1
|
Shi Y, Shen H. DNA cytosine deamination is associated with recurrent Somatic Copy Number Alterations in stomach adenocarcinoma. Front Genet 2023; 14:1231415. [PMID: 37867602 PMCID: PMC10587545 DOI: 10.3389/fgene.2023.1231415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/05/2023] [Indexed: 10/24/2023] Open
Abstract
Stomach Adenocarcinoma (STAD) is a leading cause of death worldwide. Somatic Copy Number Alterations (SCNAs), which result in Homologous recombination (HR) deficiency in double-strand break repair, are associated with the progression of STAD. However, the landscape of frequent breakpoints of SCNAs (hotspots) and their functional impacts remain poorly understood. In this study, we aimed to explore the frequency and impact of these hotspots in 332 STAD patients and 1,043 cancer cells using data from the Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia (CCLE). We studied the rates of DSB (Double-Strand Breaks) loci in STAD patients by employing the Non-Homogeneous Poisson Distribution (λ), based on which we identified 145 DSB-hotspots with genes affected. We further verified DNA cytosine deamination as a critical process underlying the burden of DSB in STAD. Finally, we illustrated the clinical impact of the significant biological processes. Our findings highlighted the relationship between DNA cytosine deamination and SCNA in cancer was associated with recurrent Somatic Copy Number Alterations in STAD.
Collapse
Affiliation(s)
- Yilin Shi
- The College of Letters & Science, University of Wisconsin–Madison, Madison, WI, United States
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Seyhan AA. Circulating microRNAs as Potential Biomarkers in Pancreatic Cancer-Advances and Challenges. Int J Mol Sci 2023; 24:13340. [PMID: 37686149 PMCID: PMC10488102 DOI: 10.3390/ijms241713340] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
There is an urgent unmet need for robust and reliable biomarkers for early diagnosis, prognosis, and prediction of response to specific treatments of many aggressive and deadly cancers, such as pancreatic cancer, and liquid biopsy-based miRNA profiling has the potential for this. MiRNAs are a subset of non-coding RNAs that regulate the expression of a multitude of genes post-transcriptionally and thus are potential diagnostic, prognostic, and predictive biomarkers and have also emerged as potential therapeutics. Because miRNAs are involved in the post-transcriptional regulation of their target mRNAs via repressing gene expression, defects in miRNA biogenesis pathway and miRNA expression perturb the expression of a multitude of oncogenic or tumor-suppressive genes that are involved in the pathogenesis of various cancers. As such, numerous miRNAs have been identified to be downregulated or upregulated in many cancers, functioning as either oncomes or oncosuppressor miRs. Moreover, dysregulation of miRNA biogenesis pathways can also change miRNA expression and function in cancer. Profiling of dysregulated miRNAs in pancreatic cancer has been shown to correlate with disease diagnosis, indicate optimal treatment options and predict response to a specific therapy. Specific miRNA signatures can track the stages of pancreatic cancer and hold potential as diagnostic, prognostic, and predictive markers, as well as therapeutics such as miRNA mimics and miRNA inhibitors (antagomirs). Furthermore, identified specific miRNAs and genes they regulate in pancreatic cancer along with downstream pathways can be used as potential therapeutic targets. However, a limited understanding and validation of the specific roles of miRNAs, lack of tissue specificity, methodological, technical, or analytical reproducibility, harmonization of miRNA isolation and quantification methods, the use of standard operating procedures, and the availability of automated and standardized assays to improve reproducibility between independent studies limit bench-to-bedside translation of the miRNA biomarkers for clinical applications. Here I review recent findings on miRNAs in pancreatic cancer pathogenesis and their potential as diagnostic, prognostic, and predictive markers.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
3
|
Bortoletto AS, Parchem RJ. KRAS Hijacks the miRNA Regulatory Pathway in Cancer. Cancer Res 2023; 83:1563-1572. [PMID: 36946612 PMCID: PMC10183808 DOI: 10.1158/0008-5472.can-23-0296] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 03/23/2023]
Abstract
Extensive studies have focused on the misregulation of individual miRNAs in cancer. More recently, mutations in the miRNA biogenesis and processing machinery have been implicated in several malignancies. Such mutations can lead to global miRNA misregulation, which may promote many of the well-known hallmarks of cancer. Interestingly, recent evidence also suggests that oncogenic Kristen rat sarcoma viral oncogene homolog (KRAS) mutations act in part by modulating the activity of members of the miRNA regulatory pathway. Here, we highlight the vital role mutations in the miRNA core machinery play in promoting malignant transformation. Furthermore, we discuss how mutant KRAS can simultaneously impact multiple steps of miRNA processing and function to promote tumorigenesis. Although the ability of KRAS to hijack the miRNA regulatory pathway adds a layer of complexity to its oncogenic nature, it also provides a potential therapeutic avenue that has yet to be exploited in the clinic. Moreover, concurrent targeting of mutant KRAS and members of the miRNA core machinery represents a potential strategy for treating cancer.
Collapse
Affiliation(s)
- Angelina S. Bortoletto
- Center for Cell and Gene Therapy, Stem Cell and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Department of Neuroscience, Translational Biology and Molecular Medicine Program, Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Ronald J. Parchem
- Center for Cell and Gene Therapy, Stem Cell and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Department of Neuroscience, Translational Biology and Molecular Medicine Program, Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
4
|
Zhang R, Li C, Wan Z, Qin J, Li Y, Wang Z, Zheng Q, Kang X, Chen X, Li Y, He J, Li Y. Comparative genomic analysis of esophageal squamous cell carcinoma among different geographic regions. Front Oncol 2023; 12:999424. [PMID: 36741715 PMCID: PMC9889985 DOI: 10.3389/fonc.2022.999424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction Esophageal squamous cell carcinoma (ESCC) shows remarkable variation in incidence, survival, and risk factors. Although the genomic characteristics of ESCC have been extensively characterized, the genomic differences between different geographic regions remain unclear. Methods In this study, we sequenced 111 patients with ESCC from northern (NC) and southern (SC) China, combined their data with those of 1081 cases from previous reports, and performed a comparative analysis among different regions. In total, 644 ESCC cases were collected from six geographic regions (NC, SC, Xinjiang, China [XJC], Japan [JP], Vietnam [VN], and Europe & America [EA]) as the discovery cohort. Validation cohort 1 included 437 patients with ESCC from the NC region. Validation cohort 2 included 54 and 57 patients from the NC and SC regions, respectively. Results Patients with ESCC in different regions had different genomic characteristics, including DNA signatures, tumor mutation burdens, significantly mutated genes (SMGs), altered signaling pathways, and genes associated with clinical features. Based on both the DNA mutation signature and the mutation profile of the most common genes, the NC and SC groups were clustered close together, followed by the JP, XJC, EA, and VN groups. Compared to patients with ESCC from SC, SMGs, including KMT2D, FAT1, and NOTCH1 were more frequently identified in patients with ESCC from NC. Furthermore, some genes (TDG and DNAH8) correlated with overall survival in completely opposite ways in patients with ESCC from different geographical regions. Conclusions Our study provides insights into genomic differences in ESCC among different regions. These differences may be related to differences in environmental carcinogens, incidence, and survival.
Collapse
Affiliation(s)
- Ruixiang Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Canjun Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiyi Wan
- Department of Medicine, Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Jianjun Qin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingfeng Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaozheng Kang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiankai Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Li
- Department of Medicine, Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Jie He, ; Yin Li,
| | - Yin Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Jie He, ; Yin Li,
| |
Collapse
|
5
|
Hua T, Zhang XC, Wang W, Tian YJ, Chen SB. Deciphering the expression patterns of homologous recombination-related lncRNAs identifies new molecular subtypes and emerging therapeutic opportunities in epithelial ovarian cancer. Front Genet 2022; 13:901424. [PMID: 36246624 PMCID: PMC9557066 DOI: 10.3389/fgene.2022.901424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the leading killer among women with gynecologic malignancies. Homologous recombination deficiency (HRD) has attracted increasing attention due to its significant implication in the prediction of prognosis and response to treatments. In addition to the germline and somatic mutations of homologous recombination (HR) repair genes, to widely and deeply understand the molecular characteristics of HRD, we sought to screen the long non-coding RNAs (lncRNAs) with regard to HR repair genes and to establish a prognostic risk model for EOC. Herein, we retrieved the transcriptome data from the Genotype-Tissue Expression Project (GTEx) and The Cancer Genome Atlas (TCGA) databases. HR-related lncRNAs (HRRlncRNAs) associated with prognosis were identified by co-expression and univariate Cox regression analyses. The least absolute shrinkage and selection operator (LASSO) and multivariate stepwise Cox regression were performed to construct an HRRlncRNA risk model containing AC138904.1, AP001001.1, AL603832.1, AC138932.1, and AC040169.1. Next, Kaplan−Meier analysis, time-dependent receiver operating characteristics (ROC), nomogram, calibration, and DCA curves were made to verify and evaluate the model. Gene set enrichment analysis (GSEA), immune analysis, and prediction of the half-maximal inhibitory concentration (IC50) in the risk groups were also analyzed. The calibration plots showed a good concordance with the prognosis prediction. ROCs of 1-, 3-, and 5-year survival confirmed the well-predictive efficacy of this model in EOC. The risk score was used to divide the patients into high-risk and low-risk subgroups. The low-risk group patients tended to exhibit a lower immune infiltration status and a higher HRD score. Furthermore, consensus clustering analysis was employed to divide patients with EOC into three clusters based on the expression of the five HRRlncRNAs, which exhibited a significant difference in checkpoints’ expression levels and the tumor microenvironment (TME) status. Taken together, the results of this project supported that the five HRRlncRNA models might function as a biomarker and prognostic indicator with respect to predicting the PARP inhibitor and immune treatment in EOC.
Collapse
Affiliation(s)
- Tian Hua
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, Xingtai, China
| | - Xiao-Chong Zhang
- Department of Oncology, Affiliated Xingtai People Hospital of Hebei Medical University, Xingtai, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yun-Jie Tian
- Department of Obstetrics and Gynecology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shu-Bo Chen
- Department of Oncology, Affiliated Xingtai People Hospital of Hebei Medical University, Xingtai, China
- *Correspondence: Shu-Bo Chen,
| |
Collapse
|
6
|
Bennett AN, Huang RX, He Q, Lee NP, Sung WK, Chan KHK. Drug repositioning for esophageal squamous cell carcinoma. Front Genet 2022; 13:991842. [PMID: 36246638 PMCID: PMC9554346 DOI: 10.3389/fgene.2022.991842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Esophageal cancer (EC) remains a significant challenge globally, having the 8th highest incidence and 6th highest mortality worldwide. Esophageal squamous cell carcinoma (ESCC) is the most common form of EC in Asia. Crucially, more than 90% of EC cases in China are ESCC. The high mortality rate of EC is likely due to the limited number of effective therapeutic options. To increase patient survival, novel therapeutic strategies for EC patients must be devised. Unfortunately, the development of novel drugs also presents its own significant challenges as most novel drugs do not make it to market due to lack of efficacy or safety concerns. A more time and cost-effective strategy is to identify existing drugs, that have already been approved for treatment of other diseases, which can be repurposed to treat EC patients, with drug repositioning. This can be achieved by comparing the gene expression profiles of disease-states with the effect on gene-expression by a given drug. In our analysis, we used previously published microarray data and identified 167 differentially expressed genes (DEGs). Using weighted key driver analysis, 39 key driver genes were then identified. These driver genes were then used in Overlap Analysis and Network Analysis in Pharmomics. By extracting drugs common to both analyses, 24 drugs are predicted to demonstrate therapeutic effect in EC patients. Several of which have already been shown to demonstrate a therapeutic effect in EC, most notably Doxorubicin, which is commonly used to treat EC patients, and Ixazomib, which was recently shown to induce apoptosis and supress growth of EC cell lines. Additionally, our analysis predicts multiple psychiatric drugs, including Venlafaxine, as repositioned drugs. This is in line with recent research which suggests that psychiatric drugs should be investigated for use in gastrointestinal cancers such as EC. Our study shows that a drug repositioning approach is a feasible strategy for identifying novel ESCC therapies and can also improve the understanding of the mechanisms underlying the drug targets.
Collapse
Affiliation(s)
- Adam N. Bennett
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Rui Xuan Huang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qian He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Nikki P. Lee
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wing-Kin Sung
- Department of Computer Sciences, National University of Singapore, Singapore, Singapore
| | - Kei Hang Katie Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Epidemiology, Centre for Global Cardiometabolic Health, Brown University, Providence, RI, United States
| |
Collapse
|
7
|
Integrated cohort of esophageal squamous cell cancer reveals genomic features underlying clinical characteristics. Nat Commun 2022; 13:5268. [PMID: 36071046 PMCID: PMC9452532 DOI: 10.1038/s41467-022-32962-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/25/2022] [Indexed: 11/08/2022] Open
Abstract
Esophageal squamous cell cancer (ESCC) is the major pathologic type of esophageal cancer in Asian population. To systematically evaluate the mutational features underlying clinical characteristics, we establish the integrated dataset of ESCC-META that consists of 1930 ESCC genomes from 33 datasets. The data process pipelines lead to well homogeneity of this integrated cohort for further analysis. We identified 11 mutational signatures in ESCC, some of which are related to clinical features, and firstly detect the significant mutated hotspots in TGFBR2 and IRF2BPL. We screen the survival related mutational features and found some genes had different prognostic impacts between early and late stage, such as PIK3CA and NFE2L2. Based on the results, an applicable approach of mutational score is proposed and validated to predict prognosis in ESCC. As an open-sourced, quality-controlled and updating mutational landscape, the ESCC-META dataset could facilitate further genomic and translational study in this field.
Collapse
|
8
|
Liu Y, Gusev A, Heng YJ, Alexandrov LB, Kraft P. Somatic mutational profiles and germline polygenic risk scores in human cancer. Genome Med 2022; 14:14. [PMID: 35144655 PMCID: PMC8832866 DOI: 10.1186/s13073-022-01016-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/24/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The mutational profile of cancer reflects the activity of the mutagenic processes which have been operative throughout the lineage of the cancer cell. These processes leave characteristic profiles of somatic mutations called mutational signatures. Mutational signatures, including single-base substitution (SBS) signatures, may reflect the effects of exogenous or endogenous exposures. METHODS We used polygenic risk scores (PRS) to summarize common germline variation associated with cancer risk and other cancer-related traits and examined the association between somatic mutational profiles and germline PRS in 12 cancer types from The Cancer Genome Atlas. Somatic mutational profiles were constructed from whole-exome sequencing data of primary tumors. PRS were calculated for the 12 selected cancer types and 9 non-cancer traits, including cancer risk determinants, hormonal factors, and immune-mediated inflammatory diseases, using germline genetic data and published summary statistics from genome-wide association studies. RESULTS We found 17 statistically significant associations between somatic mutational profiles and germline PRS after Bonferroni correction (p < 3.15 × 10-5), including positive associations between germline inflammatory bowel disease PRS and number of somatic mutations attributed to signature SBS1 in prostate cancer and APOBEC-related signatures in breast cancer. Positive associations were also found between age at menarche PRS and mutation counts of SBS1 in overall and estrogen receptor-positive breast cancer. Consistent with prior studies that found an inverse association between the pubertal development PRS and risk of prostate cancer, likely reflecting hormone-related mechanisms, we found an inverse association between age at menarche PRS and mutation counts of SBS1 in prostate cancer. Inverse associations were also found between several cancer PRS and tumor mutation counts. CONCLUSIONS Our analysis suggests that there are robust associations between tumor somatic mutational profiles and germline PRS. These may reflect the mechanisms through hormone regulation and immune responses that contribute to cancer etiology and drive cancer progression.
Collapse
Affiliation(s)
- Yuxi Liu
- grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA ,grid.38142.3c000000041936754XProgram in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115 USA
| | - Alexander Gusev
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215 USA
| | - Yujing J. Heng
- grid.38142.3c000000041936754XDepartment of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Ludmil B. Alexandrov
- grid.266100.30000 0001 2107 4242Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Peter Kraft
- grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA ,grid.38142.3c000000041936754XProgram in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| |
Collapse
|
9
|
Erkizan HV, Sukhadia S, Natarajan TG, Marino G, Notario V, Lichy JH, Wadleigh RG. Exome sequencing identifies novel somatic variants in African American esophageal squamous cell carcinoma. Sci Rep 2021; 11:14814. [PMID: 34285259 PMCID: PMC8292420 DOI: 10.1038/s41598-021-94064-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Esophageal cancer has a strikingly low survival rate mainly due to the lack of diagnostic markers for early detection and effective therapies. In the U.S., 75% of individuals diagnosed with esophageal squamous cell carcinoma (ESCC) are of African descent. African American ESCC (AA ESCC) is particularly aggressive, and its biological underpinnings remain poorly understood. We sought to identify the genomic abnormalities by conducting whole exome sequencing of 10 pairs of matched AA esophageal squamous cell tumor and control tissues. Genomic analysis revealed diverse somatic mutations, copy number alterations (SCNAs), and potential cancer driver genes. Exome variants created two subgroups carrying either a high or low tumor mutation burden. Somatic mutational analysis based on the Catalog of Somatic Mutations in Cancer (COSMIC) detected SBS16 as the prominent signature in the high mutation rate group suggesting increased DNA damage. SBS26 was also detected, suggesting possible defects in mismatch repair and microsatellite instability. We found SCNAs in multiple chromosome segments, encoding MYC on 8q24.21, PIK3CA and SOX2 on 3q26, CCND1, SHANK2, CTTN on 11q13.3, and KRAS on 12p12. Amplifications of EGFRvIII and EGFRvIVa mutants were observed in two patients, representing a novel finding in ESCC that has potential clinical relevance. This present exome sequencing, which to our knowledge, represents the first comprehensive exome analysis exclusively in AA ESCC, and highlights novel mutated loci that might explain the aggressive nature of AA ESCC and lead to the development of diagnostic and prognostic markers as well as therapeutic targets.
Collapse
Affiliation(s)
- Hayriye Verda Erkizan
- Institute for Clinical Research, Veterans Affairs Medical Center, Washington, DC, USA.
| | | | | | - Gustavo Marino
- Hepatology and Gastroenterology, Veterans Affairs Medical Center, Washington, DC, USA
| | - Vicente Notario
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Jack H Lichy
- Pathology and Laboratory Service, Veterans Affairs Medical Center, Washington, DC, USA
| | - Robert G Wadleigh
- Institute for Clinical Research, Veterans Affairs Medical Center, Washington, DC, USA.,Hematology and Medical Oncology, Veterans Affairs Medical Center, Washington, DC, USA
| |
Collapse
|
10
|
Guo G, Li G, Liu Y, Li H, Guo Q, Liu J, Yang X, Shou T, Shi Y. Next-Generation Sequencing Reveals High Uncommon EGFR Mutations and Tumour Mutation Burden in a Subgroup of Lung Cancer Patients. Front Oncol 2021; 11:621422. [PMID: 33889543 PMCID: PMC8056083 DOI: 10.3389/fonc.2021.621422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Xuanwei County in Southwest China shows the highest incidence and mortality rate of lung cancer in China. Although studies have reported distinct clinical characteristics of patients from Xuanwei, the molecular features of these patients with non-small cell lung cancer (NSCLC) remain unclear. Here, we comprehensively characterised such cases using next-generation sequencing (NGS). Formalin-fixed, paraffin-embedded tumour samples from 146 patients from Xuanwei with NSCLC were collected for an NGS-based target panel assay; their features were compared with those of reference Chinese and The Cancer Genome Atlas (TCGA) cohorts. Uncommon EGFR mutations, defined as mutations other than L858R, exon 19del, exon 20ins, and T790M, were the predominant type of EGFR mutations in the Xuanwei cohort. Patients harbouring uncommon EGFR mutations were more likely to have a family history of cancer (p = 0.048). A higher frequency of KRAS mutations and lower frequency of rearrangement alterations were observed in the Xuanwei cohort (p < 0.001). Patients from Xuanwei showed a significantly higher tumour mutation burden than the reference Chinese and TCGA cohorts (p < 0.001). Our data indicates that patients from Xuanwei with NSCLC harbouring G719X/S768I co-mutations may benefit from treatment with EGFR-tyrosine kinase inhibitors. Our comprehensive molecular profiling revealed unique genomic features of patients from Xuanwei with NSCLC, highlighting the potential for improvement in targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Gang Guo
- Department of Thoracic Surgery, Yunnan Cancer Hospital, Kunming, China
| | - Gaofeng Li
- Department of Thoracic Surgery, Yunnan Cancer Hospital, Kunming, China
| | - Yinqiang Liu
- Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Heng Li
- Department of Thoracic Surgery, Yunnan Cancer Hospital, Kunming, China
| | - Qi Guo
- Department of Thoracic Surgery, Yunnan Cancer Hospital, Kunming, China
| | - Jun Liu
- Department of Thoracic Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Xiumei Yang
- Department of Thoracic Surgery, Yunnan Cancer Hospital, Kunming, China
| | - Tao Shou
- Department of Medical Oncology, First People's Hospital of Yunnan Province, Kunming, China
| | - Yunfei Shi
- Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
11
|
Kazemi-Sefat GE, Keramatipour M, Talebi S, Kavousi K, Sajed R, Kazemi-Sefat NA, Mousavizadeh K. The importance of CDC27 in cancer: molecular pathology and clinical aspects. Cancer Cell Int 2021; 21:160. [PMID: 33750395 PMCID: PMC7941923 DOI: 10.1186/s12935-021-01860-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
Background CDC27 is one of the core components of Anaphase Promoting complex/cyclosome. The main role of this protein is defined at cellular division to control cell cycle transitions. Here we review the molecular aspects that may affect CDC27 regulation from cell cycle and mitosis to cancer pathogenesis and prognosis. Main text It has been suggested that CDC27 may play either like a tumor suppressor gene or oncogene in different neoplasms. Divergent variations in CDC27 DNA sequence and alterations in transcription of CDC27 have been detected in different solid tumors and hematological malignancies. Elevated CDC27 expression level may increase cell proliferation, invasiveness and metastasis in some malignancies. It has been proposed that CDC27 upregulation may increase stemness in cancer stem cells. On the other hand, downregulation of CDC27 may increase the cancer cell survival, decrease radiosensitivity and increase chemoresistancy. In addition, CDC27 downregulation may stimulate efferocytosis and improve tumor microenvironment. Conclusion CDC27 dysregulation, either increased or decreased activity, may aggravate neoplasms. CDC27 may be suggested as a prognostic biomarker in different malignancies. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01860-9.
Collapse
Affiliation(s)
- Golnaz Ensieh Kazemi-Sefat
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O. Box: 14665-354, Tehran, 14496-14535, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Talebi
- Department of Medical Genetics, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Roya Sajed
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O. Box: 14665-354, Tehran, 14496-14535, Iran
| | | | - Kazem Mousavizadeh
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O. Box: 14665-354, Tehran, 14496-14535, Iran. .,Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Yang Z, Pandey P, Marjoram P, Siegmund KD. iMutSig: a web application to identify the most similar mutational signature using shiny. F1000Res 2020; 9:586. [PMID: 33299548 PMCID: PMC7702159 DOI: 10.12688/f1000research.24435.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 11/20/2022] Open
Abstract
There are two frameworks for characterizing mutational signatures which are commonly used to describe the nucleotide patterns that arise from mutational processes. Estimated mutational signatures from fitting these two methods in human cancer can be found online, in the Catalogue Of Somatic Mutations In Cancer (COSMIC) website or a GitHub repository. The two frameworks make differing assumptions regarding independence of base pairs and for that reason may produce different results. Consequently, there is a need to compare and contrast the results of the two methods, but no such tool currently exists. In this paper, we provide a simple and intuitive interface that allows comparisons of pairs of mutational signatures to be easily performed. Cosine similarity measures the extent of signature similarity. To compare mutational signatures of different formats, one signature type (COSMIC or
pmsignature) is converted to the format of the other before the signatures are compared.
iMutSig provides a simple and user-friendly web application allowing researchers to download published mutational signatures of either type and to compare signatures from COSMIC to those from
pmsignature, and vice versa. Furthermore,
iMutSig allows users to input a self-defined mutational signature and examine its similarity to published signatures from both data sources.
iMutSig is accessible
online and source code is available for download from
GitHub.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, 2001 N.Soto Street, Los Angeles, CA, 91003, USA
| | - Priyatama Pandey
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, 2001 N.Soto Street, Los Angeles, CA, 91003, USA
| | - Paul Marjoram
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, 2001 N.Soto Street, Los Angeles, CA, 91003, USA
| | - Kimberly D Siegmund
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, 2001 N.Soto Street, Los Angeles, CA, 91003, USA
| |
Collapse
|
13
|
Li R, Li P, Xing W, Qiu H. Heterogeneous genomic aberrations in esophageal squamous cell carcinoma: a review. Am J Transl Res 2020; 12:1553-1568. [PMID: 32509161 PMCID: PMC7269976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Esophageal cancer (EC) causes hundreds of thousands of deaths a year worldwide, especially the major subtype esophageal squamous cell carcinoma (ESCC). With the advent of next-generation sequencing and the availability of commercial microarrays, abnormities in genetic levels have been revealed in various independent researches. High frequencies of structure variations (SVs), single nucleotide variations (SNVs) and copy-number alterations (CNAs) in ESCCs are uncovered, and ESCC shows high levels of inter- and intratumor heterogeneity, implying diverse evolutionary trajectories. This review tries to explain the pathogenesis of ESCC on the scope of most often mutated genes based on prior studies, hopes to offer some hints for diagnosis and therapy in clinic.
Collapse
Affiliation(s)
- Renling Li
- Quality and Standards Academy, Shenzhen Technology UniversityShenzhen 518060, China
| | - Peng Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhou 450008, China
| | - Wenqun Xing
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhou 450008, China
| | - Huiling Qiu
- Quality and Standards Academy, Shenzhen Technology UniversityShenzhen 518060, China
| |
Collapse
|
14
|
Song Y, Song W, Li Z, Song W, Wen Y, Li J, Xia Q, Zhang M. CDC27 Promotes Tumor Progression and Affects PD-L1 Expression in T-Cell Lymphoblastic Lymphoma. Front Oncol 2020; 10:488. [PMID: 32391258 PMCID: PMC7190811 DOI: 10.3389/fonc.2020.00488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
T-lymphoblastic lymphoma (T-LBL) is a rare hematological malignancy with highly aggressive, unique clinical manifestations, and poor prognosis. Cell division cycle 27 (CDC27) was previously reported to be a significant subunit of the anaphase-promoting complex/cyclosome. However, the specific functions and relevant mechanisms of CDC27 in T-LBL remain unknown. Through immunohistochemistry staining, we identified that CDC27 was overexpressed in T-LBL tissues and related to tumor progression and poor survival. Functional experiments demonstrated that CDC27 promoted proliferation in vivo and in vitro. Further experiment suggested the role of CDC27 in facilitating G1/S transition and promoting the expression of Cyclin D1 and CDK4. Then the effect of CDC27 in inhibiting apoptosis was also identified. Furthermore, we found a positive correlation between the expression of CDC27 and Programmed death ligand-1 (PD-L1) by immunohistochemistry staining. The interaction between CDC27 and PD-L1 was also proved by western blot, luciferase gene reporter assay and immunofluorescence. Taken together, our results showed that CDC27 contributes to T-LBL progression and there is a positive correlation between PD-L1 and CDC27, which offers novel perspectives for future studies on targeting CDC27 in T-LBL.
Collapse
Affiliation(s)
- Yue Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Academy of Medical Science of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, China
| | - Wei Song
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, China
| | - Wenting Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Academy of Medical Science of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, China
| | - Yibo Wen
- The Academy of Medical Science of Zhengzhou University, Zhengzhou, China
| | - Jiwei Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, China
| | - Qingxin Xia
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, China
| |
Collapse
|
15
|
Yang Z, Pandey P, Shibata D, Conti DV, Marjoram P, Siegmund KD. HiLDA: a statistical approach to investigate differences in mutational signatures. PeerJ 2019; 7:e7557. [PMID: 31523512 PMCID: PMC6717498 DOI: 10.7717/peerj.7557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/25/2019] [Indexed: 12/30/2022] Open
Abstract
We propose a hierarchical latent Dirichlet allocation model (HiLDA) for characterizing somatic mutation data in cancer. The method allows us to infer mutational patterns and their relative frequencies in a set of tumor mutational catalogs and to compare the estimated frequencies between tumor sets. We apply our method to two datasets, one containing somatic mutations in colon cancer by the time of occurrence, before or after tumor initiation, and the second containing somatic mutations in esophageal cancer by sex, age, smoking status, and tumor site. In colon cancer, the relative frequencies of mutational patterns were found significantly associated with the time of occurrence of mutations. In esophageal cancer, the relative frequencies were significantly associated with the tumor site. Our novel method provides higher statistical power for detecting differences in mutational signatures.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Priyatama Pandey
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Darryl Shibata
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - David V. Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Paul Marjoram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Kimberly D. Siegmund
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|