1
|
Adedeji Olulana AF, Choi D, Inverso V, Redhu SK, Vidonis M, Crevatin L, Nicholson AW, Castronovo M. Noncanonical DNA Cleavage by BamHI Endonuclease in Laterally Confined DNA Monolayers Is a Step Function of DNA Density and Sequence. Molecules 2022; 27:5262. [PMID: 36014501 PMCID: PMC9416302 DOI: 10.3390/molecules27165262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Cleavage of DNA at noncanonical recognition sequences by restriction endonucleases (star activity) in bulk solution can be promoted by global experimental parameters, including enzyme or substrate concentration, temperature, pH, or buffer composition. To study the effect of nanoscale confinement on the noncanonical behaviour of BamHI, which cleaves a single unique sequence of 6 bp, we used AFM nanografting to generate laterally confined DNA monolayers (LCDM) at different densities, either in the form of small patches, several microns in width, or complete monolayers of thiol-modified DNA on a gold surface. We focused on two 44-bp DNAs, each containing a noncanonical BamHI site differing by 2 bp from the cognate recognition sequence. Topographic AFM imaging was used to monitor end-point reactions by measuring the decrease in the LCDM height with respect to the surrounding reference surface. At low DNA densities, BamHI efficiently cleaves only its cognate sequence while at intermediate DNA densities, noncanonical sequence cleavage occurs, and can be controlled in a stepwise (on/off) fashion by varying the DNA density and restriction site sequence. This study shows that endonuclease action on noncanonical sites in confined nanoarchitectures can be modulated by varying local physical parameters, independent of global chemical parameters.
Collapse
Affiliation(s)
- Abimbola F. Adedeji Olulana
- Department of Physics, PhD School in Nanotechnology, University of Trieste, 34127 Trieste, Italy
- Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy
- Regional Centre for Rare Diseases, University Hospital Udine, 33100 Udine, Italy
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Dianne Choi
- Department of Biology, Temple University, Philadelphia, PA 19122-6078, USA
| | - Vincent Inverso
- Department of Biology, Temple University, Philadelphia, PA 19122-6078, USA
| | - Shiv K. Redhu
- Department of Biology, Temple University, Philadelphia, PA 19122-6078, USA
| | - Marco Vidonis
- Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy
- Department of Chemistry, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Luca Crevatin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Allen W. Nicholson
- Department of Biology, Temple University, Philadelphia, PA 19122-6078, USA
| | - Matteo Castronovo
- Department of Physics, PhD School in Nanotechnology, University of Trieste, 34127 Trieste, Italy
- Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy
- Regional Centre for Rare Diseases, University Hospital Udine, 33100 Udine, Italy
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
- Department of Biology, Temple University, Philadelphia, PA 19122-6078, USA
| |
Collapse
|
2
|
Zebrowska J, Jezewska-Frackowiak J, Wieczerzak E, Kasprzykowski F, Zylicz-Stachula A, Skowron PM. Novel parameter describing restriction endonucleases: Secondary-Cognate-Specificity and chemical stimulation of TsoI leading to substrate specificity change. Appl Microbiol Biotechnol 2019; 103:3439-3451. [PMID: 30879089 PMCID: PMC6449304 DOI: 10.1007/s00253-019-09731-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 11/30/2022]
Abstract
Over 470 prototype Type II restriction endonucleases (REases) are currently known. Most recognise specific DNA sequences 4–8 bp long, with very few exceptions cleaving DNA more frequently. TsoI is a thermostable Type IIC enzyme that recognises the DNA sequence TARCCA (R = A or G) and cleaves downstream at N11/N9. The enzyme exhibits extensive top-strand nicking of the supercoiled single-site DNA substrate. The second DNA strand of such substrate is specifically cleaved only in the presence of duplex oligonucleotides containing a cognate site. We have previously shown that some Type IIC/IIG/IIS enzymes from the Thermus-family exhibit ‘affinity star’ activity, which can be induced by the S-adenosyl-L-methionine (SAM) cofactor analogue—sinefungin (SIN). Here, we define a novel type of inherently built-in ‘star’ activity, exemplified by TsoI. The TsoI ‘star’ activity cannot be described under the definition of the classic ‘star’ activity as it is independent of the reaction conditions used and cannot be separated from the cognate specificity. Therefore, we define this phenomenon as Secondary-Cognate-Specificity (SCS). The TsoI SCS comprises several degenerated variants of the cognate site. Although the efficiency of TsoI SCS cleavage is lower in comparison to the cognate TsoI recognition sequence, it can be stimulated by S-adenosyl-L-cysteine (SAC). We present a new route for the chemical synthesis of SAC. The TsoI/SAC REase may serve as a novel tool for DNA manipulation.
Collapse
Affiliation(s)
- Joanna Zebrowska
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland
| | - Joanna Jezewska-Frackowiak
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland
| | - Ewa Wieczerzak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland
| | - Franciszek Kasprzykowski
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland
| | - Agnieszka Zylicz-Stachula
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland.
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland.
| |
Collapse
|