1
|
Zha C, Liu K, Wu J, Li P, Hou L, Liu H, Huang R, Wu W. Combining genome-wide association study based on low-coverage whole genome sequencing and transcriptome analysis to reveal the key candidate genes affecting meat color in pigs. Anim Genet 2023; 54:295-306. [PMID: 36727217 DOI: 10.1111/age.13300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/04/2023] [Accepted: 01/16/2023] [Indexed: 02/03/2023]
Abstract
Meat color is an attractive trait that influences consumers' purchase decisions at the point of sale. To decipher the genetic basis of meat color traits, we performed a genome-wide association study based on low-coverage whole-genome sequencing. In total, 669 (Pietrain × Duroc) × (Landrace × Yorkshire) pigs were genotyped using low-coverage whole-genome sequencing. Single nucleotide polymorphism (SNP) calling and genotype imputation were performed using the BaseVar + STITCH channel. Six individuals with an average depth of 12.05× whole-genome resequencing were randomly selected to assess the accuracy of imputation. Heritability evaluation and genome-wide association study for meat color traits were conducted. Functional enrichment analysis of the candidate genes from genome-wide association study and integration analysis with our previous transcriptome data were conducted. The imputation accuracy parameters, allele frequency R2 , concordance rate, and dosage R2 were 0.959, 0.952, and 0.933, respectively. The heritability values of a*45 min , b*45 min , L*45 min , C*, and H0 were 0.19, 0.11, 0.06, 0.16, and 0.26, respectively. In total, 3884 significant SNPs and 15 QTL, corresponding to 382 genes, were associated with meat color traits. Functional enrichment analysis revealed that 10 genes were the potential candidates for regulating meat color. Moreover, integration analysis revealed that DMRT2, EFNA5, FGF10, and COL11A2 were the most promising candidates affecting meat color. In summary, this study provides new insights into the molecular basis of meat color traits, and provides a new theoretical basis for the molecular breeding of meat color traits in pigs.
Collapse
Affiliation(s)
- Chengwan Zha
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kaiyue Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jian Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Pinghua Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Liming Hou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ruihua Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Jin Y, Yuan X, Liu J, Wen J, Cui H, Zhao G. Inhibition of cholesterol biosynthesis promotes the production of 1-octen-3-ol through mevalonic acid. Food Res Int 2022; 158:111392. [DOI: 10.1016/j.foodres.2022.111392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022]
|
3
|
Wang G, Gao Y, Wu X, Gao X, Zhang M, Liu H, Fang T. Inhibitory Effect of Piceatannol on Streptococcus suis Infection Both in vitro and in vivo. Front Microbiol 2020; 11:593588. [PMID: 33329477 PMCID: PMC7728846 DOI: 10.3389/fmicb.2020.593588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/04/2020] [Indexed: 11/18/2022] Open
Abstract
Suilysin (SLY) plays a critical role in Streptococcus suis infections making it an ideal target to the combat infection caused by this pathogen. In the present study, we found that piceatannol (PN), a natural compound, inhibits pore-formation by blocking the oligomerization of SLY without affecting the growth of S. suis and the expression of SLY. Furthermore, PN alleviated the J774 cell damage and the expression of the inflammatory cytokine tumor necrosis factor-α (TNF-α) and interleukin-1α (IL-1β) induced by S. suis in vitro. The computational biology and biochemistry results indicated that PN binds to the joint region of D2 and D4 in SLY, and Asn57, Pro58, Pro59, Glu76, Ile379, Glu380, and Glu418 were critical residues involved in the binding. The binding effect between PN and SLY hindered the SLY monomers from forming the oligomers, thereby weakening the hemolytic activity of SLY. This mechanism was also verified by hemolysis analysis and analysis of KA formation after site-specific mutagenesis. Furthermore, PN protected mice from S. suis infections by reducing bacterial colony formation and the inflammatory response in target organs in vivo. These results indicate that PN is a feasible drug candidate to combat S. suis infections.
Collapse
Affiliation(s)
- Guizhen Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.,College of Food Engineering, Jilin Engineering Normal University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yawen Gao
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiuhua Wu
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Xiue Gao
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Min Zhang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Hongmei Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Tianqi Fang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
4
|
Ye S, Chen ZT, Zheng R, Diao S, Teng J, Yuan X, Zhang H, Chen Z, Zhang X, Li J, Zhang Z. New Insights From Imputed Whole-Genome Sequence-Based Genome-Wide Association Analysis and Transcriptome Analysis: The Genetic Mechanisms Underlying Residual Feed Intake in Chickens. Front Genet 2020; 11:243. [PMID: 32318090 PMCID: PMC7147382 DOI: 10.3389/fgene.2020.00243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/28/2020] [Indexed: 12/26/2022] Open
Abstract
Poultry feed constitutes the largest cost in poultry production, estimated to be up to 70% of the total cost. Moreover, there is pressure on the poultry industry to increase production to meet the protein demand of humans and simultaneously reduce emissions to protect the environment. Therefore, improving feed efficiency plays an important role to improve profits and the environmental footprint in broiler production. In this study, using imputed whole-genome sequencing data, genome-wide association analysis (GWAS) was performed to identify single-nucleotide polymorphisms (SNPs) and genes associated with residual feed intake (RFI) and its component traits. Furthermore, a transcriptomic analysis between the high-RFI and the low-RFI groups was performed to validate the candidate genes from GWAS. The results showed that the heritability estimates of average daily gain (ADG), average daily feed intake (ADFI), and RFI were 0.29 (0.004), 0.37 (0.005), and 0.38 (0.004), respectively. Using imputed sequence-based GWAS, we identified seven significant SNPs and five candidate genes [MTSS I-BAR domain containing 1, folliculin, COP9 signalosome subunit 3, 5′,3′-nucleotidase (mitochondrial), and gametocyte-specific factor 1] associated with RFI, 20 significant SNPs and one candidate gene (inositol polyphosphate multikinase) associated with ADG, and one significant SNP and one candidate gene (coatomer protein complex subunit alpha) associated with ADFI. After performing a transcriptomic analysis between the high-RFI and the low-RFI groups, both 38 up-regulated and 26 down-regulated genes were identified in the high-RFI group. Furthermore, integrating regional conditional GWAS and transcriptome analysis, ras-related dexamethasone induced 1 was the only overlapped gene associated with RFI, which also suggested that the region (GGA14: 4767015–4882318) is a new quantitative trait locus associated with RFI. In conclusion, using imputed sequence-based GWAS is an efficient method to identify significant SNPs and candidate genes in chicken. Our results provide valuable insights into the genetic mechanisms of RFI and its component traits, which would further improve the genetic gain of feed efficiency rapidly and cost-effectively in the context of marker-assisted breeding selection.
Collapse
Affiliation(s)
- Shaopan Ye
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zi-Tao Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Rongrong Zheng
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuqi Diao
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinyan Teng
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaolong Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hao Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zanmou Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiaqi Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Besung INK, Suarjana IGK, Agustina KK, Winaya IBO, Soeharsono H, Suwiti NK, Mahardika GN. Isolation and identification of Streptococcus suis from sick pigs in Bali, Indonesia. BMC Res Notes 2019; 12:795. [PMID: 31806042 PMCID: PMC6896353 DOI: 10.1186/s13104-019-4826-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/26/2019] [Indexed: 01/13/2023] Open
Abstract
Objective Streptococcus suis (S. suis) is a causative agent for various syndromes in pigs. It can be transmitted to humans with typical symptoms of meningitis and death. Although human infections have been confirmed at Bali Referral Hospital, Indonesia, since 2014, the bacteria have not been isolated from pigs. Here, we provide confirmation of the presence of the bacteria in sick pigs in the province. Results Streptococcus suis was confirmed in 8 of 30 cases. The final confirmation was made using PCR and sequencing of the glutamate dehydrogenase (GDH) and recombination/repair protein (recN) gene fragments. Upon PCR serotyping, two were confirmed to be serotype 2 or 1/2. Prominent histopathological lesions of confirmed cases were meningitis, endocarditis, pericarditis, bronchopneumonia, enteritis and glomerulonephritis. The dominant inflammatory cells were neutrophils and macrophages. Further research is needed to understand the risk factors for human infection. Community awareness on the risk of contracting S. suis and vaccine development are needed to prevent human infections.
Collapse
Affiliation(s)
- I Nengah Kerta Besung
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Udayana University of Bali, Jl. Sudirman, Denpasar, 80225, Indonesia.
| | - I Gusti Ketut Suarjana
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Udayana University of Bali, Jl. Sudirman, Denpasar, 80225, Indonesia
| | - Kadek Karang Agustina
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Udayana University of Bali, Jl. Sudirman, Denpasar, 80225, Indonesia
| | - Ida Bagus Oka Winaya
- Laboratory of Pathology, Faculty of Veterinary Medicine, Udayana University of Bali, Jl. Sudirman, Denpasar, 80225, Indonesia
| | - Hamong Soeharsono
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Udayana University of Bali, Jl. Sudirman, Denpasar, 80225, Indonesia
| | - Ni Ketut Suwiti
- Department of Basic Veterinary Science, Faculty of Veterinary Medicine, Udayana University of Bali, Jl. Sudirman, Denpasar, 80225, Indonesia
| | - Gusti Ngurah Mahardika
- The Animal Biomedical and Molecular Biology Laboratory, Udayana University of Bali, Jl. Sesetan-Markisa #6, Denpasar, 80226, Indonesia
| |
Collapse
|