Q, Yang X, Peng Z, Xu L, Wang J. Development and Applications of a High Throughput Genotyping Tool for Polyploid Crops: Single Nucleotide Polymorphism (SNP) Array. FRONTIERS IN PLANT SCIENCE 2018; 9:104. [PMID: 29467780 PMCID: PMC5808122 DOI: 10.3389/fpls.2018.00104] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/19/2018] [Indexed: 05/18/2023]
Abstract
Polypoid species play significant roles in agriculture and food production. Many crop species are polyploid, such as potato, wheat, strawberry, and sugarcane. Genotyping has been a daunting task for genetic studies of polyploid crops, which lags far behind the diploid crop species. Single nucleotide polymorphism (SNP) array is considered to be one of, high-throughput, relatively cost-efficient and automated genotyping approaches. However, there are significant challenges for SNP identification in complex, polyploid genomes, which has seriously slowed SNP discovery and array development in polyploid species. Ploidy is a significant factor impacting SNP qualities and validation rates of SNP markers in SNP arrays, which has been proven to be a very important tool for genetic studies and molecular breeding. In this review, we (1) discussed the pros and cons of SNP array in general for high throughput genotyping, (2) presented the challenges of and solutions to SNP calling in polyploid species, (3) summarized the SNP selection criteria and considerations of SNP array design for polyploid species, (4) illustrated SNP array applications in several different polyploid crop species, then (5) discussed challenges, available software, and their accuracy comparisons for genotype calling based on SNP array data in polyploids, and finally (6) provided a series of SNP array design and genotype calling recommendations. This review presents a complete overview of SNP array development and applications in polypoid crops, which will benefit the research in molecular breeding and genetics of crops with complex genomes.
Collapse
Affiliation(s)
- Qian You
- Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Xiping Yang
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Ze Peng
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Liping Xu
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, FL, United States
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Jianping Wang
| |
Collapse
|
27
|
van Geest G, Bourke PM, Voorrips RE, Marasek-Ciolakowska A, Liao Y, Post A, van Meeteren U, Visser RGF, Maliepaard C, Arens P. An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2527-2541. [PMID: 28852802 PMCID: PMC5668331 DOI: 10.1007/s00122-017-2974-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/18/2017] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE We constructed the first integrated genetic linkage map in a polysomic hexaploid. This enabled us to estimate inheritance of parental haplotypes in the offspring and detect multi-allelic QTL. Construction and use of linkage maps are challenging in hexaploids with polysomic inheritance. Full map integration requires calculations of recombination frequency between markers with complex segregation types. In addition, detection of QTL in hexaploids requires information on all six alleles at one locus for each individual. We describe a method that we used to construct a fully integrated linkage map for chrysanthemum (Chrysanthemum × morifolium, 2n = 6x = 54). A bi-parental F1 population of 406 individuals was genotyped with an 183,000 SNP genotyping array. The resulting linkage map consisted of 30,312 segregating SNP markers of all possible marker dosage types, representing nine chromosomal linkage groups and 107 out of 108 expected homologues. Synteny with lettuce (Lactuca sativa) showed local colinearity. Overall, it was high enough to number the chrysanthemum chromosomal linkage groups according to those in lettuce. We used the integrated and phased linkage map to reconstruct inheritance of parental haplotypes in the F1 population. Estimated probabilities for the parental haplotypes were used for multi-allelic QTL analyses on four traits with different underlying genetic architectures. This resulted in the identification of major QTL that were affected by multiple alleles having a differential effect on the phenotype. The presented linkage map sets a standard for future genetic mapping analyses in chrysanthemum and closely related species. Moreover, the described methods are a major step forward for linkage mapping and QTL analysis in hexaploids.
Collapse
Affiliation(s)
- Geert van Geest
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6708 PB, Wageningen, The Netherlands.
- Deliflor Chrysanten B.V., Korte Kruisweg 163, 2676 BS, Maasdijk, The Netherlands.
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Peter M Bourke
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6708 PB, Wageningen, The Netherlands
| | - Roeland E Voorrips
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6708 PB, Wageningen, The Netherlands
| | | | - Yanlin Liao
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6708 PB, Wageningen, The Netherlands
| | - Aike Post
- Deliflor Chrysanten B.V., Korte Kruisweg 163, 2676 BS, Maasdijk, The Netherlands
| | - Uulke van Meeteren
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6708 PB, Wageningen, The Netherlands
| | - Chris Maliepaard
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6708 PB, Wageningen, The Netherlands
| | - Paul Arens
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|