1
|
Schulz T, Parmigiani L, Rempel A, Stoye J. Methods for Pangenomic Core Detection. Methods Mol Biol 2024; 2802:73-106. [PMID: 38819557 DOI: 10.1007/978-1-0716-3838-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Computational pangenomics deals with the joint analysis of all genomic sequences of a species. It has already been successfully applied to various tasks in many research areas. Further advances in DNA sequencing technologies constantly let more and more genomic sequences become available for many species, leading to an increasing attractiveness of pangenomic studies. At the same time, larger datasets also pose new challenges for data structures and algorithms that are needed to handle the data. Efficient methods oftentimes make use of the concept of k-mers.Core detection is a common way of analyzing a pangenome. The pangenome's core is defined as the subset of genomic information shared among all individual members. Classically, it is not only determined on the abstract level of genes but can also be described on the sequence level.In this chapter, we provide an overview of k-mer-based methods in the context of pangenomics studies. We first revisit existing software solutions for k-mer counting and k-mer set representation. Afterward, we describe the usage of two k-mer-based approaches, Pangrowth and Corer, for pangenomic core detection.
Collapse
Affiliation(s)
- Tizian Schulz
- Faculty of Technology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Luca Parmigiani
- Faculty of Technology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andreas Rempel
- Faculty of Technology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jens Stoye
- Faculty of Technology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
2
|
McDonald TL, Zhou W, Castro CP, Mumm C, Switzenberg JA, Mills RE, Boyle AP. Cas9 targeted enrichment of mobile elements using nanopore sequencing. Nat Commun 2021; 12:3586. [PMID: 34117247 PMCID: PMC8196195 DOI: 10.1038/s41467-021-23918-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Mobile element insertions (MEIs) are repetitive genomic sequences that contribute to genetic variation and can lead to genetic disorders. Targeted and whole-genome approaches using short-read sequencing have been developed to identify reference and non-reference MEIs; however, the read length hampers detection of these elements in complex genomic regions. Here, we pair Cas9-targeted nanopore sequencing with computational methodologies to capture active MEIs in human genomes. We demonstrate parallel enrichment for distinct classes of MEIs, averaging 44% of reads on-targeted signals and exhibiting a 13.4-54x enrichment over whole-genome approaches. We show an individual flow cell can recover most MEIs (97% L1Hs, 93% AluYb, 51% AluYa, 99% SVA_F, and 65% SVA_E). We identify seventeen non-reference MEIs in GM12878 overlooked by modern, long-read analysis pipelines, primarily in repetitive genomic regions. This work introduces the utility of nanopore sequencing for MEI enrichment and lays the foundation for rapid discovery of elusive, repetitive genetic elements.
Collapse
Affiliation(s)
- Torrin L McDonald
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Weichen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Christopher P Castro
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Camille Mumm
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jessica A Switzenberg
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Ryan E Mills
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| | - Alan P Boyle
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Ohori S, Tsuburaya RS, Kinoshita M, Miyagi E, Mizuguchi T, Mitsuhashi S, Frith MC, Matsumoto N. Long-read whole-genome sequencing identified a partial MBD5 deletion in an exome-negative patient with neurodevelopmental disorder. J Hum Genet 2021; 66:697-705. [PMID: 33510365 DOI: 10.1038/s10038-020-00893-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
Whole-exome sequencing (WES) can detect not only single-nucleotide variants in causal genes, but also pathogenic copy-number variations using several methods. However, there may be overlooked pathogenic variations in the out of target genome regions of WES analysis (e.g., promoters), leaving many patients undiagnosed. Whole-genome sequencing (WGS) can potentially analyze such regions. We applied long-read nanopore WGS and our recently developed analysis pipeline "dnarrange" to a patient who was undiagnosed by trio-based WES analysis, and identified a heterozygous 97-kb deletion partially involving 5'-untranslated exons of MBD5, which was outside the WES target regions. The phenotype of the patient, a 32-year-old male, was consistent with haploinsufficiency of MBD5. The transcript level of MBD5 in the patient's lymphoblastoid cells was reduced. We therefore concluded that the partial MBD5 deletion is the culprit for this patient. Furthermore, we found other rare structural variations (SVs) in this patient, i.e., a large inversion and a retrotransposon insertion, which were not seen in 33 controls. Although we considered that they are benign SVs, this finding suggests that our pipeline using long-read WGS is useful for investigating various types of potentially pathogenic SVs. In conclusion, we identified a 97-kb deletion, which causes haploinsufficiency of MBD5 in a patient with neurodevelopmental disorder, demonstrating that long-read WGS is a powerful technique to discover pathogenic SVs.
Collapse
Affiliation(s)
- Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Obstetrics and Gynecology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Rie S Tsuburaya
- Department of Pediatric Neurology, National Hospital Organization Utano National Hospital, 8 Ondoyamacho, Ukyo-ku, Kyoto, 616-8255, Japan
| | - Masako Kinoshita
- Department of Neurology, National Hospital Organization Utano National Hospital, 8 Ondoyamacho, Ukyo-ku, Kyoto, 616-8255, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Martin C Frith
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo, Japan.,Graduate School of Frontier Sciences, University of Tokyo, Kashiwa-city, Chiba, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Shinjuku-ku, Tokyo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
4
|
Komkov AY, Urazbakhtin SZ, Saliutina MV, Komech EA, Shelygin YA, Nugmanov GA, Shubin VP, Smirnova AO, Bobrov MY, Tsukanov AS, Snezhkina AV, Kudryavtseva AV, Lebedev YB, Mamedov IZ. SeqURE - a new copy-capture based method for sequencing of unknown Retroposition events. Mob DNA 2020; 11:33. [PMID: 33317630 PMCID: PMC7734759 DOI: 10.1186/s13100-020-00228-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/01/2020] [Indexed: 11/24/2022] Open
Abstract
Background Retroelements (REs) occupy a significant part of all eukaryotic genomes including humans. The majority of retroelements in the human genome are inactive and unable to retrotranspose. Dozens of active copies are repressed in most normal tissues by various cellular mechanisms. These copies can become active in normal germline and brain tissues or in cancer, leading to new retroposition events. The consequences of such events and their role in normal cell functioning and carcinogenesis are not yet fully understood. If new insertions occur in a small portion of cells they can be found only with the use of specific methods based on RE enrichment and high-throughput sequencing. The downside of the high sensitivity of such methods is the presence of various artifacts imitating real insertions, which in many cases cannot be validated due to lack of the initial template DNA. For this reason, adequate assessment of rare (< 1%) subclonal cancer specific RE insertions is complicated. Results Here we describe a new copy-capture technique which we implemented in a method called SeqURE for Sequencing Unknown of Retroposition Events that allows for efficient and reliable identification of new genomic RE insertions. The method is based on the capture of copies of target molecules (copy-capture), selective amplification and sequencing of genomic regions adjacent to active RE insertions from both sides. Importantly, the template genomic DNA remains intact and can be used for validation experiments. In addition, we applied a novel system for testing method sensitivity and precisely showed the ability of the developed method to reliably detect insertions present in 1 out of 100 cells and a substantial portion of insertions present in 1 out of 1000 cells. Using advantages of the method we showed the absence of somatic Alu insertions in colorectal cancer samples bearing tumor-specific L1HS insertions. Conclusions This study presents the first description and implementation of the copy-capture technique and provides the first methodological basis for the quantitative assessment of RE insertions present in a small portion of cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13100-020-00228-6.
Collapse
Affiliation(s)
- Alexander Y Komkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia. .,Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
| | | | - Maria V Saliutina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Yuri A Shelygin
- Ryzhikh National Medical Research Centre for Coloproctology of the Ministry of Health of Russia, Moscow, Russia
| | - Gaiaz A Nugmanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Vitaliy P Shubin
- Ryzhikh National Medical Research Centre for Coloproctology of the Ministry of Health of Russia, Moscow, Russia
| | | | - Mikhail Y Bobrov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Alexey S Tsukanov
- Ryzhikh National Medical Research Centre for Coloproctology of the Ministry of Health of Russia, Moscow, Russia
| | - Anastasia V Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yuri B Lebedev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Ilgar Z Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia. .,Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia. .,V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia. .,Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
5
|
Mitsuhashi S, Ohori S, Katoh K, Frith MC, Matsumoto N. A pipeline for complete characterization of complex germline rearrangements from long DNA reads. Genome Med 2020; 12:67. [PMID: 32731881 PMCID: PMC7393826 DOI: 10.1186/s13073-020-00762-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/10/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Many genetic/genomic disorders are caused by genomic rearrangements. Standard methods can often characterize these variations only partly, e.g., copy number changes or breakpoints. It is important to fully understand the order and orientation of rearranged fragments, with precise breakpoints, to know the pathogenicity of the rearrangements. METHODS We performed whole-genome-coverage nanopore sequencing of long DNA reads from four patients with chromosomal translocations. We identified rearrangements relative to a reference human genome, subtracted rearrangements shared by any of 33 control individuals, and determined the order and orientation of rearranged fragments, with our newly developed analysis pipeline. RESULTS We describe the full characterization of complex chromosomal rearrangements, by filtering out genomic rearrangements seen in controls without the same disease, reducing the number of loci per patient from a few thousand to a few dozen. Breakpoint detection was very accurate; we usually see ~ 0 ± 1 base difference from Sanger sequencing-confirmed breakpoints. For one patient with two reciprocal chromosomal translocations, we find that the translocation points have complex rearrangements of multiple DNA fragments involving 5 chromosomes, which we could order and orient by an automatic algorithm, thereby fully reconstructing the rearrangement. A rearrangement is more than the sum of its parts: some properties, such as sequence loss, can be inferred only after reconstructing the whole rearrangement. In this patient, the rearrangements were evidently caused by shattering of the chromosomes into multiple fragments, which rejoined in a different order and orientation with loss of some fragments. CONCLUSIONS We developed an effective analytic pipeline to find chromosomal aberration in congenital diseases by filtering benign changes, only from long read sequencing. Our algorithm for reconstruction of complex rearrangements is useful to interpret rearrangements with many breakpoints, e.g., chromothripsis. Our approach promises to fully characterize many congenital germline rearrangements, provided they do not involve poorly understood loci such as centromeric repeats.
Collapse
Affiliation(s)
- Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kazutaka Katoh
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Martin C Frith
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26 Aomi, Koto-ku, Tokyo, 135-0064, Japan.
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan.
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan.
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
6
|
Restriction Enzyme Based Enriched L1Hs Sequencing (REBELseq): A Scalable Technique for Detection of Ta Subfamily L1Hs in the Human Genome. G3-GENES GENOMES GENETICS 2020; 10:1647-1655. [PMID: 32132168 PMCID: PMC7202019 DOI: 10.1534/g3.119.400613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Long interspersed element-1 retrotransposons (LINE-1 or L1) are ∼6 kb mobile DNA elements implicated in the origins of many Mendelian and complex diseases. The actively retrotransposing L1s are mostly limited to the L1 human specific (L1Hs) transcriptional active (Ta) subfamily. In this manuscript, we present REBELseq as a method for the construction of Ta subfamily L1Hs-enriched next-generation sequencing libraries and bioinformatic identification. REBELseq was performed on DNA isolated from NeuN+ neuronal nuclei from postmortem brain samples of 177 individuals and empirically-driven bioinformatic and experimental cutoffs were established. Putative L1Hs insertions passing bioinformatics cutoffs were experimentally validated. REBELseq reliably identified both known and novel Ta subfamily L1Hs insertions distributed throughout the genome. Differences in the proportion of individuals possessing a given reference or non-reference retrotransposon insertion were identified. We conclude that REBELseq is an unbiased, whole genome approach to the amplification and detection of Ta subfamily L1Hs retrotransposons.
Collapse
|
7
|
Tang C, He Z, Liu H, Xu Y, Huang H, Yang G, Xiao Z, Li S, Liu H, Deng Y, Chen Z, Chen H, He N. Application of magnetic nanoparticles in nucleic acid detection. J Nanobiotechnology 2020; 18:62. [PMID: 32316985 PMCID: PMC7171821 DOI: 10.1186/s12951-020-00613-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Nucleic acid is the main material for storing, copying, and transmitting genetic information. Gene sequencing is of great significance in DNA damage research, gene therapy, mutation analysis, bacterial infection, drug development, and clinical diagnosis. Gene detection has a wide range of applications, such as environmental, biomedical, pharmaceutical, agriculture and forensic medicine to name a few. Compared with Sanger sequencing, high-throughput sequencing technology has the advantages of larger output, high resolution, and low cost which greatly promotes the application of sequencing technology in life science research. Magnetic nanoparticles, as an important part of nanomaterials, have been widely used in various applications because of their good dispersion, high surface area, low cost, easy separation in buffer systems and signal detection. Based on the above, the application of magnetic nanoparticles in nucleic acid detection was reviewed.
Collapse
Affiliation(s)
- Congli Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Ziyu He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hongmei Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yuyue Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Gaojian Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Ziqi Xiao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096 China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096 China
| |
Collapse
|
8
|
Chatron N, Cassinari K, Quenez O, Baert-Desurmont S, Bardel C, Buisine MP, Calpena E, Capri Y, Corominas Galbany J, Diguet F, Edery P, Isidor B, Labalme A, Le Caignec C, Lévy J, Lecoquierre F, Lindenbaum P, Pichon O, Rollat-Farnier PA, Simonet T, Saugier-Veber P, Tabet AC, Toutain A, Wilkie AOM, Lesca G, Sanlaville D, Nicolas G, Schluth-Bolard C. Identification of mobile retrocopies during genetic testing: Consequences for routine diagnosis. Hum Mutat 2019; 40:1993-2000. [PMID: 31230393 DOI: 10.1002/humu.23845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022]
Abstract
Human retrocopies, that is messenger RNA transcripts benefitting from the long interspersed element 1 machinery for retrotransposition, may have specific consequences for genomic testing. Next genetration sequencing (NGS) techniques allow the detection of such mobile elements but they may be misinterpreted as genomic duplications or be totally overlooked. We report eight observations of retrocopies detected during diagnostic NGS analyses of targeted gene panels, exome, or genome sequencing. For seven cases, while an exons-only copy number gain was called, read alignment inspection revealed a depth of coverage shift at every exon-intron junction where indels were also systematically called. Moreover, aberrant chimeric read pairs spanned entire introns or were paired with another locus for terminal exons. The 8th retrocopy was present in the reference genome and thus showed a normal NGS profile. We emphasize the existence of retrocopies and strategies to accurately detect them at a glance during genetic testing and discuss pitfalls for genetic testing.
Collapse
Affiliation(s)
- Nicolas Chatron
- Genetics Department, Hospices Civils de Lyon, Lyon, France.,GENDEV Team, CRNL, INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| | - Kevin Cassinari
- Department of Genetics and CNR-MAJ, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Olivier Quenez
- Department of Genetics and CNR-MAJ, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Stéphanie Baert-Desurmont
- Department of Genetics, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Claire Bardel
- Bioinformatics group of the Lyon University Hospital NGS facility, Groupement Hospitalier Est, Lyon, France.,Biostatistics and Bioinformatics Department, HCL, Lyon, France
| | - Marie-Pierre Buisine
- Department of Biochemistry and Molecular Biology, JPA Research Center, Inserm UMR-S 1172, Lille University, Lille University Hospital, Lille, France
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yline Capri
- Genetics Department, Clinical Genetics Unit, Hôpital Universitaire Robert Debré, Paris, France
| | | | - Flavie Diguet
- Genetics Department, Hospices Civils de Lyon, Lyon, France.,GENDEV Team, CRNL, INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| | - Patrick Edery
- Genetics Department, Hospices Civils de Lyon, Lyon, France.,GENDEV Team, CRNL, INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| | | | - Audrey Labalme
- Genetics Department, Hospices Civils de Lyon, Lyon, France
| | - Cedric Le Caignec
- Genetics Department, CHU Nantes, Nantes, France.,INSERM UMR_S915, Institut du thorax, Nantes University, Nantes, France
| | - Jonathan Lévy
- Genetics Department, Cytogenetics Unit, Hôpital Universitaire Robert Debré, Paris, France
| | - François Lecoquierre
- Department of Genetics, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Pierre Lindenbaum
- INSERM, UMR_S1087, Institut du thorax, Nantes, France.,CNRS, UMR 6291, Nantes, France
| | | | - Pierre-Antoine Rollat-Farnier
- Genetics Department, Hospices Civils de Lyon, Lyon, France.,Bioinformatics group of the Lyon University Hospital NGS facility, Groupement Hospitalier Est, Lyon, France
| | - Thomas Simonet
- Cellular Biotechnology Center, Hospices Civils de Lyon, Lyon, France.,Nerve-Muscle Interactions Team, Institut NeuroMyoGène CNRS UMR 5310-INSERM U1217-Université Claude Bernard Lyon 1, Lyon, France
| | - Pascale Saugier-Veber
- Department of Genetics, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Anne-Claude Tabet
- Genetics Department, Cytogenetics Unit, Hôpital Universitaire Robert Debré, Paris, France.,Neuroscience Department, Human Genetics and Cognitive Function Unit, Institut Pasteur, Paris, France
| | - Annick Toutain
- Genetics Department, Hôpital Bretonneau, CHU, Tours, France.,UMR 1253, iBrain, Tours University, Inserm, Tours, France
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Gaetan Lesca
- Genetics Department, Hospices Civils de Lyon, Lyon, France.,GENDEV Team, CRNL, INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| | - Damien Sanlaville
- Genetics Department, Hospices Civils de Lyon, Lyon, France.,GENDEV Team, CRNL, INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| | - Gaël Nicolas
- Department of Genetics and CNR-MAJ, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Caroline Schluth-Bolard
- Genetics Department, Hospices Civils de Lyon, Lyon, France.,GENDEV Team, CRNL, INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| |
Collapse
|
9
|
Komkov AY, Minervina AA, Nugmanov GA, Saliutina MV, Khodosevich KV, Lebedev YB, Mamedov IZ. An advanced enrichment method for rare somatic retroelement insertions sequencing. Mob DNA 2018; 9:31. [PMID: 30450130 PMCID: PMC6208084 DOI: 10.1186/s13100-018-0136-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022] Open
Abstract
Background There is increasing evidence that the transpositional activity of retroelements (REs) is not limited to germ line cells, but often occurs in tumor and normal somatic cells. Somatic transpositions were found in several human tissues and are especially typical for the brain. Several computational and experimental approaches for detection of somatic retroelement insertions was developed in the past few years. These approaches were successfully applied to detect somatic insertions in clonally expanded tumor cells. At the same time, identification of somatic insertions presented in small proportion of cells, such as neurons, remains a considerable challenge. Results In this study, we developed a normalization procedure for library enrichment by DNA sequences corresponding to rare somatic RE insertions. Two rounds of normalization increased the number of fragments adjacent to somatic REs in the sequenced sample by more than 26-fold, and the number of identified somatic REs was increased by 8-fold. Conclusions The developed technique can be used in combination with vast majority of modern RE identification approaches and can dramatically increase their capacity to detect rare somatic RE insertions in different types of cells. Electronic supplementary material The online version of this article (10.1186/s13100-018-0136-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander Y Komkov
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya str. 16/10, Moscow, 117997 Russia.,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela str. 1, Moscow, 117997 Russia
| | - Anastasia A Minervina
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya str. 16/10, Moscow, 117997 Russia
| | - Gaiaz A Nugmanov
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya str. 16/10, Moscow, 117997 Russia
| | - Mariia V Saliutina
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya str. 16/10, Moscow, 117997 Russia
| | - Konstantin V Khodosevich
- 3Biotech Research and Innovation Centre, Copenhagen University, Ole Maaløes Vej 5, Copenhagen, 2200 Denmark
| | - Yuri B Lebedev
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya str. 16/10, Moscow, 117997 Russia
| | - Ilgar Z Mamedov
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya str. 16/10, Moscow, 117997 Russia.,4Pirogov Russian National Research Medical University, Ostrovitianov str. 1, Moscow, 117997 Russia
| |
Collapse
|
10
|
|
11
|
Faulkner GJ, Billon V. L1 retrotransposition in the soma: a field jumping ahead. Mob DNA 2018; 9:22. [PMID: 30002735 PMCID: PMC6035798 DOI: 10.1186/s13100-018-0128-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
Retrotransposons are transposable elements (TEs) capable of "jumping" in germ, embryonic and tumor cells and, as is now clearly established, in the neuronal lineage. Mosaic TE insertions form part of a broader landscape of somatic genome variation and hold significant potential to generate phenotypic diversity, in the brain and elsewhere. At present, the LINE-1 (L1) retrotransposon family appears to be the most active autonomous TE in most mammals, based on experimental data obtained from disease-causing L1 mutations, engineered L1 reporter systems tested in cultured cells and transgenic rodents, and single-cell genomic analyses. However, the biological consequences of almost all somatic L1 insertions identified thus far remain unknown. In this review, we briefly summarize the current state-of-the-art in the field, including estimates of L1 retrotransposition rate in neurons. We bring forward the hypothesis that an extensive subset of retrotransposition-competent L1s may be de-repressed and mobile in the soma but largely inactive in the germline. We discuss recent reports of non-canonical L1-associated sequence variants in the brain and propose that the elevated L1 DNA content reported in several neurological disorders may predominantly comprise accumulated, unintegrated L1 nucleic acids, rather than somatic L1 insertions. Finally, we consider the main objectives and obstacles going forward in elucidating the biological impact of somatic retrotransposition.
Collapse
Affiliation(s)
- Geoffrey J. Faulkner
- Mater Research Institute – University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072 Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
| | - Victor Billon
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
- Biology Department, École Normale Supérieure Paris-Saclay, 61 Avenue du Président Wilson, 94230 Cachan, France
| |
Collapse
|