1
|
Goswami M, Ovissipour R, Bomkamp C, Nitin N, Lakra W, Post M, Kaplan DL. Cell-cultivated aquatic food products: emerging production systems for seafood. J Biol Eng 2024; 18:43. [PMID: 39113103 PMCID: PMC11304657 DOI: 10.1186/s13036-024-00436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024] Open
Abstract
The demand for fish protein continues to increase and currently accounts for 17% of total animal protein consumption by humans. About 90% of marine fish stocks are fished at or above maximum sustainable levels, with aquaculture propagating as one of the fastest growing food sectors to address some of this demand. Cell-cultivated seafood production is an alternative approach to produce nutritionally-complete seafood products to meet the growing demand. This cellular aquaculture approach offers a sustainable, climate resilient and ethical biotechnological approach as an alternative to conventional fishing and fish farming. Additional benefits include reduced antibiotic use and the absence of mercury. Cell-cultivated seafood also provides options for the fortification of fish meat with healthier compositions, such as omega-3 fatty acids and other beneficial nutrients through scaffold, media or cell approaches. This review addresses the biomaterials, production processes, tissue engineering approaches, processing, quality, safety, regulatory, and social aspects of cell-cultivated seafood, encompassing where we are today, as well as the road ahead. The goal is to provide a roadmap for the science and technology required to bring cellular aquaculture forward as a mainstream food source.
Collapse
Affiliation(s)
- Mukunda Goswami
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, PanchMarg, Of Yari Road, Versova, Andheri West, Mumbai, 400061, India.
| | - Reza Ovissipour
- Department of Food Science and Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Claire Bomkamp
- The Good Food Institute, PO Box 96503 PMB 42019, Washington, DC, 20090-6503, USA
| | - Nitin Nitin
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA
| | - Wazir Lakra
- National Academy of Agricultural Sciences, NASC, 110 012, New Delhi, India
| | - Mark Post
- Mosa Meat B.V, Maastricht, Limburg, 6229 PM, the Netherlands
- Department of Physiology, Maastricht University, Maastricht, Limburg, 6229 ER, the Netherlands
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02215, USA.
| |
Collapse
|
2
|
Simó I, Faggiani M, Fernandez DA, Sciara AA, Arranz SE. The cellular basis of compensatory muscle growth in the teleost Odontesthes bonariensis. J Exp Biol 2021; 225:273693. [PMID: 34889453 DOI: 10.1242/jeb.242567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022]
Abstract
This study evaluates white muscle growth and in vivo cell proliferation during a fasting and refeeding trial, using pejerrey Odontesthes bonariensis as animal model, in order to better understand the cellular basis governing catch-up growth. Experiments consisted in two groups of fish, a control one continuously fed ad libitum, and a group fasted for 2 weeks and then fed for another 2 weeks. We examined how the formation of new muscle fibers and their increase in size were related to muscle precursor cell (MPC) proliferation under both experimental conditions. During fasting, the number of 5-ethynyl-2'-deoxyuridinepositive (EdU+) cells decreased along with myogenic regulatory factors (MRF) mRNA levels related to myoblast proliferation and differentiation, and the muscle stem cell-markerPax7 mRNA level increased. Analysis of myomere cross-sectional area, distribution of muscle fiber sizes and number of fibers per myomere showed that muscle hypertrophy but not hyperplasia was inhibited during fasting. Both higher igf2 mRNA level and the persistence of cell proliferation could be supporting new myofibre formation. On the other hand, an exacerbated MPC proliferation occurred during catch-up growth, and this increase in cell number could be contributing to the growth of both pre-existing and newly form small fibers. The finding that some MPCs proliferate during fasting and that muscle growth mechanisms, hyperplasia and hypertrophy, are differentially regulated could help to explain why re-fed fish could growth at higher rates, and why they return to the lost growth trajectory.
Collapse
Affiliation(s)
- Ignacio Simó
- Laboratorio Mixto de Biotecnología Acuática, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Centro Científico, Tecnológico y Educativo Acuario del Río Paraná, Av. Eduardo Carrasco y Cordiviola s/n, Rosario, 2000, Argentina
| | - Mariano Faggiani
- Laboratorio Mixto de Biotecnología Acuática, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Centro Científico, Tecnológico y Educativo Acuario del Río Paraná, Av. Eduardo Carrasco y Cordiviola s/n, Rosario, 2000, Argentina
| | - Daniel A Fernandez
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA), Universidad Nacional de Tierra del Fuego (UNTDF), Fuegiabasket 251, V9410BXE Ushuaia, Argentina.,Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo A. Houssay 200, V9410BXE Ushuaia, Argentina
| | - Andrés A Sciara
- Laboratorio Mixto de Biotecnología Acuática, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Centro Científico, Tecnológico y Educativo Acuario del Río Paraná, Av. Eduardo Carrasco y Cordiviola s/n, Rosario, 2000, Argentina
| | - Silvia E Arranz
- Laboratorio Mixto de Biotecnología Acuática, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Centro Científico, Tecnológico y Educativo Acuario del Río Paraná, Av. Eduardo Carrasco y Cordiviola s/n, Rosario, 2000, Argentina
| |
Collapse
|
3
|
Potter G, Smith AS, Vo NT, Muster J, Weston W, Bertero A, Maves L, Mack DL, Rostain A. A More Open Approach Is Needed to Develop Cell-Based Fish Technology: It Starts with Zebrafish. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.oneear.2020.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Rescan PY. Development of myofibres and associated connective tissues in fish axial muscle: Recent insights and future perspectives. Differentiation 2019; 106:35-41. [PMID: 30852471 DOI: 10.1016/j.diff.2019.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 01/18/2023]
Abstract
Fish axial muscle consists of a series of W-shaped muscle blocks, called myomeres, that are composed primarily of multinucleated contractile muscle cells (myofibres) gathered together by an intricate network of connective tissue that transmits forces generated by myofibre contraction to the axial skeleton. This review summarises current knowledge on the successive and overlapping myogenic waves contributing to axial musculature formation and growth in fish. Additionally, this review presents recent insights into muscle connective tissue development in fish, focusing on the early formation of collagenous myosepta separating adjacent myomeres and the late formation of intramuscular connective sheaths (i.e. endomysium and perimysium) that is completed only at the fry stage when connective fibroblasts expressing collagens arise inside myomeres. Finally, this review considers the possibility that somites produce not only myogenic, chondrogenic and myoseptal progenitor cells as previously reported, but also mesenchymal cells giving rise to muscle resident fibroblasts.
Collapse
Affiliation(s)
- Pierre-Yves Rescan
- Inra, UR1037 - Laboratoire de Physiologie et Génomique des Poissons, Campus de Beaulieu - Bât 16A, 35042 Rennes Cedex, France.
| |
Collapse
|