1
|
Iqbal M, Semagn K, Jarquin D, Randhawa H, McCallum BD, Howard R, Aboukhaddour R, Ciechanowska I, Strenzke K, Crossa J, Céron-Rojas JJ, N’Diaye A, Pozniak C, Spaner D. Identification of Disease Resistance Parents and Genome-Wide Association Mapping of Resistance in Spring Wheat. PLANTS (BASEL, SWITZERLAND) 2022; 11:2905. [PMID: 36365358 PMCID: PMC9658635 DOI: 10.3390/plants11212905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/03/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The likelihood of success in developing modern cultivars depend on multiple factors, including the identification of suitable parents to initiate new crosses, and characterizations of genomic regions associated with target traits. The objectives of the present study were to (a) determine the best economic weights of four major wheat diseases (leaf spot, common bunt, leaf rust, and stripe rust) and grain yield for multi-trait restrictive linear phenotypic selection index (RLPSI), (b) select the top 10% cultivars and lines (hereafter referred as genotypes) with better resistance to combinations of the four diseases and acceptable grain yield as potential parents, and (c) map genomic regions associated with resistance to each disease using genome-wide association study (GWAS). A diversity panel of 196 spring wheat genotypes was evaluated for their reaction to stripe rust at eight environments, leaf rust at four environments, leaf spot at three environments, common bunt at two environments, and grain yield at five environments. The panel was genotyped with the Wheat 90K SNP array and a few KASP SNPs of which we used 23,342 markers for statistical analyses. The RLPSI analysis performed by restricting the expected genetic gain for yield displayed significant (p < 0.05) differences among the 3125 economic weights. Using the best four economic weights, a subset of 22 of the 196 genotypes were selected as potential parents with resistance to the four diseases and acceptable grain yield. GWAS identified 37 genomic regions, which included 12 for common bunt, 13 for leaf rust, 5 for stripe rust, and 7 for leaf spot. Each genomic region explained from 6.6 to 16.9% and together accounted for 39.4% of the stripe rust, 49.1% of the leaf spot, 94.0% of the leaf rust, and 97.9% of the common bunt phenotypic variance combined across all environments. Results from this study provide valuable information for wheat breeders selecting parental combinations for new crosses to develop improved germplasm with enhanced resistance to the four diseases as well as the physical positions of genomic regions that confer resistance, which facilitates direct comparisons for independent mapping studies in the future.
Collapse
Affiliation(s)
- Muhammad Iqbal
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4–10 Agriculture-Forestry Centre, Edmonton, AB T6G 2P5, Canada
| | - Kassa Semagn
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4–10 Agriculture-Forestry Centre, Edmonton, AB T6G 2P5, Canada
| | - Diego Jarquin
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | - Harpinder Randhawa
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Brent D. McCallum
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada
| | - Reka Howard
- Department of Statistics, University of Nebraska—Lincoln, Lincoln, NE 68583, USA
| | - Reem Aboukhaddour
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Izabela Ciechanowska
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4–10 Agriculture-Forestry Centre, Edmonton, AB T6G 2P5, Canada
| | - Klaus Strenzke
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4–10 Agriculture-Forestry Centre, Edmonton, AB T6G 2P5, Canada
| | - José Crossa
- Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Km 45 Carretera, Veracruz 52640, Mexico
| | - J. Jesus Céron-Rojas
- Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Km 45 Carretera, Veracruz 52640, Mexico
| | - Amidou N’Diaye
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Curtis Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Dean Spaner
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4–10 Agriculture-Forestry Centre, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
2
|
Importance of Landraces in Cereal Breeding for Stress Tolerance. PLANTS 2021; 10:plants10071267. [PMID: 34206299 PMCID: PMC8309184 DOI: 10.3390/plants10071267] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
The renewed focus on cereal landraces is a response to some negative consequences of modern agriculture and conventional breeding which led to a reduction of genetic diversity. Cereal landraces are still cultivated on marginal lands due to their adaptability to unfavourable conditions, constituting an important source of genetic diversity usable in modern plant breeding to improve the adaptation to abiotic or biotic stresses, yield performance and quality traits in limiting environments. Traditional agricultural production systems have played an important role in the evolution and conservation of wide variability in gene pools within species. Today, on-farm and ex situ conservation in gene bank collections, together with data sharing among researchers and breeders, will greatly benefit cereal improvement. Many efforts are usually made to collect, organize and phenotypically and genotypically analyse cereal landrace collections, which also utilize genomic approaches. Their use in breeding programs based on genomic selection, and the discovery of beneficial untapped QTL/genes/alleles which could be introgressed into modern varieties by MAS, pyramiding or biotechnological tools, increase the potential for their better deployment and exploitation in breeding for a more sustainable agricultural production, particularly enhancing adaptation and productivity in stress-prone environments to cope with current climate changes.
Collapse
|
3
|
van der Walt ZAP, Prins R, Wessels E, Bender CM, Visser B, Boshoff WH. Accomplishments in wheat rust research in South Africa. S AFR J SCI 2020. [DOI: 10.17159/sajs.2020/7688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Rust diseases, although seasonal, have been severe constraints in wheat production in South Africa for almost 300 years. Rust research gained momentum with the institution of annual surveys in the 1980s, followed by race identification, an understanding of rust epidemiology, and eventually a focused collaboration amongst pathologists, breeders and geneticists. Diversity in South African populations of Puccinia triticina, P. graminis f. sp. tritici and P. striiformis f. sp. tritici has been described and isolates are available to accurately phenotype wheat germplasm and study pathogen populations at national, regional and global levels. Sources of resistance have been, and still are, methodically analysed and molecular marker systems were developed to incorporate, stack and verify complex resistance gene combinations in breeding lines and cultivars. Vigilance, capacity, new technologies, collaboration and sustained funding are critical for maintaining and improving the current research impetus for future management of these important diseases.
Collapse
Affiliation(s)
| | - Renée Prins
- CenGen (Pty) Ltd., Worcester, South Africa
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | | | - Cornel M. Bender
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Botma Visser
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Willem H.P. Boshoff
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
4
|
Demissie ZA, Huang F, Song H, Todd AT, Vrinten P, Loewen MC. Barley "uzu" and Wheat "uzu-like" Brassinosteroid Receptor BRI1 Kinase Domain Variations Modify Phosphorylation Activity In Vitro. Biochemistry 2020; 59:2986-2997. [PMID: 32786402 DOI: 10.1021/acs.biochem.0c00424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brassinosteroid insensitive1 (BRI1), a leucine-rich repeat receptor kinase, is responsible for the perception of the brassinosteroid (BR) phytohormone in plants. While recent evidence has implicated a naturally occurring Hordeum vulgare V. (barley) HvBRI1 kinase domain (KD) variant (H857R; "uzu" variation) in increased fungal disease resistance, the impact of the variation on receptor function and thus the mechanism by which disease resistance might be imparted remain enigmatic. Here, the functional implications of the uzu variation as well as the effects of newly identified naturally occurring Triticum aestivum L. (wheat) TaBRI1-KD variants are investigated. Recombinantly produced KDs of wild-type (WT) and uzu HvBRI1 were assessed for phosphorylation activity in vitro, yielding WT KM and VMAX values similar to those of other reports, but the uzu variation delayed saturation and reduced turnover levels. In silico modeling of the H857R variation showed it to be surface-exposed and distal from the catalytic site. Further evaluation of three naturally occurring wheat TaBRI1 variants, A907T, A970V, and G1019R (barley numbering) identified in the A, B, and D subgenomic genes, respectively, highlighted a significant loss of activity for A907T. A907T is located on the same surface as the H857R variation and a negative regulatory phosphorylation site (T982) in Arabidopsis thaliana BRI1. A fourth variation, T1031A (barley numbering), unique to both subgenomic A proteins and localized to the BKI1 binding site, also decreased activity. The outcomes are discussed with respect to the predicted structural contexts of the variations and their implications with respect to mechanisms of action.
Collapse
Affiliation(s)
- Zerihun A Demissie
- National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | - Fang Huang
- National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | - Halim Song
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Andrea T Todd
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Patricia Vrinten
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Michele C Loewen
- National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
5
|
Zurn JD, Norelli JL, Montanari S, Bell R, Bassil NV. Dissecting Genetic Resistance to Fire Blight in Three Pear Populations. PHYTOPATHOLOGY 2020; 110:1305-1311. [PMID: 32175827 DOI: 10.1094/phyto-02-20-0051-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fire blight, caused by the bacterial pathogen Erwinia amylovora, is a persistent problem for pear (Pyrus spp.) growers in the United States. Growing resistant cultivars is one of the best options for managing fire blight. The cultivars Potomac and Old Home and the selection NJA2R59T69 display resistance to fire blight. As such, three mapping populations (El Dorado × Potomac, Old Home × Bartlett, and NJA2R59T69 × Bartlett) were developed to identify genomic regions associated with resistance to fire blight. Progeny were phenotyped during 2017 and 2018 by inoculating multiple actively growing shoots of field-grown seedling trees with E. amylovora isolate E153n via the cut-leaf method. Genotyping was conducted using the recently developed Axiom Pear 70 K Genotyping Array and chromosomal linkage groups were created for each population. An integrated two-way pseudo-testcross approach was used to map quantitative trait loci (QTLs). Resistance QTLs were identified on chromosome 2 for each population. The QTLs identified in the El Dorado × Potomac and Old Home × Bartlett populations are in the same region as QTLs that were previously identified in Harrow Sweet and Moonglow. The QTL in NJA2R59T69 mapped proximally to the previously identified QTLs and originated from an unknown Asian or occidental source. Future research will focus on further characterizing the resistance regions and developing tools for DNA-informed breeding.
Collapse
Affiliation(s)
- Jason D Zurn
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS) National Clonal Germplasm Repository, Corvallis, OR, U.S.A
| | - John L Norelli
- USDA-ARS Appalachian Fruit Research Laboratory, Kearneysville, WV, U.S.A
| | - Sara Montanari
- Department of Plant Sciences, University of California Davis, Davis, CA, U.S.A
| | - Richard Bell
- USDA-ARS Appalachian Fruit Research Laboratory, Kearneysville, WV, U.S.A
| | - Nahla V Bassil
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS) National Clonal Germplasm Repository, Corvallis, OR, U.S.A
| |
Collapse
|
6
|
Kosgey ZC, Edae EA, Dill-Macky R, Jin Y, Bulbula WD, Gemechu A, Macharia G, Bhavani S, Randhawa MS, Rouse MN. Mapping and Validation of Stem Rust Resistance Loci in Spring Wheat Line CI 14275. FRONTIERS IN PLANT SCIENCE 2020; 11:609659. [PMID: 33510752 PMCID: PMC7835402 DOI: 10.3389/fpls.2020.609659] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/08/2020] [Indexed: 05/22/2023]
Abstract
Stem rust caused by Puccinia graminis f. sp. tritici (Pgt) remains a constraint to wheat production in East Africa. In this study, we characterized the genetics of stem rust resistance, identified QTLs, and described markers associated with stem rust resistance in the spring wheat line CI 14275. The 113 recombinant inbred lines, together with their parents, were evaluated at the seedling stage against Pgt races TTKSK, TRTTF, TPMKC, TTTTF, and RTQQC. Screening for resistance to Pgt races in the field was undertaken in Kenya, Ethiopia, and the United States in 2016, 2017, and 2018. One gene conferred seedling resistance to race TTTTF, likely Sr7a. Three QTL were identified that conferred field resistance. QTL QSr.cdl-2BS.2, that conferred resistance in Kenya and Ethiopia, was validated, and the marker Excalibur_c7963_1722 was shown to have potential to select for this QTL in marker-assisted selection. The QTL QSr.cdl-3B.2 is likely Sr12, and QSr.cdl-6A appears to be a new QTL. This is the first study to both detect and validate an adult plant stem rust resistance QTL on chromosome arm 2BS. The combination of field QTL QSr.cdl-2BS.2, QSr.cdl-3B.2, and QSr.cdl-6A has the potential to be used in wheat breeding to improve stem rust resistance of wheat varieties.
Collapse
Affiliation(s)
- Zennah C. Kosgey
- Kenya Agricultural and Livestock Research Organization, Njoro, Kenya
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
- *Correspondence: Zennah C. Kosgey,
| | - Erena A. Edae
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Ruth Dill-Macky
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Yue Jin
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, Saint Paul, MN, United States
| | - Worku Denbel Bulbula
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
- Debre Zeit Agricultural Research Center, Ethiopian Institute of Agricultural Research, Bishoftu, Ethiopia
| | - Ashenafi Gemechu
- Debre Zeit Agricultural Research Center, Ethiopian Institute of Agricultural Research, Bishoftu, Ethiopia
| | - Godwin Macharia
- Kenya Agricultural and Livestock Research Organization, Njoro, Kenya
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - Matthew N. Rouse
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, Saint Paul, MN, United States
- Matthew N. Rouse,
| |
Collapse
|
7
|
Parkinson JE, Baker AC, Baums IB, Davies SW, Grottoli AG, Kitchen SA, Matz MV, Miller MW, Shantz AA, Kenkel CD. Molecular tools for coral reef restoration: Beyond biomarker discovery. Conserv Lett 2019. [DOI: 10.1111/conl.12687] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- John Everett Parkinson
- SECORE International Miami Florida
- Department of Integrative BiologyUniversity of South Florida Tampa Florida
| | - Andrew C. Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric ScienceUniversity of Miami Miami Florida
| | - Iliana B. Baums
- Department of BiologyPennsylvania State University University Park Pennsylvania
| | | | | | - Sheila A. Kitchen
- Department of BiologyPennsylvania State University University Park Pennsylvania
| | - Mikhail V. Matz
- Department of Integrative BiologyUniversity of Texas at Austin Austin Texas
| | | | - Andrew A. Shantz
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric ScienceUniversity of Miami Miami Florida
| | - Carly D. Kenkel
- Department of Biological SciencesUniversity of Southern California Los Angeles California
| |
Collapse
|
8
|
Mapping of Novel Leaf Rust and Stem Rust Resistance Genes in the Portuguese Durum Wheat Landrace PI 192051. G3-GENES GENOMES GENETICS 2019; 9:2535-2547. [PMID: 31278174 PMCID: PMC6686931 DOI: 10.1534/g3.119.400292] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Leaf rust caused by Puccinia triticina Erikss. (Pt) and stem rust caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn (Pgt) are serious constraints to production of durum wheat (Triticum turgidum L). The objective of this study was to identify leaf rust resistance (Lr) and stem rust resistance (Sr) genes/QTL in Portuguese durum landrace PI 192051. Four Pt-isolates, representing three virulence phenotypes (BBBQJ, BBBSJ & EEEEE) and six Pgt-races TTKSK, JRCQC, TKTTF, QFCFC, TPMKC and TMLKC were used to evaluate 180 recombinant inbred lines (RILs) derived from the cross Rusty (rust susceptible) × PI 192051-1 (rust resistant) at the seedling stage. The RILs were also phenotyped at the adult-plant stage in a stem rust nursery in Ethiopia in 2017. The RILs were genotyped using the Illumina iSelect 9K wheat SNP array. PI 192051-1 carries a previously unidentified major Sr gene designated as QSr.ace-7A on chromosome arm 7AS and Lr gene Lr.ace-4A in the pericentromeric region of chromosome 4A. In addition, three minor Sr QTL QSr.ace-1A, QSr.ace-2B and QSr.ace-4A were mapped in PI 192051-1 on chromosomes 1AL, 2BL, and 4A, respectively Lr.ace-4A could be co-located or tightly linked to QSr.ace-4A. Markers linked to the identified QTL/genes can be used for marker assisted selection. These findings enrich the genetic basis of rust resistance in both durum and common wheat.
Collapse
|