1
|
Goldsworthy S, Losa M, Bobola N, Griffiths-Jones S. High-throughput microRNA sequencing in the developing branchial arches suggests miR-92b-3p regulation of a cardiovascular gene network. Front Genet 2025; 16:1514925. [PMID: 40051700 PMCID: PMC11882518 DOI: 10.3389/fgene.2025.1514925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/24/2025] [Indexed: 03/09/2025] Open
Abstract
Vertebrate branchial arches (BAs) are a developmental paradigm, undergoing coordinated differentiation and morphogenesis to form various adult derivative tissues. MicroRNAs can strengthen gene regulatory networks (GRNs) to promote developmental stability. To investigate microRNA-mediated regulation in BA development, we generated a novel microRNA-sequencing dataset from mouse BAs. We identified 550 expressed microRNAs, of which approximately 20% demonstrate significant differential expression across BA domains. The three most posterior BAs and the connecting outflow tract (PBA/OFT) express genes important for cardiovascular development. We predicted microRNA-target interactions with PBA/OFT-expressed cardiovascular genes and found target sites for miR-92b-3p to be enriched. We used a dual luciferase assay to validate miR-92b-3p interactions with two transcripts encoding the fundamental cardiac transcription factors (TFs), Gata6 and Tbx20. Furthermore, we demonstrated that miR-92b-3p mimic can downregulate endogenous GATA6 and TBX20 in human embryonic stem cells (hESCs) undergoing cardiomyocyte differentiation, confirming microRNA-target binding can occur in a cardiac cell type. miR-92b-3p has previously been shown to target transcripts encoding for two other cardiac TFs, Hand2 and Mef2D. Therefore, we hypothesise that miR-92b-3p acts to stabilise cardiovascular GRNs during PBA/OFT development, through multiple microRNA-mediated regulatory networks.
Collapse
Affiliation(s)
| | | | - Nicoletta Bobola
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Sam Griffiths-Jones
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Bracken CP. "Crowd-control" by RNA: a pervasive theme in biology. RNA (NEW YORK, N.Y.) 2023; 29:885-888. [PMID: 37055151 DOI: 10.1261/rna.079644.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As we continue to find new regulatory roles for RNAs, a theme is emerging in which regulation may not be mediated through the actions of a specific RNA, as one typically thinks of a regulator and target, but rather through the collective nature of many RNAs, each contributing a small degree of the regulatory load. This mechanism has been termed "crowd-control" and may apply broadly to miRNAs and to RNAs that bind and regulate protein activity. This provides an alternative way of thinking about how RNAs can act as biological regulators and has repercussions, both for the understanding of biological systems, and for the interpretation of results in which individual members of the "crowd" can replicate the effects of the crowd when overexpressed, but are not individually significant biological regulators.
Collapse
Affiliation(s)
- Cameron P Bracken
- Centre for Cancer Biology, an Alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- Department of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
3
|
Bartoszewska S, Sławski J, Collawn JF, Bartoszewski R. HIF-1-Induced hsa-miR-429: Understanding Its Direct Targets as the Key to Developing Cancer Diagnostics and Therapies. Cancers (Basel) 2023; 15:cancers15112903. [PMID: 37296866 DOI: 10.3390/cancers15112903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
MicroRNAs (miRNAs) play a critical role in the regulation of mRNA stability and translation. In spite of our present knowledge on the mechanisms of mRNA regulation by miRNAs, the utilization and translation of these ncRNAs into clinical applications have been problematic. Using hsa-miR-429 as an example, we discuss the limitations encountered in the development of efficient miRNA-related therapies and diagnostic approaches. The miR-200 family members, which include hsa-miR-429, have been shown to be dysregulated in different types of cancer. Although these miR-200 family members have been shown to function in suppressing epithelial-to-mesenchymal transition, tumor metastasis, and chemoresistance, the experimental results have often been contradictory. These complications involve not only the complex networks involving these noncoding RNAs, but also the problem of identifying false positives. To overcome these limitations, a more comprehensive research strategy is needed to increase our understanding of the mechanisms underlying their biological role in mRNA regulation. Here, we provide a literature analysis of the verified hsa-miR-429 targets in various human research models. A meta-analysis of this work is presented to provide better insights into the role of hsa-miR-429 in cancer diagnosis and any potential therapeutic approach.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| |
Collapse
|
4
|
López-Jiménez E, Andrés-León E. The Implications of ncRNAs in the Development of Human Diseases. Noncoding RNA 2021; 7:17. [PMID: 33668203 PMCID: PMC8006041 DOI: 10.3390/ncrna7010017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
The mammalian genome comprehends a small minority of genes that encode for proteins (barely 2% of the total genome in humans) and an immense majority of genes that are transcribed into RNA but not encoded for proteins (ncRNAs). These non-coding genes are intimately related to the expression regulation of protein-coding genes. The ncRNAs subtypes differ in their size, so there are long non-coding genes (lncRNAs) and other smaller ones, like microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs). Due to their important role in the maintenance of cellular functioning, any deregulation of the expression profiles of these ncRNAs can dissemble in the development of different types of diseases. Among them, we can highlight some of high incidence in the population, such as cancer, neurodegenerative, or cardiovascular disorders. In addition, thanks to the enormous advances in the field of medical genomics, these same ncRNAs are starting to be used as possible drugs, approved by the FDA, as an effective treatment for diseases.
Collapse
Affiliation(s)
- Elena López-Jiménez
- Centre for Haematology, Immunology and Inflammation Department, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Eduardo Andrés-León
- Unidad de Bioinformática, Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, 18016 Granada, Spain
| |
Collapse
|
5
|
Ma F, Lu GA, Chen Q, Ruan Y, Li X, Lu X, Li C. Dynamic global analysis of transcription reveals the role of miRNAs in synergistic stabilization of gene expression. Sci Bull (Beijing) 2020; 65:2130-2140. [PMID: 36732966 DOI: 10.1016/j.scib.2020.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/29/2020] [Accepted: 06/08/2020] [Indexed: 02/04/2023]
Abstract
Buffering exogenous perturbation is crucial to maintain transcriptional homeostasis during development. While miRNAs have been speculated to play a role in stability maintenance, previous studies seeking to check this conjecture focused on measurements of transcript levels at steady state or involved individual miRNA targets. We measured whole-genome expression dynamics by introducing a transient perturbation and establishing a perturbation and recovery system in Drosophila larvae. We inhibited all transcription and assayed transcriptomes at several time points during recovery from inhibition. We performed these experiments in the wild type and miRNA-deficient genetic backgrounds. Consistent with theories about miRNAs' function in stabilizing the transcriptome, we find that attenuating miRNA expression leads to weak impairment in degradation of targets but strong destabilization of target genes when transcription is re-activated. We further fitted a model that captures the essential aspects of transcription dynamics in our experiments and found that the miRNA target transcripts uniformly overshoot the original steady state as they recover from a general inhibition of transcription if global miRNA levels are reduced. Collectively, our results provide experimental evidence for the idea that miRNAs act cumulatively to stabilize the transcriptional regulatory network. We therefore found a promising approach to assess the effect of these molecules on transcription dynamics.
Collapse
Affiliation(s)
- Fuqiang Ma
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, and Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
| | - Guang-An Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; State Key Laboratory of Genetic Resources and Evolution & CAS Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qingjian Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongsen Ruan
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuemei Lu
- State Key Laboratory of Genetic Resources and Evolution & CAS Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunyan Li
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, and Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China; Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
6
|
Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 2019; 24:69. [PMID: 31867046 PMCID: PMC6902517 DOI: 10.1186/s11658-019-0196-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
With the first RNA interference (RNAi) drug (ONPATTRO (patisiran)) on the market, we witness the RNAi therapy field reaching a critical turning point, when further improvements in drug candidate design and delivery pipelines should enable fast delivery of novel life changing treatments to patients. Nevertheless, ignoring parallel development of RNAi dedicated in vitro pharmacological profiling aiming to identify undesirable off-target activity may slow down or halt progress in the RNAi field. Since academic research is currently fueling the RNAi development pipeline with new therapeutic options, the objective of this article is to briefly summarize the basics of RNAi therapy, as well as to discuss how to translate basic research into better understanding of related drug candidate safety profiles early in the process.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksander F. Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
7
|
de Almeida BC, dos Anjos LG, Uno M, da Cunha IW, Soares FA, Baiocchi G, Baracat EC, Carvalho KC. Let-7 miRNA's Expression Profile and Its Potential Prognostic Role in Uterine Leiomyosarcoma. Cells 2019; 8:cells8111452. [PMID: 31744257 PMCID: PMC6912804 DOI: 10.3390/cells8111452] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
The lethal-7 (let-7) family is an important microRNA (miRNA) group that usually exerts functions as a tumor suppressor. We aimed to evaluate the expression profile of let-7a, let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, and let-7i and to assess their value as prognostic markers in uterine leiomyosarcoma (LMS) patients. The miRNAs expression profile was assessed in 34 LMS and 13 normal myometrium (MM) paraffin-embedded samples. All let-7 family members showed downregulation in LMS. Our findings showed that patients with let-7e downregulation had worse overall survival (OS) and is an independent prognostic factor (hazard ratio [HR] = 2.24). In addition, almost half the patients had distant metastasis. LMS patients with downregulated let-7b and let-7d had worse disease-free survival (DFS); they are not independent prognostic factors (HR = 2.65). Patients’ ages were associated with let-7d, let-7e and let-7f (p = 0.0160) downregulation. In conclusion, all the let-7 family members were downregulated in LMS patients, and the greater the loss of expression of these molecules, the greater their relationship with worse prognosis of patients. Let-7e expression might influence the OS, while let-7b and le-7d might influence the DFS. The lowest expression levels of let-7d, let-7e, and let-7f were associated with the oldest patients. Our findings indicate strong evidence of let-7’s role as a potential prognostic biomarker in LMS.
Collapse
Affiliation(s)
- Bruna Cristine de Almeida
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, HCFMUSP, SP, BR Av. Dr Arnaldo 455, sala 4121, Cerqueira Cesar, São Paulo 05403-010, Brazil; (B.C.d.A.); (L.G.d.A.); (E.C.B.)
| | - Laura Gonzalez dos Anjos
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, HCFMUSP, SP, BR Av. Dr Arnaldo 455, sala 4121, Cerqueira Cesar, São Paulo 05403-010, Brazil; (B.C.d.A.); (L.G.d.A.); (E.C.B.)
| | - Miyuki Uno
- Centro de Investigação Translacional em Oncologia (LIM 24), Instituto do Câncer do Estado de São Paulo (CTO/ICESP) Av Dr Arnaldo 251 sala 23 8 andar, São Paulo 01246000, Brazil;
| | - Isabela Werneck da Cunha
- Department of Pathology, Rede D’OR-São Luiz, Rua das Perobas, 344-Jabaquara, São Paulo 04321-120, Brazil; (I.W.d.C.); (F.A.S.)
- Hospital A C Camargo Cancer Center, SP, BR R. Tamandaré, 753 Liberdade, São Paulo 05403-010, Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, SP, BR R. Tamandaré, 753 Liberdade, São Paulo 05403-010, Brazil
| | - Fernando Augusto Soares
- Department of Pathology, Rede D’OR-São Luiz, Rua das Perobas, 344-Jabaquara, São Paulo 04321-120, Brazil; (I.W.d.C.); (F.A.S.)
- Hospital A C Camargo Cancer Center, SP, BR R. Tamandaré, 753 Liberdade, São Paulo 05403-010, Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, SP, BR R. Tamandaré, 753 Liberdade, São Paulo 05403-010, Brazil
| | - Glauco Baiocchi
- Department of Gynecology Oncology, A.C.Camargo Cancer Center, Rua Prof Antonio Prudente 211, São Paulo 01509-001, Brazil;
| | - Edmund Chada Baracat
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, HCFMUSP, SP, BR Av. Dr Arnaldo 455, sala 4121, Cerqueira Cesar, São Paulo 05403-010, Brazil; (B.C.d.A.); (L.G.d.A.); (E.C.B.)
| | - Katia Candido Carvalho
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, HCFMUSP, SP, BR Av. Dr Arnaldo 455, sala 4121, Cerqueira Cesar, São Paulo 05403-010, Brazil; (B.C.d.A.); (L.G.d.A.); (E.C.B.)
- Correspondence: ; Tel.: +55-011-3061-7486
| |
Collapse
|
8
|
Chen Y, Shen Y, Lin P, Tong D, Zhao Y, Allesina S, Shen X, Wu CI. Gene regulatory network stabilized by pervasive weak repressions: microRNA functions revealed by the May-Wigner theory. Natl Sci Rev 2019; 6:1176-1188. [PMID: 34691996 PMCID: PMC8291590 DOI: 10.1093/nsr/nwz076] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 01/01/2023] Open
Abstract
Food web and gene regulatory networks (GRNs) are large biological networks, both of which can be analyzed using the May-Wigner theory. According to the theory, networks as large as mammalian GRNs would require dedicated gene products for stabilization. We propose that microRNAs (miRNAs) are those products. More than 30% of genes are repressed by miRNAs, but most repressions are too weak to have a phenotypic consequence. The theory shows that (i) weak repressions cumulatively enhance the stability of GRNs, and (ii) broad and weak repressions confer greater stability than a few strong ones. Hence, the diffuse actions of miRNAs in mammalian cells appear to function mainly in stabilizing GRNs. The postulated link between mRNA repression and GRN stability can be seen in a different light in yeast, which do not have miRNAs. Yeast cells rely on non-specific RNA nucleases to strongly degrade mRNAs for GRN stability. The strategy is suited to GRNs of small and rapidly dividing yeast cells, but not the larger mammalian cells. In conclusion, the May-Wigner theory, supplanting the analysis of small motifs, provides a mathematical solution to GRN stability, thus linking miRNAs explicitly to 'developmental canalization'.
Collapse
Affiliation(s)
- Yuxin Chen
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yang Shen
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach an der Riß, Germany
| | - Pei Lin
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ding Tong
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT 06520, UK
| | - Yixin Zhao
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Stefano Allesina
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, UK
| | - Xu Shen
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chung-I Wu
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, UK
| |
Collapse
|
9
|
Beilsmith K, Thoen MPM, Brachi B, Gloss AD, Khan MH, Bergelson J. Genome-wide association studies on the phyllosphere microbiome: Embracing complexity in host-microbe interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:164-181. [PMID: 30466152 DOI: 10.1111/tpj.14170] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 05/18/2023]
Abstract
Environmental sequencing shows that plants harbor complex communities of microbes that vary across environments. However, many approaches for mapping plant genetic variation to microbe-related traits were developed in the relatively simple context of binary host-microbe interactions under controlled conditions. Recent advances in sequencing and statistics make genome-wide association studies (GWAS) an increasingly promising approach for identifying the plant genetic variation associated with microbes in a community context. This review discusses early efforts on GWAS of the plant phyllosphere microbiome and the outlook for future studies based on human microbiome GWAS. A workflow for GWAS of the phyllosphere microbiome is then presented, with particular attention to how perspectives on the mechanisms, evolution and environmental dependence of plant-microbe interactions will influence the choice of traits to be mapped.
Collapse
Affiliation(s)
- Kathleen Beilsmith
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Manus P M Thoen
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Benjamin Brachi
- BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France
| | - Andrew D Gloss
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Mohammad H Khan
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| |
Collapse
|
10
|
Bartoszewski R, Sikorski AF. Editorial focus: entering into the non-coding RNA era. Cell Mol Biol Lett 2018; 23:45. [PMID: 30250489 PMCID: PMC6145373 DOI: 10.1186/s11658-018-0111-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
Recent developments in high-throughput genotyping technologies have revealed the existence of several new classes of RNA that do not encode proteins but serve other cellular roles. To date, these non-coding RNAs (ncRNAs) have been shown to modulate both gene expression and genome remodeling, thus contributing to the control of both normal and disease-related cellular processes. The attraction of this research topic can be seen in the increasing number of submissions on ncRNAs to molecular biology journals, including Cellular Molecular Biology Letters (CMBL). As researchers attempt to deepen the understanding of the role of ncRNAs in cell biology, it is worth discussing the broader importance of this research.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- 1Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksander F Sikorski
- 2Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|