1
|
Lu N, Zhu W, Tang CY, Yan C, Chen Q, Wu W, Chang L, Jiang J, Li JT, Wang B. Genome of a stage-dependent cave-dwelling frog reveals the genetic mechanism of an extremely divergent biphasic life cycle. Cell Rep 2025; 44:115640. [PMID: 40310719 DOI: 10.1016/j.celrep.2025.115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/13/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
Cave-dwelling species offer unique insights into adaptive evolution. The stage-dependent cave frog, Oreolalax rhodostigmatus (Orho), exhibits troglomorphic traits as a tadpole in Karst caves, transitioning to a troglophilic/trogloxenic lifestyle after metamorphosis, characterized by developed pigment and eyes. We present the Orho genome (3.16 Gb, 26,192 protein-coding genes), revealing extensive expansion and positive selection in gene families associated with olfactory, taste, visual, and pain perceptions. Orho tadpoles exhibit suppressed visual function while retaining crystalline lens development. Adult eyes demonstrate high light-induced plasticity in the visual cycle. Orho tadpoles display both developmental and light-induced melanogenesis, which is associated with distinctive tyrosinases. A stage-dependent amphibian-specific tyrosinase subfamily, reported here, underpins their ontogenetic pigmentation. Additionally, prominent hepatic fat storage and genetic/transcriptional variations in lipid metabolism genes characterize tadpole development. These findings unveil the molecular mechanisms behind Orho's stage-dependent cave adaptation, which differs mechanistically from cavefishes, offering valuable insights into the highly divergent biphasic life cycle.
Collapse
Affiliation(s)
- Ningning Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610213, China
| | - Wei Zhu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610213, China
| | - Chen-Yang Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610213, China
| | - Chaochao Yan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610213, China
| | - Qiheng Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610213, China
| | - Wei Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610213, China
| | - Liming Chang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610213, China
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610213, China
| | - Jia-Tang Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610213, China
| | - Bin Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610213, China.
| |
Collapse
|
2
|
Zhai R, Chang L, Jiang J, Wang B, Zhu W. Cellular and Molecular Basis of Environment-Induced Color Change in a Tree Frog. Animals (Basel) 2024; 14:3472. [PMID: 39682437 DOI: 10.3390/ani14233472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Background color matching is essential for camouflage and thermoregulation in ectothermic vertebrates, yet several key cellular-level questions remain unresolved. For instance, it is unclear whether the number of chromatophores or the activity of individual chromatophores plays a more critical role in this process. Using single-cell RNA sequencing (scRNA-seq), we investigated the cellular and molecular mechanisms underlying color change in Rhacophorus dugritei, which adapted to its background by displaying light-green skin on white and black skin on black within two days. We identified two types of chromatophores in their skin, both responsible for the observed color differences. Our findings reveal that morphological color change (MCC) is the dominant process, with the number of chromatophores being more influential in driving color change than the transcriptional activity of melanogenesis in individual cells. Additionally, melanophores from darker individuals exhibited increased activity in energy metabolism pathways, while those from lighter individuals showed stronger immune-related gene expression, suggesting that background adaptation involves more than just morphological changes. Overall, this study successfully applied single-cell sequencing technology to investigate skin pigmentation in a non-model organism. Our results suggest that MCC driven by chromatophore proliferation is a key mechanism of background adaptation, offering new insights into amphibian color adaptation and environmental adaptation in other vertebrates.
Collapse
Affiliation(s)
- Runliang Zhai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Liming Chang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bin Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wei Zhu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
3
|
Atkinson-Leadbeater K, Bertolesi GE, McFarlane S. Visual input regulates melanophore differentiation. Front Cell Dev Biol 2024; 12:1437613. [PMID: 39228400 PMCID: PMC11368843 DOI: 10.3389/fcell.2024.1437613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Developmental processes continue in organisms in which sensory systems have reached functional maturity, however, little research has focused on the influence of sensory input on cell and tissue development. Here, we explored the influence of visual system activity on the development of skin melanophores in Xenopus laevis. Methods Melanophore number was measured in X. laevis larvae after the manipulation of visual input through eye removal (enucleation) and/or incubation on a white or black substrate at the time when the visual system becomes functional (stage 40). To determine the developmental process impacted by visual input, migration, proliferation and differentiation of melanophores was assessed. Finally, the role of melatonin in driving melanophore differentiation was explored. Results Enucleating, or maintaining stage 40 larvae on a black background, results in a pronounced increase in melanophore number in the perioptic region within 24 h. Time lapse analysis revealed that in enucleated larvae new melanophores appear through gradual increase in pigmentation, suggesting unpigmented cells in the perioptic region differentiate into mature melanophores upon reduced visual input. In support, we observed increased expression of melanization genes tyr, tyrp1, and pmel in the perioptic region of enucleated or black background-reared larvae. Conversely, maintaining larvae in full light suppresses melanophore differentiation. Interestingly, an extra-pineal melatonin signal was found to be sufficient and necessary to promote the transition to differentiated melanophores. Discussion In this study, we found that at the time when the visual system becomes functional, X. laevis larvae possess a population of undifferentiated melanophores that can respond rapidly to changes in the external light environment by undergoing differentiation. Thus, we propose a novel mechanism of environmental influence where external sensory signals influence cell differentiation in a manner that would favor survival.
Collapse
Affiliation(s)
| | - Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Zhang XZ, Ma XD, Wang WT, Peng F, Hou YM, Shen YX, Sun YQ, Chen JF, Yin YJ, Zeng YY, Yu Y, Zhou P, Zhang FH, He YF, Shen YF. Comparative skin histological and transcriptomic analysis of Rana kukunoris with two different skin colors. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101217. [PMID: 38412702 DOI: 10.1016/j.cbd.2024.101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
This study compares the skin structures of Rana kukunoris with two different skin colors living in the same area of Haibei in the Northeastern Qinghai-Tibet Plateau. The skin thickness of the khaki R. kukunoris was significantly greater than that of the brown R. kukunoris (P < 0.01), and significantly more mucous and granular glands were present on the dorsal skin of the khaki frog (P < 0.05). Meanwhile, the melanocytes on the dorsal skin of the brown frog were significantly larger than those on the khaki one (P < 0.05). Morphological changes in the expansion and aggregation of melanocytes seemed to deepen the skin color of R. kukunoris. Moreover, transcriptome sequencing identified tyrosine metabolism, melanogenesis, and riboflavin metabolism as the main pathways involved in melanin formation and metabolism in brown R. kukunoris. TYR, MC1R was upregulated as the skin color of R. kukunoris was deepened and contributed to melanin production and metabolism. In contrast, the khaki frog had significantly more upregulated genes and metabolic pathways related to autoimmunity. The khaki frog appeared to defend against ultraviolet (UV) radiation-induced damage by secreting mucus and small molecular peptides, whereas the brown frog protected itself by distributing a large amount of melanin. Hence, the different skin colors of R. kukunoris might represent different adaptation strategies for survival in the intense UV radiation environment of the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Xu-Ze Zhang
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810001, China; Key Laboratory of Resource Chemistry and Eco-environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, Qinghai Minzu University, Xining 810007, China.
| | - Xiao-Dong Ma
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China; Key Laboratory of Resource Chemistry and Eco-environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, Qinghai Minzu University, Xining 810007, China
| | - Wan-Ting Wang
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China
| | - Fei Peng
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China
| | - Ye-Mao Hou
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China
| | - Yue-Xia Shen
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China
| | - Yu-Qi Sun
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China
| | - Jin-Fang Chen
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China
| | - Yi-Jin Yin
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China
| | - Yu-Ye Zeng
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China
| | - Yi Yu
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China
| | - Peng Zhou
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810001, China
| | - Fu-Hao Zhang
- Key Laboratory of Resource Chemistry and Eco-environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, Qinghai Minzu University, Xining 810007, China; College of Pharmaceutical, Qinghai Minzu University, Xining 810007, China
| | - Yan-Feng He
- Key Laboratory of Resource Chemistry and Eco-environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, Qinghai Minzu University, Xining 810007, China; College of Pharmaceutical, Qinghai Minzu University, Xining 810007, China.
| | - Ying-Fang Shen
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China; Key Laboratory of Resource Chemistry and Eco-environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, Qinghai Minzu University, Xining 810007, China.
| |
Collapse
|
5
|
Zhu W, Chang L, Shi S, Lu N, Du S, Li J, Jiang J, Wang B. Gut microbiota reflect adaptation of cave-dwelling tadpoles to resource scarcity. THE ISME JOURNAL 2024; 18:wrad009. [PMID: 38365235 PMCID: PMC10811740 DOI: 10.1093/ismejo/wrad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 02/18/2024]
Abstract
Gut microbiota are significant to the host's nutrition and provide a flexible way for the host to adapt to extreme environments. However, whether gut microbiota help the host to colonize caves, a resource-limited environment, remains unknown. The nonobligate cave frog Oreolalax rhodostigmatus completes its metamorphosis within caves for 3-5 years before foraging outside. Their tadpoles are occasionally removed from the caves by floods and utilize outside resources, providing a contrast to the cave-dwelling population. For both cave and outside tadpoles, the development-related reduction in their growth rate and gut length during prometamorphosis coincided with a shift in their gut microbiota, which was characterized by decreased Lactobacillus and Cellulosilyticum and Proteocatella in the cave and outside individuals, respectively. The proportion of these three genera was significantly higher in the gut microbiota of cave-dwelling individuals compared with those outside. The cave-dwellers' gut microbiota harbored more abundant fibrolytic, glycolytic, and fermentative enzymes and yielded more short-chain fatty acids, potentially benefitting the host's nutrition. Experimentally depriving the animals of food resulted in gut atrophy for the individuals collected outside the cave, but not for those from inside the cave. Imitating food scarcity reproduced some major microbial features (e.g. abundant Proteocatella and fermentative genes) of the field-collected cave individuals, indicating an association between the cave-associated gut microbiota and resource scarcity. Overall, the gut microbiota may reflect the adaptation of O. rhodostigmatus tadpoles to resource-limited environments. This extends our understanding of the role of gut microbiota in the adaptation of animals to extreme environments.
Collapse
Affiliation(s)
- Wei Zhu
- Chinese Academy of Sciences Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Liming Chang
- Chinese Academy of Sciences Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Shengchao Shi
- Chinese Academy of Sciences Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Ningning Lu
- Chinese Academy of Sciences Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Simeng Du
- Chinese Academy of Sciences Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Jiatang Li
- Chinese Academy of Sciences Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Jianping Jiang
- Chinese Academy of Sciences Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Bin Wang
- Chinese Academy of Sciences Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| |
Collapse
|
6
|
Liedtke HC, Lopez-Hervas K, Galván I, Polo-Cavia N, Gomez-Mestre I. Background matching through fast and reversible melanin-based pigmentation plasticity in tadpoles comes with morphological and antioxidant changes. Sci Rep 2023; 13:12064. [PMID: 37495600 PMCID: PMC10371988 DOI: 10.1038/s41598-023-39107-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Facultative colour change is widespread in the animal kingdom, and has been documented in many distantly related amphibians. However, experimental data testing the extent of facultative colour change, and associated physiological and morphological implications are comparatively scarce. Background matching in the face of spatial and temporal environmental variation is thought to be an important proximate function of colour change in aquatic amphibian larvae. This is particularly relevant for species with long larval periods such as the western spadefoot toad, Pelobates cultripes, whose tadpoles spend up to six months developing in temporary waterbodies with temporally variable vegetation. By rearing tadpoles on different coloured backgrounds, we show that P. cultripes larvae can regulate pigmentation to track fine-grained differences in background brightness, but not hue or saturation. We found that colour change is rapid, reversible, and primarily achieved through changes in the quantity of eumelanin in the skin. We show that this increased eumelanin production and/or maintenance is also correlated with changes in morphology and oxidative stress, with more pigmented tadpoles growing larger tail fins and having an improved redox status.
Collapse
Affiliation(s)
- H Christoph Liedtke
- Ecology Evolution and Development Group. Biological Station of Doñana - CSIC, 41092, Seville, Spain.
| | - Karem Lopez-Hervas
- Max Planck Institute for Evolutionary Biology, August-Thienemann Str. 2, 24306, Plön, Germany
| | - Ismael Galván
- Department of Evolutionary Ecology, National Museum of Natural Sciences, CSIC, 28006, Madrid, Spain
| | - Nuria Polo-Cavia
- Department of Biology, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Ivan Gomez-Mestre
- Ecology Evolution and Development Group. Biological Station of Doñana - CSIC, 41092, Seville, Spain
| |
Collapse
|
7
|
Transcriptome Analyses Provide Insights into the Auditory Function in Trachemys scripta elegans. Animals (Basel) 2022; 12:ani12182410. [PMID: 36139269 PMCID: PMC9495000 DOI: 10.3390/ani12182410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
An auditory ability is essential for communication in vertebrates, and considerable attention has been paid to auditory sensitivity in mammals, birds, and frogs. Turtles were thought to be deaf for a long time; however, recent studies have confirmed the presence of an auditory ability in Trachemys scripta elegans as well as sex-related differences in hearing sensitivity. Earlier studies mainly focused on the morphological and physiological functions of the hearing organ in turtles; thus, the gene expression patterns remain unclear. In this study, 36 transcriptomes from six tissues (inner ear, tympanic membrane, brain, eye, lung, and muscle) were sequenced to explore the gene expression patterns of the hearing system in T. scripta elegans. A weighted gene co-expression network analysis revealed that hub genes related to the inner ear and tympanic membrane are involved in development and signal transduction. Moreover, we identified six differently expressed genes (GABRA1, GABRG2, GABBR2, GNAO1, SLC38A1, and SLC12A5) related to the GABAergic synapse pathway as candidate genes to explain the differences in sexually dimorphic hearing sensitivity. Collectively, this study provides a critical foundation for genetic research on auditory functions in turtles.
Collapse
|
8
|
Chang L, Zhu W, Jiang J. Albinism in the largest extant amphibian: A metabolic, endocrine, or immune problem? Front Endocrinol (Lausanne) 2022; 13:1053732. [PMID: 36518250 PMCID: PMC9742363 DOI: 10.3389/fendo.2022.1053732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Pigment regression is an intriguing phenomenon that can be caused by disorders in melanin metabolism or endocrine regulation, or by autoimmune disorders. Albino animals serve as excellent models for the study of the genetic determination of morphology, particularly the evolution of and molecular mechanisms underlying chromatophore-related diseases in animals and humans. MATERIAL AND METHODS The artificial culture of Andrias davidianus, the largest extant amphibian, is flourishing in China due to the great ecological and economic value of this animal. Approximately 0.1% of individuals express an albino phenotype accompanied by delayed somatic growth and mortality at early developmental stages. In this study, brain and skin transcriptomics were conducted to study the underlying molecular basis of the phenotype. RESULTS The results indicated decreased transcription of genes of melanin synthesis. Interestingly, MHC I isotypes and immune-related pathways accounted for the primary transcriptional differences between groups, suggesting that the albino phenotype represents a systematic immune problem to a far greater extent than a pigmentation defect. Albino individuals exhibited shifted transcription of MHC I isotypes, and the albino-specific isotype was characterized by increased charges and decreased space in the antigen- binding pocket, implying a drastic change in antigen specificity and a potential risk of autoimmune disorders. CONCLUSION These results suggest an association between the albino phenotype and MHC I variants in A. davidianus, which could serve as a convenient model for vitiligo or other autoimmune diseases.
Collapse
|
9
|
The effects of corticosterone and background colour on tadpole physiological plasticity. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100872. [PMID: 34224981 DOI: 10.1016/j.cbd.2021.100872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/20/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022]
Abstract
Corticosterone (CORT)-mediated adaptive plasticity improves animal fitness in stressful environments. Although it brings ecological benefits, the cost potentially constrains its expression and evolution. Revealing the factors affecting plasticity costs is of great ecological and evolutionary significance. Evidence indicates that both CORT and background colour can induce metabolic changes in animals, which in turn determine phenotypic plasticity. However, whether and/or how CORT and background colour jointly act on plastic responses has not been studied. Here, this question has been investigated in amphibian tadpoles (Microhyla fissipes) exposed to CORT at different background colours (white or black) using integrated morphological, histological, and transcriptomic analyses. The results showed that CORT exposure increased relative tail length, immune function, and metabolic maintenance (i.e., transcription of substrate catabolism and oxidative phosphorylation) at the expense of reduction in growth rate and skin melanin level. The black background also increased relative tail length and metabolic maintenance (i.e., transcription of oxidative phosphorylation) at the cost of reduction in growth rate, but increased skin melanin level. The expression of critical pigmentation genes indicated that black background activated a distinct and opposite pigmentation regulating route to CORT. Although there was no interactive effect of background colour and CORT on phenotypic and metabolic variations, their additive effects further impact the trade-off between somatic growth, metabolic maintenance, and pigmentation in terms of resource allocation. In conclusion, the individual and additive effects of background colour and CORT exposure on tadpole plasticity were revealed. These results likely provide new insights into the environmental adaptation of animals.
Collapse
|
10
|
Zhu W, Chang L, Zhao T, Wang B, Jiang J. Remarkable metabolic reorganization and altered metabolic requirements in frog metamorphic climax. Front Zool 2020; 17:30. [PMID: 33062031 PMCID: PMC7542913 DOI: 10.1186/s12983-020-00378-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background Metamorphic climax is the crucial stage of amphibian metamorphosis responsible for the morphological and functional changes necessary for transition to a terrestrial habitat. This developmental period is sensitive to environmental changes and pollution. Understanding its metabolic basis and requirements is significant for ecological and toxicological research. Rana omeimontis tadpoles are a useful model for investigating this stage as their liver is involved in both metabolic regulation and fat storage. Results We used a combined approach of transcriptomics and metabolomics to study the metabolic reorganization during natural and T3-driven metamorphic climax in the liver and tail of Rana omeimontis tadpoles. The metabolic flux from the apoptotic tail replaced hepatic fat storage as metabolic fuel, resulting in increased hepatic amino acid and fat levels. In the liver, amino acid catabolism (transamination and urea cycle) was upregulated along with energy metabolism (TCA cycle and oxidative phosphorylation), while the carbohydrate and lipid catabolism (glycolysis, pentose phosphate pathway (PPP), and β-oxidation) decreased. The hepatic glycogen phosphorylation and gluconeogenesis were upregulated, and the carbohydrate flux was used for synthesis of glycan units (e.g., UDP-glucuronate). In the tail, glycolysis, β-oxidation, and transamination were all downregulated, accompanied by synchronous downregulation of energy production and consumption. Glycogenolysis was maintained in the tail, and the carbohydrate flux likely flowed into both PPP and the synthesis of glycan units (e.g., UDP-glucuronate and UDP-glucosamine). Fatty acid elongation and desaturation, as well as the synthesis of bioactive lipid (e.g., prostaglandins) were encouraged in the tail during metamorphic climax. Protein synthesis was downregulated in both the liver and tail. The significance of these metabolic adjustments and their potential regulation mechanism are discussed. Conclusion The energic strategy and anabolic requirements during metamorphic climax were revealed at the molecular level. Amino acid made an increased contribution to energy metabolism during metamorphic climax. Carbohydrate anabolism was essential for the body construction of the froglets. The tail was critical in anabolism including synthesizing bioactive metabolites. These findings increase our understanding of amphibian metamorphosis and provide background information for ecological, evolutionary, conservation, and developmental studies of amphibians.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, No.9, Section4, South Renmin Road, Chengdu, 610041 Sichuan China
| | - Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, No.9, Section4, South Renmin Road, Chengdu, 610041 Sichuan China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tian Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, No.9, Section4, South Renmin Road, Chengdu, 610041 Sichuan China
| | - Bin Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, No.9, Section4, South Renmin Road, Chengdu, 610041 Sichuan China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, No.9, Section4, South Renmin Road, Chengdu, 610041 Sichuan China
| |
Collapse
|
11
|
Plateau Grass and Greenhouse Flower? Distinct Genetic Basis of Closely Related Toad Tadpoles Respectively Adapted to High Altitude and Karst Caves. Genes (Basel) 2020; 11:genes11020123. [PMID: 31979140 PMCID: PMC7073644 DOI: 10.3390/genes11020123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/03/2020] [Accepted: 01/19/2020] [Indexed: 12/21/2022] Open
Abstract
Genetic adaptation to extremes is a fascinating topic. Nevertheless, few studies have explored the genetic adaptation of closely related species respectively inhabiting distinct extremes. With deep transcriptome sequencing, we attempt to detect the genetic architectures of tadpoles of five closely related toad species adapted to the Tibetan Plateau, middle-altitude mountains and karst caves. Molecular evolution analyses indicated that not only the number of fast evolving genes (FEGs), but also the functioning coverage of FEGs, increased with elevation. Enrichment analyses correspondingly revealed that the highland species had most of the FEGs involved in high-elevation adaptation, for example, amino acid substitutions of XRCC6 in its binding domains might improve the capacity of DNA repair of the toad. Yet, few FEGs and positively selected genes (PSGs) involved in high-elevation adaptation were identified in the cave species, and none of which potentially contributed to cave adaptation. Accordingly, it is speculated that in the closely related toad tadpoles, genetic selection pressures increased with elevation, and cave adaptation was most likely derived from other factors (e.g., gene loss, pseudogenization or deletion), which could not be detected by our analyses. The findings supply a foundation for understanding the genetic adaptations of amphibians inhabiting extremes.
Collapse
|
12
|
Multi-Tissue Transcriptomes Yield Information on High-Altitude Adaptation and Sex-Determination in Scutiger cf. sikimmensis. Genes (Basel) 2019; 10:genes10110873. [PMID: 31683620 PMCID: PMC6895926 DOI: 10.3390/genes10110873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 11/20/2022] Open
Abstract
The Himalayas are one of earth’s hotspots of biodiversity. Among its many cryptic and undiscovered organisms, including vertebrates, this complex high-mountain ecosystem is expected to harbour many species with adaptations to life in high altitudes. However, modern evolutionary genomic studies in Himalayan vertebrates are still at the beginning. Moreover, in organisms, like most amphibians with relatively high DNA content, whole genome sequencing remains bioinformatically challenging and no complete nuclear genomes are available for Himalayan amphibians. Here, we present the first well-annotated multi-tissue transcriptome of a Greater Himalayan species, the lazy toad Scutiger cf. sikimmensis (Anura: Megophryidae). Applying Illumina NextSeq 500 RNAseq to six tissues, we obtained 41.32 Gb of sequences, assembled to ~111,000 unigenes, translating into 54362 known genes as annotated in seven functional databases. We tested 19 genes, known to play roles in anuran and reptile adaptation to high elevations, and potentially detected diversifying selection for two (TGS1, SENP5) in Scutiger. Of a list of 37 genes, we also identify 27 candidate genes for sex determination or sexual development, all of which providing the first such data for this non-model megophryid species. These transcriptomes will serve as a valuable resource for further studies on amphibian evolution in the Greater Himalaya as a biodiversity hotspot.
Collapse
|