1
|
Meng L, Pan Y, Yonezawa R, Yang K, Bailey-Kobayashi N, Hashimoto N, Maeyama K, Yoshitake K, Kinoshita S, Yoshida T, Nagai K, Watabe S, Asakawa S. Identification and comparison of exosomal and non-exosomal microRNAs in mantle tissue of Pinctada fucata (Akoya pearl oyster). Int J Biol Macromol 2025; 309:142991. [PMID: 40210052 DOI: 10.1016/j.ijbiomac.2025.142991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
MicroRNAs (miRNA) are a class of endogenous non-coding small RNA molecules that are widely found in tissues, biological fluids, and vesicles such as exosomes. Exosomes are extracellular vesicles released from multivesicular bodies of various cell types. They are involved in intercellular communication and transport and immune regulation and may serve as potential biomarkers for diagnosis and monitoring. The function of exosomal miRNAs and their potential applications as biomarkers are a topic of interest. However, identification and comparison of miRNA expression in different biological sample types have rarely been studied. Therefore, in this study, the miRNA profiles of tissue- and tissue-derived exosomes of Pinctada fucata were characterized and compared to screen for differentially expressed miRNAs. The miRNAs functioned within tissues and were also packaged into exosomes. Simultaneously, some miRNAs were preferentially exported to exosomes for their biological functions. Functional analyses suggested that the predicted genes targeted by these differentially expressed miRNAs were extensively involved in intracellular vesicle trafficking and vesicle-mediated substrate transport. Overall, our findings provide insights into the roles of tissue-derived miRNAs and circulating exosomal miRNAs in cell communication and gene regulation. Moreover, this study serves as an additional reference for sample type selection for P. fucata small RNA analysis.
Collapse
Affiliation(s)
- Lingxin Meng
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Yida Pan
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Ryo Yonezawa
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan; Signal Peptidome Research Laboratory, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Kaiqiao Yang
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | - Naoki Hashimoto
- Pearl Research Institute, MIKIMOTO & CO., LTD., Osaki Hazako 923, Hamajima, Shima, Mie 517-0403, Japan
| | - Kaoru Maeyama
- Mikimoto Pharmaceutical CO., LTD., Kurose 1425, Ise, Mie 516-8581, Japan
| | - Kazutoshi Yoshitake
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Shigeharu Kinoshita
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Tetsuhiko Yoshida
- Institute for Advanced Sciences, TOAGOSEI CO., LTD., Tsukuba, Ibaraki 300-2611, Japan
| | - Kiyohito Nagai
- Pearl Research Institute, MIKIMOTO & CO., LTD., Osaki Hazako 923, Hamajima, Shima, Mie 517-0403, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0313, Japan
| | - Shuichi Asakawa
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan; Signal Peptidome Research Laboratory, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| |
Collapse
|
2
|
Wang P, Zhu J, Chen H, Hu Q, Chen Z, Li W, Yang T, Zhu J, Yan B, Gao H, Xing C. Study on the Regulatory Mechanisms of Carapace Marking Formation in Marsupenaeus japonicus. Animals (Basel) 2025; 15:727. [PMID: 40076010 PMCID: PMC11899420 DOI: 10.3390/ani15050727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/23/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
There are two phenotypes in the natural populations of Marsupenaeus japonicus, which is an ideal model for studying the formation of markings and body color in crustaceans. In a previous study, we used comparative transcriptome technology to screen some functional genes related to body color regulation. Here, high-throughput sequencing technology was used to perform microRNA (miRNA) sequencing analysis on the exoskeleton of M. japonicus with two types of carapace markings, and functional studies of related genes were performed. A total of 687 mature miRNAs belonging to 135 miRNA families were identified in this study, and 111 novel miRNAs were found. Through stringent screening conditions, a total of 18 differentially expressed miRNAs were identified, including 14 with upregulated expression and 4 with downregulated expression. Multiple target genes were predicted for almost all of the differentially expressed miRNAs. The expression levels of several target genes, such as those related to cytoplasmic microtubule organization, transmembrane transportation, and signal transduction, were confirmed using qRT-PCR. This study revealed that both the CRCN A2 and CRCN C1 genes were highly expressed in type I individuals, while the expression levels of their related miRNAs in type I individuals were lower than those in type II individuals, which is consistent with the mechanism of miRNAs negatively regulating mRNA expression. Through interference with the CRCN A2 and CRCN C1 genes, a clear regulatory relationship was found between the two genes, and the dendritic xanthophores in the carapace of M. japonicus gradually changed from bright yellow to dark black, with obvious shrinkage. In summary, our studies provide references for the regulatory mechanisms of marking formation in M. japonicus.
Collapse
Affiliation(s)
- Panpan Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Jiawei Zhu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
| | - Huanyu Chen
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
| | - Qingyuan Hu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
| | - Zhenxiang Chen
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
| | - Wenjia Li
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
| | - Ting Yang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
| | - Jin Zhu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
| | - Binlun Yan
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Chaofan Xing
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
3
|
Hao R, Li L, Zhang D, Tian Y, Long H, Li H, Zhu X, Huang Y, Li G, Zhu C. Characterization and functional analysis of pl-miR-2188 in melanin synthesis in leopard coral grouper (Plectropomus leopardus). Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111043. [PMID: 39491612 DOI: 10.1016/j.cbpb.2024.111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
MicroRNAs (miRNAs) are known to regulate gene expression and play a role in body color formation in fish. However, the molecular mechanisms underlying miRNA involvement in the body color of leopard coral grouper (Plectropomus leopardus) remain largely unexplored. In this study, we investigated the expression levels of miR-2188 in red and black P. leopardus (pl-miR-2188) and found significantly higher expression levels in red fish samples compared to those in black fish samples. Silencing pl-miR-2188 in vivo using a pl-miR-2188 antagomir resulted in increased melanin concentration. Following pl-miR-2188 silencing, the expression levels of melanin-related genes, such as tyrosinase (tyr), TYR-related protein 1 (tyrp1-1 and tyrp1-2) and TYR-related protein 2 (tyrp2), and microphthalmia-associated transcription factor (mitf), were elevated. RNAhybrid predictions and dual-luciferase reporter assays identified sox5 as a target mRNA of pl-miR-2188. Following pl-miR-2188 antagomir injection, sox5 expression was significantly upregulated in the injection group compared to that in control groups (P < 0.05). These results suggest that pl-miR-2188 may regulate melanin synthesis in P. leopardus by targeting sox5. This study provides new insights into the miRNA-mRNA interactions involved in melanin synthesis and body color formation in the leopard coral grouper.
Collapse
Affiliation(s)
- Ruijuan Hao
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China.
| | - Liancheng Li
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dongying Zhang
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Yali Tian
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongzhao Long
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hang Li
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Xiaowen Zhu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China
| | - Yang Huang
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China
| | - Chunhua Zhu
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
4
|
Ffrench-Constant RH, Hayward A. Melanism: Cryptic control by non-coding RNAs. Curr Biol 2024; 34:R901-R904. [PMID: 39378849 DOI: 10.1016/j.cub.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Melanism drives both crypsis and mimicry in butterflies and moths. To date, melanism has been mapped to a structural gene called cortex, but now more detailed work shows that in fact it is controlled by non-coding RNAs at the same locus.
Collapse
Affiliation(s)
| | - Alex Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK.
| |
Collapse
|
5
|
Andrian KN, Wihadmadyatami H, Wijayanti N, Karnati S, Haryanto A. A comprehensive review of current practices, challenges, and future perspectives in Koi fish ( Cyprinus carpio var. koi) cultivation. Vet World 2024; 17:1846-1854. [PMID: 39328458 PMCID: PMC11422636 DOI: 10.14202/vetworld.2024.1846-1854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/22/2024] [Indexed: 09/28/2024] Open
Abstract
The Koi fish (Cyprinus carpio var. koi) is an ornamental fish with a high selling value because of its attractive colors, color patterns, body shape, and swimming motion. Koi fish is extensively traded in the international fish market because of their popularity among hobbyists from numerous countries worldwide. This review discusses various aspects of Koi fish cultivation, including genetic involvement, selective breeding strategies, and management systems. By examining crucial factors such as water parameters, technological innovations, and evolving cultivation methods, this review explored their influence on the quality of Koi fish. Breakthrough technologies, such as ornamental fish warehousing and recirculation aquaculture systems, enhance breeding efficiency and profitability. Molecular sexing, feed optimization, and color enhancement strategies are central to pursuing superior Koi fish. Reproduction management, disease prevention, and risk reduction during transport underscore ongoing efforts to ensure their survival. Despite notable progress, several challenges remain, including limited genetic studies, gaps in disease research, and unexplored herbal alternatives. The active involvement of hobbyists and breeders in research initiatives is a pivotal force in unlocking the untapped potential. The holistic approaches to enhance production efficiency and improve care standards require further exploration, paving the way for a sustainable future in the evolving management of Koi fish cultivation.
Collapse
Affiliation(s)
- Krisna Noli Andrian
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nastiti Wijayanti
- Department of Animal Physiology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität of Würzburg, Würzburg, Germany
| | - Aris Haryanto
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
6
|
Liu Y, Liang Z, Li Y, Zhu W, Feng B, Xu W, Fu J, Wei P, Luo M, Dong Z. Integrated transcriptome and microRNA analysis reveals molecular responses to high-temperature stress in the liver of American shad (Alosa sapidissima). BMC Genomics 2024; 25:656. [PMID: 38956484 PMCID: PMC11218383 DOI: 10.1186/s12864-024-10567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Fish reproduction, development and growth are directly affected by temperature, investigating the regulatory mechanisms behind high temperature stress is helpful to construct a finer molecular network. In this study, we systematically analyzed the transcriptome and miRNA information of American shad (Alosa sapidissima) liver tissues at different cultivation temperatures of 24 ℃ (Low), 27 ℃ (Mid) and 30 ℃ (High) based on a high-throughput sequencing platform. RESULTS The results showed that there were 1594 differentially expressed genes (DEGs) and 660 differentially expressed miRNAs (DEMs) in the LowLi vs. MidLi comparison group, 473 DEGs and 84 DEMs in the MidLi vs. HighLi group, 914 DEGs and 442 DEMs in the LowLi vs. HighLi group. These included some important genes and miRNAs such as calr, hsp90b1, hsp70, ssa-miR-125a-3p, ssa-miR-92b-5p, dre-miR-15a-3p and novel-m1018-5p. The DEGs were mainly enriched in the protein folding, processing and export pathways of the endoplasmic reticulum; the target genes of the DEMs were mainly enriched in the focal adhesion pathway. Furthermore, the association analysis revealed that the key genes were mainly enriched in the metabolic pathway. Interestingly, we found a significant increase in the number of genes and miRNAs involved in the regulation of heat stress during the temperature change from 24 °C to 27 °C. In addition, we examined the tissue expression characteristics of some key genes and miRNAs by qPCR, and found that calr, hsp90b1 and dre-miR-125b-2-3p were significantly highly expressed in the liver at 27 ℃, while novel-m0481-5p, ssa-miR-125a-3p, ssa-miR-92b-5p, dre-miR-15a-3p and novel-m1018-5p had the highest expression in the heart at 30℃. Finally, the quantitative expression trends of 10 randomly selected DEGs and 10 DEMs were consistent with the sequencing data, indicating the reliability of the results. CONCLUSIONS In summary, this study provides some fundamental data for subsequent in-depth research into the molecular regulatory mechanisms of A. sapidissima response to heat stress, and for the selective breeding of high temperature tolerant varieties.
Collapse
Affiliation(s)
- Ying Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Zhengyuan Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Yulin Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Bingbing Feng
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing, Jiangsu, China
| | - Wei Xu
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing, Jiangsu, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Panpan Wei
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris przewalskii, Rescue Center of Qinghai Lake Naked Carp, Xining, Qinghai, China
| | - Mingkun Luo
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| |
Collapse
|
7
|
Xu Q, Nie H, Ma Q, Wang J, Huo Z, Yan X. The lgi-miR-2d is Potentially Involved in Shell Melanin Synthesis by Targeting mitf in Manila Clam Ruditapes philippinarum. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:432-446. [PMID: 38607523 DOI: 10.1007/s10126-024-10307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
Shell color as an important economic trait is also the crucial target trait for breeding and production. MicroRNA (miRNA) is an endogenous small non-coding RNA that can post-transcriptionally regulate the expression of target genes, it plays important roles in many life activities and physiological processes, such as shell color, stress response, and disease traits. In this study, we investigated the function of lgi-miR-2d in shell melanin formation and the expression patterns of lgi-miR-2d and target gene Rpmitf in Manila clam Ruditapes philippinarum. We further explored and verified the relationship between Rpmitf and lgi-miR-2d and identified the expression level of shell color-related gene changes by RNAi and injecting the antagomir of lgi-miR-2d, respectively. Our results indicated that lgi-miR-2d antagomir affected the expression of its target gene Rpmitf. In addition, the dual-luciferase reporter assay was conducted to confirm the direct interaction between lgi-miR-2d and Rpmitf. The results showed that the expression levels of melanin-related genes such as Rpmitf and tyr were significantly decreased in the positive treatment group compared with the blank control group after the Rpmitf dsRNA injection, indicating Rpmitf plays a crucial role in the melanin synthesis pathway. Taken together, we speculated that lgi-miR-2d might be negatively modulating Rpmitf, which might regulate other shell color-related genes, thereby affecting melanin synthesis in R. philippinarum.
Collapse
Affiliation(s)
- Qiaoyue Xu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| | - Qianying Ma
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Jiadi Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
8
|
Song F, Yang Z, Shi L, Zheng D, Liang H, Wang L, Sun J, Luo J. Transcriptome analysis reveals candidate miRNAs involved in skin color differentiation of juvenile Plectropomus leopardus in response to different background colors. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101141. [PMID: 37690214 DOI: 10.1016/j.cbd.2023.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Red skin color in Plectropomus leopardus is important to its ornamental and economic value. However, the color of P. leopardus can change during the rearing process, darkening and turning black due to the influence of environmental background color. The underlying molecular mechanisms that regulate this phenomenon remain unclear. MicroRNAs (miRNAs) are endogenous, small non-coding RNAs that play important roles in numerous biological processes, such as skin differentiation and color formation in many animals. Therefore, we performed miRNA sequencing of P. leopardus skin before (initial) and after rearing with three different background colors (white, black, and blue) using Illumina sequencing to identify candidate miRNAs that may contribute to skin color differentiation. In total, 154,271,376 clean reads were obtained, with over 92 % of them successfully mapped to the P. leopardus reference genome. The miRNA length distributions of all samples displayed peaks around a typical length of 22 nt. Within these sequences, 243 known and 287 novel miRNAs were identified. A total of 65 significantly differentially expressed miRNAs (DEMs) were identified (P < 0.05), including 40 known DEMs and 25 novel DEMs. These DEMs included novel_561, miR-141-3p, and miR-129-5p, whose target genes were primarily associated with pigmentation related processes, including tyrosine metabolism, melanogenesis, and the Wnt signaling pathway. These findings shed light on the potential roles of miRNAs in the darkening of skin color in P. leopardus, thus enhancing our understanding of the molecular mechanisms involved in skin pigmentation differentiation in this species.
Collapse
Affiliation(s)
- Feibiao Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute of Hainan University, College of Marine Sciences, Hainan University, Haikou 570228, China.
| | - Zihang Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute of Hainan University, College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Liping Shi
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute of Hainan University, College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Da Zheng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute of Hainan University, College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Huan Liang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute of Hainan University, College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Lei Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute of Hainan University, College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Junlong Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute of Hainan University, College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Jian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Sanya Nanfan Research Institute of Hainan University, College of Marine Sciences, Hainan University, Haikou 570228, China.
| |
Collapse
|
9
|
Zhang X, Luo M, Jiang B, Zhu W, Min Q, Hu J, Liu T, Fu J, Shi X, Wang P, Wang L, Dong Z. microRNA regulation of skin pigmentation in golden-back mutant of crucian carp from a rice-fish integrated farming system. BMC Genomics 2023; 24:70. [PMID: 36765276 PMCID: PMC9912656 DOI: 10.1186/s12864-023-09168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are endogenous small non-coding RNAs (21-25 nucleotides) that act as essential components of several biological processes. Golden-back crucian carp (GBCrC, Carassius auratus) is a naturally mutant species of carp that has two distinct body skin color types (golden and greenish-grey), making it an excellent model for research on the genetic basis of pigmentation. Here, we performed small RNA (sRNA) analysis on the two different skin colors via Illumina sequencing. RESULTS A total of 679 known miRNAs and 254 novel miRNAs were identified, of which 32 were detected as miRNAs with significant differential expression (DEMs). 23,577 genes were projected to be the targets of 32 DEMs, primarily those involved in melanogenesis, adrenergic signaling in cardiomyocytes, MAPK signaling pathway and wnt signaling pathway by functional enrichment. Furthermore, we built an interaction module of mRNAs, proteins and miRNAs based on 10 up-regulated and 13 down-regulated miRNAs in golden skin. In addition to transcriptional destabilization and translational suppression, we discovered that miRNAs and their target genes were expressed in the same trend at both the transcriptional and translational levels. Finally, we discovered that miR-196d could be indirectly implicated in regulating melanocyte synthesis and motility in the skin by targeting to myh7 (myosin-7) gene through the luciferase reporter assay, antagomir silencing in vivo and qRT-PCR techniques. CONCLUSIONS Our study gives a systematic examination of the miRNA profiles expressed in the skin of GBCrC, assisting in the comprehension of the intricate molecular regulation of body color polymorphism and providing insights for C. auratus breeding research.
Collapse
Affiliation(s)
- Xianbo Zhang
- Guizhou Fisheries Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang, Guizhou, China
| | - Mingkun Luo
- grid.43308.3c0000 0000 9413 3760Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China
| | - Bingjie Jiang
- grid.27871.3b0000 0000 9750 7019Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Wenbin Zhu
- grid.43308.3c0000 0000 9413 3760Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China
| | - Qianwen Min
- Guizhou Fisheries Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang, Guizhou, China
| | - Jinli Hu
- Guizhou Fisheries Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang, Guizhou, China
| | - Ting Liu
- Guizhou Fisheries Research Institute, Guizhou Academy of Agriculture Sciences, Guiyang, Guizhou, China
| | - Jianjun Fu
- grid.43308.3c0000 0000 9413 3760Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China
| | - Xiulan Shi
- grid.27871.3b0000 0000 9750 7019Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Pan Wang
- grid.412514.70000 0000 9833 2433College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Lanmei Wang
- grid.43308.3c0000 0000 9413 3760Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China. .,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China.
| |
Collapse
|
10
|
Identification, characterization and differential expression analysis of a pteridine synthesis related gene, Ccptps, in koi carp (Cyprinus carpio L.). Comp Biochem Physiol B Biochem Mol Biol 2022; 264:110814. [DOI: 10.1016/j.cbpb.2022.110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
|
11
|
Jiang B, Wang L, Luo M, Zhu W, Fu J, Dong Z. Molecular and functional analysis of the microphthalmia-associated transcription factor (mitf) gene duplicates in red tilapia. Comp Biochem Physiol A Mol Integr Physiol 2022; 271:111257. [PMID: 35691494 DOI: 10.1016/j.cbpa.2022.111257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
In vertebrates, the microphthalmia-associated transcription factor (mitf) is at the hub of the melanin synthesis regulation network. However, little information is known about its molecular characterization, expression, location, or function in skin color differentiation and variation of red tilapia. The full-length cDNA sequences (1977 bp and 1999 bp) of mitfa and mitfb, encoding polypeptides of 491 and 514 amino acids, were effectively identified from red tilapia in this study. The Mitfa and Mitfb sequences of red tilapia clustered first with O. aureus, then with other teleost fish, according to phylogenetic analysis. Mitfa and mitfb mRNA were highly expressed in the brain, dorsal skin and eye tissues using quantitative real-time PCR. The mRNA expressions of mitfa and mitfb were the highest in the cleavage stage during the early development of red tilapia. Among three different colors of red tilapia, the expression levels of mitfa and mitfb were highest in the PB (pink with scattered black spots) dorsal skin. After overwintering, the mitfa and mitfb mRNA expressions were high in the dorsal skin of PB (color changed from pink to black). Mitfa and mitfb were mostly found in the epidermal layer of the dorsal skin, according to in situ hybridization (ISH) analysis. After injecting mitf-dsRNA duplicates along the tail vein of red tilapia, the activity of tyrosinase and the level of melanin in the dorsal skin both decreased significantly. The mRNA expressions of mitfa and its downstream genes (tyrb, tyrp1a and dct) decreased, whereas the mRNA expression of mitfb increased after mitfa-dsRNA injection. The mRNA expressions of mitfb, tyrb, tyrp1a and dct decreased, whereas the mRNA expression of mitfa increased after injecting mitfb-dsRNA. These findings suggest that mitf gene duplicates may play an important role in red tilapia skin color differentiation and variation via the melanogenesis pathway.
Collapse
Affiliation(s)
- Bingjie Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Lanmei Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Mingkun Luo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| |
Collapse
|
12
|
Li Y, Hu Y, Cheng P, Chen S. Identification of Potential Blind-Side Hypermelanosis-Related lncRNA–miRNA–mRNA Regulatory Network in a Flatfish Species, Chinese Tongue Sole (Cynoglossus semilaevis). Front Genet 2022; 12:817117. [PMID: 35186018 PMCID: PMC8850641 DOI: 10.3389/fgene.2021.817117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Blind-side hypermelanosis has emerged as a major concern in commercial rearing environments of the flatfish aquaculture industry. To date, the underlying molecular mechanisms are not well understood. To fill this gap, in this study, whole transcriptomic sequencing and analyses were performed using normal skins and hypermelanic skins of the blind side of Chinese tongue sole (Cynoglossus semilaevis). Differentially expressed long non-coding RNAs (DElncRNAs), miRNAs (DEmiRNAs), and differentially expressed genes as well as their competing endogenous RNA (ceRNA) networks were identified. A total of 34 DElncRNAs, 226 DEmiRNAs, and 610 DEGs were identified. Finally, lncRNA–miRNA–mRNA regulatory networks (involving 29 DElncRNAs, 106 DEmiRNAs, and 162 DEGs) associated with blind-side hypermelanosis were constructed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of 162 DEGs in ceRNA networks identified DEGs (e.g., oca2, mc1r, and ihhb) in pigmentation-related biological processes and DEGs (e.g., ca4, glul, and fut9) in nitrogen metabolism, glycosphingolipid biosynthesis, and folate biosynthesis pathways, as well as their corresponding DElncRNAs and DEmiRNAs to potentially play key regulatory roles in blind-side hypermelanosis. In conclusion, this is the first study on the ceRNA regulatory network associated with blind-side hypermelanosis in flatfish. These new findings expand the spectrum of non-coding regulatory mechanisms underpinning blind-side hypermelanosis, which facilitates the further exploration of molecular regulatory mechanisms of malpigmentation in flatfish.
Collapse
Affiliation(s)
- Yangzhen Li
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Yangzhen Li,
| | - Yuanri Hu
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Peng Cheng
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Songlin Chen
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
13
|
Xu Q, Nie H, Yin Z, Zhang Y, Huo Z, Yan X. MiRNA-mRNA Integration Analysis Reveals the Regulatory Roles of MiRNAs in Shell Pigmentation of the Manila clam (Ruditapes philippinarum). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:976-993. [PMID: 34773538 DOI: 10.1007/s10126-021-10080-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The shell color of the Manila clam (Ruditapes philippinarum) is an economically important trait. We used high-throughput sequencing and transcriptome analysis to study the molecular mechanisms that underlie shell color formation and regulation in this species. We constructed small RNA libraries from mantle tissues from four shell color strains of Manila clam, subjected them to high-throughput sequencing. Notably, the results suggested that a number of pigment-associated genes including Mitf, HERC2, were negatively regulated by nvi-miR-2a, tgu-miR-133-3p, respectively. They might be involved in melanin formation via the activation of the melanogenesis pathway. And aae-miR-71-5p and dme-miR-7-5p linked to shell formation-related genes such as Calmodulin and IMSP3 were considered to participate in the calcium signaling pathway. We then used quantitative PCR to verify the candidate miRNAs and target genes in different shell color groups. Our results indicated that miR-7, miR-71, and miR-133 may regulate target mRNAs to participate in shell color pigmentation. These results provide the foundation to further characterize miRNA effects on the regulation of shell color and have significant implications for the breeding of new varieties of clams.
Collapse
Affiliation(s)
- Qiaoyue Xu
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| | - Zhihui Yin
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Yanming Zhang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Zhongming Huo
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
14
|
Yang BT, Wen B, Ji Y, Wang Q, Zhang HR, Zhang Y, Gao JZ, Chen ZZ. Comparative metabolomics analysis of pigmentary and structural coloration in discus fish (Symphysodon haraldi). J Proteomics 2020; 233:104085. [PMID: 33378721 DOI: 10.1016/j.jprot.2020.104085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/15/2022]
Abstract
Discus fish have a variety of body colors including pigmentary and structural colors, studies on specific substances and related metabolic pathways associated with body coloration, however, are scarce to the present. Here, we used single-color (blue, yellow and white) of discus for comparative metabolomics analysis of pigmentary and structural coloration. Statistical model showed significant separations between three colors of discus, suggesting the distinct metabolite profiles of discus pigmentary and structural colors. More astaxanthin was found in yellow discus, which might be the cause of yellow pigmentary color. Moreover, docosahexaenoic acid, arachidonic acid, linoleic acid, eicosapentaenoic acid, 1-stearoyl-2-oleoyl-sn-glycerol 3-phosphocholine, dodecanoic acid and myristic acid related to lipid metabolism and pathways of ABC transporters and biosynthesis of unsaturated fatty acids were more enriched in yellow discus. More adenine, xanthine and hypoxanthine were enriched in blue discus, which might account for the blue structural color. Moreover, amino acids associated with purine biosynthesis, e.g., L-alanine and L-isoleucine, were reduced but pathways of protein digestion and absorption, aminoacyl-tRNA biosynthesis, purine metabolism and glycine, serine and threonine metabolism were enriched in blue discus. Overall, these results reveal specific chromophores and related metabolic pathways involved in pigmentary and structural coloration of discus fish. SIGNIFICANCE: We detected specific chromophores present in skin of pigmentary and structural colors of discus and revealed potential metabolic pathways associated with body coloration. These results contribute to our understanding of the mechanism of body color formation in discus fish.
Collapse
Affiliation(s)
- Bo-Tian Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Yu Ji
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Qin Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Hao-Ran Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yuan Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jian-Zhong Gao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
15
|
Wang L, Song F, Yin H, Zhu W, Fu J, Dong Z, Xu P. Comparative microRNAs expression profiles analysis during embryonic development of common carp, Cyprinus carpio. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100754. [PMID: 33186873 DOI: 10.1016/j.cbd.2020.100754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/23/2020] [Accepted: 10/26/2020] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) play important roles in biological processes by regulating specific gene expression. Limited miRNAs information is available on embryonic development in common carp (Cyprinus carpio) so far. In this study, six important embryonic development stages of C.carpio were collected to perform a times-series of small RNA-seq experiments from cleavage, blastocyst, gastrulation, organ formation, hatching stage to 1 day post-hatching larva. The expression profiles of miRNAs were identified and differentially expressed miRNAs (DEMs) were screened out based on pairwise comparison. A mean of 12,744,989 raw reads and 9,888,123 clean reads were obtained from each library. A total of 2565 miRNAs were identified. 68 of 204 DEMs were overlapped with stage-specific miRNAs, in which 15 were known miRNAs and seemed to play a key role in embryogenesis. Additionally, time-course expression reveals several intriguing fluctuations during embryogenesis. Numerous signaling pathways were identified in embryonic development, including the phototransduction, hippo signaling pathway, Wnt, melanogenesis, histidine metabolism and fatty acid biosynthesis. The results would provide new insight into the roles of miRNAs in embryonic development, and would help us to advance the understanding of miRNA-mediated mechanisms in embryonic development of fish.
Collapse
Affiliation(s)
- Lanmei Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China; Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, Jiangsu, China
| | - Feibiao Song
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China
| | - Haoran Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China
| | - Wenbin Zhu
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, Jiangsu, China
| | - Jianjun Fu
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, Jiangsu, China
| | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China; Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, Jiangsu, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China; Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, Jiangsu, China.
| |
Collapse
|
16
|
Bai J, Hu X, Wang R, Lü A, Sun J. MicroRNA expression profile analysis of skin immune response in crucian carp (Carassius auratus) infected by Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2020; 104:673-685. [PMID: 32505719 DOI: 10.1016/j.fsi.2020.05.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNA molecules that regulate gene expression in fish, but its regulatory mechanism of the skin mucosal immune response remains poorly understood. In order to investigate the immunological role of miRNAs, three sRNA libraries (mSC, mST1, mST2) from skin samples of crucian carp (Carassiusauratus) infected with Aeromonas hydrophila at three time points (0, 6 and 12 hpi) were constructed and examined using Illumina Hiseq 2000 platform. All of the identified miRNA, rRNA and tRNA were 69444 (13.39%), 29550 (5.70%) and 10704 (2.06%) in skin, respectively. At 6 and 12 hpi, 829 and 856 miRNAs were differentially expressed, respectively. Among these DEMs, 53 known and 10 novel miRNAs were all significantly differentially expressed during early infection (p < 0.01). GO and KEGG enrichment analyses revealed that 118111 target-genes were primarily involved in cellular process, metabolic process, biological regulation and stress response, such as antigen processing and presentation, complement and coagulation cascades, phagosome, MAPK, TLR, NF-κB and JAK-STAT signaling pathways. These results will help to elucidate the mechanism of miRNAs involved in the skin mucosal immune response of crucian carp against Aeromonas hydrophila infection.
Collapse
Affiliation(s)
- Jie Bai
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Ruixia Wang
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Aijun Lü
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Jingfeng Sun
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
17
|
Dong Z, Luo M, Wang L, Yin H, Zhu W, Fu J. MicroRNA-206 Regulation of Skin Pigmentation in Koi Carp ( Cyprinus carpio L.). Front Genet 2020; 11:47. [PMID: 32117457 PMCID: PMC7029398 DOI: 10.3389/fgene.2020.00047] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/15/2020] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are ∼22 nucleotide non-coding RNA molecules that act as crucial roles in plenty of biological processes. However, the molecular and cellular mechanisms of miRNAs to regulate skin color differentiation and pigmentation in fish have not been fully understood. Herein, we revealed that miR-206, a skin-enriched miRNA, regulates melanocortin 1 receptor (Mc1r, a key regulator of melanogenesis) expression by binding to its 3'-untranslated (UTR) region through bioinformatics and luciferase reporter assay in koi carp (Cyprinus carpio L.). The analysis of spatial and temporal expression patterns suggested that miR-206 is a potential regulator in the skin pigmentation process. Then, we silenced it in vivo with an antagomir method. The result showed a substantial increase of Mc1r mRNA expression and protein level, and also its downstream genes: tyrosinase (Tyr) and dopachrome tautomerase (Dct) that encoding key enzymes involved in melanin synthesis. Moreover, we constructed the miRNA-206 sponge lentivirus vector to transfect koi carp melanocytes in vitro, further checked the functions of melanocytes using Cck-8 and Transwell assays. As a result, inhibition of miR-206 significantly up-regulated Mc1r mRNA expression and protein level and accelerated the melanocyte proliferation and migration ability compared with the scrambled-sequence negative control group (miR-NC). Overall, these findings provide the evidence that miR-206 plays a regulatory role in the skin color pigmentation through targeting the Mc1r gene and would facilitate understanding the molecular regulatory mechanisms underlying miRNA-mediated skin color pigmentation in koi carp.
Collapse
Affiliation(s)
- Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Jiangsu, China.,Wuxi Fisheries College, Nanjing Agricultural University, Jiangsu, China
| | - Mingkun Luo
- Wuxi Fisheries College, Nanjing Agricultural University, Jiangsu, China
| | - Lanmei Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Jiangsu, China
| | - Haoran Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Jiangsu, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Jiangsu, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Jiangsu, China
| |
Collapse
|
18
|
Wang LM, Bu HY, Song FB, Zhu WB, Fu JJ, Dong ZJ. Characterization and functional analysis of slc7a11 gene, involved in skin color differentiation in the red tilapia. Comp Biochem Physiol A Mol Integr Physiol 2019; 236:110529. [DOI: 10.1016/j.cbpa.2019.110529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
|
19
|
Luo M, Wang L, Yin H, Zhu W, Fu J, Dong Z. Integrated analysis of long non-coding RNA and mRNA expression in different colored skin of koi carp. BMC Genomics 2019; 20:515. [PMID: 31226932 PMCID: PMC6588874 DOI: 10.1186/s12864-019-5894-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/10/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) perform crucial roles in biological process involving complex mechanisms. However, information regarding their abundance, characteristics and potential functions linked to fish skin color is limited. Herein, Illumina sequencing and bioinformatics were conducted on black, white, and red skin of Koi carp (Cyprinus carpio L.). RESULTS A total of 590,415,050 clean reads, 446,614 putative transcripts, 4252 known and 72,907 novel lncRNAs were simultaneously obtained, including 92 significant differentially expressed lncRNAs and 722 mRNAs. Ccr_lnc5622441 and Ccr_lnc765201 were up-regulated in black and red skin, Ccr_lnc14074601 and Ccr_lnc2382951 were up-regulated in white skin, and premelanosome protein a (Pmela), Pmelb and tyrosinase (Tyr) were up-regulated in black skin. The expression patterns of 18 randomly selected differentially expressed genes were validated using the quantitative real-time PCR method. Moreover, 70 lncRNAs acting on 107 target mRNAs in cis and 79 lncRNAs acting on 41,625 target mRNAs in trans were investigated. The resulting co-expression networks revealed that a single lncRNA can connect with numerous mRNAs, and vice versa. To further reveal their potential functions, Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed, and membrane, pigment cell development, cAMP signaling, melanogenesis and tyrosine metabolism appear to affect skin pigmentation. Additionally, three lncRNAs (Ccr_lnc142711, Ccr_lnc17214525 and Ccr_lnc14830101) and three mRNAs (Asip, Mitf and Tyr) involved in the melanogenesis pathway were investigated in terms of potential functions in embryogenesis and different tissues. CONCLUSIONS The findings broaden our understanding of lncRNAs and skin color genetics, and provide new insight into the mechanisms underlying lncRNA-mediated pigmentation and differentiation in Koi carp.
Collapse
Affiliation(s)
- Mingkun Luo
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081 Jiangsu China
| | - Lanmei Wang
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, 214081 Jiangsu China
| | - Haoran Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081 Jiangsu China
| | - Wenbin Zhu
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, 214081 Jiangsu China
| | - Jianjun Fu
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, 214081 Jiangsu China
| | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081 Jiangsu China
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, 214081 Jiangsu China
| |
Collapse
|