1
|
Hamouda E, Tarek M. A hybrid approach of ensemble learning and grey wolf optimizer for DNA splice junction prediction. PLoS One 2024; 19:e0310698. [PMID: 39312561 PMCID: PMC11419377 DOI: 10.1371/journal.pone.0310698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
DNA splice junction classification is a crucial job in computational biology. The challenge is to predict the junction type (IE, EI, or N) from a given DNA sequence. Predicting junction type is crucial for understanding gene expression patterns, disease causes, splicing regulation, and gene structure. The location of the regions where exons are joined, and introns are removed during RNA splicing is very difficult to determine because no universal rule guides this process. This study presents a two-layer hybrid approach inspired by ensemble learning to overcome this challenge. The first layer applies the grey wolf optimizer (GWO) for feature selection. GWO's exploration ability allows it to efficiently search a vast feature space, while its exploitation ability refines promising areas, thus leading to a more reliable feature selection. The selected features are then fed into the second layer, which employs a classification model trained on the retrieved features. Using cross-validation, the proposed method divides the DNA splice junction dataset into training and test sets, allowing for a thorough examination of the classifier's generalization ability. The ensemble model is trained on various partitions of the training set and tested on the remaining held-out fold. This process is performed for each fold, comprehensively evaluating the classifier's performance. We tested our method using the StatLog DNA dataset. Compared to various machine learning models for DNA splice junction prediction, the proposed GWO+SVM ensemble method achieved an accuracy of 96%. This finding suggests that the proposed ensemble hybrid approach is promising for DNA splice junction classification. The implementation code for the proposed approach is available at https://github.com/EFHamouda/DNA-splice-junction-prediction.
Collapse
Affiliation(s)
- Eslam Hamouda
- Computer Science Department, Faculty of Computers & Information, Mansoura University, Mansoura, Egypt
- Computer Science Department, Faculty of Computers & Information, Jouf University, Jouf, Saudi Arabi
| | - Mayada Tarek
- Computer Science Department, Faculty of Computers & Information, Mansoura University, Mansoura, Egypt
- Computer Science Department, Faculty of Computers & Information, Jouf University, Jouf, Saudi Arabi
| |
Collapse
|
2
|
Chao KH, Mao A, Salzberg SL, Pertea M. Splam: a deep-learning-based splice site predictor that improves spliced alignments. Genome Biol 2024; 25:243. [PMID: 39285451 PMCID: PMC11406845 DOI: 10.1186/s13059-024-03379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
The process of splicing messenger RNA to remove introns plays a central role in creating genes and gene variants. We describe Splam, a novel method for predicting splice junctions in DNA using deep residual convolutional neural networks. Unlike previous models, Splam looks at a 400-base-pair window flanking each splice site, reflecting the biological splicing process that relies primarily on signals within this window. Splam also trains on donor and acceptor pairs together, mirroring how the splicing machinery recognizes both ends of each intron. Compared to SpliceAI, Splam is consistently more accurate, achieving 96% accuracy in predicting human splice junctions.
Collapse
Affiliation(s)
- Kuan-Hao Chao
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, 21211, USA.
| | - Alan Mao
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, 21211, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Steven L Salzberg
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, 21211, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mihaela Pertea
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, 21211, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
3
|
Xu C, Bao S, Wang Y, Li W, Chen H, Shen Y, Jiang T, Zhang C. Reference-informed prediction of alternative splicing and splicing-altering mutations from sequences. Genome Res 2024; 34:1052-1065. [PMID: 39060028 PMCID: PMC11368187 DOI: 10.1101/gr.279044.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Alternative splicing plays a crucial role in protein diversity and gene expression regulation in higher eukaryotes, and mutations causing dysregulated splicing underlie a range of genetic diseases. Computational prediction of alternative splicing from genomic sequences not only provides insight into gene-regulatory mechanisms but also helps identify disease-causing mutations and drug targets. However, the current methods for the quantitative prediction of splice site usage still have limited accuracy. Here, we present DeltaSplice, a deep neural network model optimized to learn the impact of mutations on quantitative changes in alternative splicing from the comparative analysis of homologous genes. The model architecture enables DeltaSplice to perform "reference-informed prediction" by incorporating the known splice site usage of a reference gene sequence to improve its prediction on splicing-altering mutations. We benchmarked DeltaSplice and several other state-of-the-art methods on various prediction tasks, including evolutionary sequence divergence on lineage-specific splicing and splicing-altering mutations in human populations and neurodevelopmental disorders, and demonstrated that DeltaSplice outperformed consistently. DeltaSplice predicted ∼15% of splicing quantitative trait loci (sQTLs) in the human brain as causal splicing-altering variants. It also predicted splicing-altering de novo mutations outside the splice sites in a subset of patients affected by autism and other neurodevelopmental disorders (NDDs), including 19 genes with recurrent splicing-altering mutations. Integration of splicing-altering mutations with other types of de novo mutation burdens allowed the prediction of eight novel NDD-risk genes. Our work expanded the capacity of in silico splicing models with potential applications in genetic diagnosis and the development of splicing-based precision medicine.
Collapse
Affiliation(s)
- Chencheng Xu
- Bioinformatics Division, BNRIST, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Suying Bao
- Department of Systems Biology, Columbia University, New York, New York 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Ye Wang
- Department of Systems Biology, Columbia University, New York, New York 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Wenxing Li
- Department of Systems Biology, Columbia University, New York, New York 10032, USA
- Department of Biomedical Informatics, Columbia University, New York, New York 10032, USA
| | - Hao Chen
- Department of Computer Science and Engineering, University of California, Riverside, California 92521, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, New York 10032, USA
- Department of Biomedical Informatics, Columbia University, New York, New York 10032, USA
| | - Tao Jiang
- Bioinformatics Division, BNRIST, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;
- Department of Computer Science and Engineering, University of California, Riverside, California 92521, USA
| | - Chaolin Zhang
- Department of Systems Biology, Columbia University, New York, New York 10032, USA;
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| |
Collapse
|
4
|
Xu C, Bao S, Chen H, Jiang T, Zhang C. Reference-informed prediction of alternative splicing and splicing-altering mutations from sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586363. [PMID: 38586002 PMCID: PMC10996483 DOI: 10.1101/2024.03.22.586363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Alternative splicing plays a crucial role in protein diversity and gene expression regulation in higher eukaryotes and mutations causing dysregulated splicing underlie a range of genetic diseases. Computational prediction of alternative splicing from genomic sequences not only provides insight into gene-regulatory mechanisms but also helps identify disease-causing mutations and drug targets. However, the current methods for the quantitative prediction of splice site usage still have limited accuracy. Here, we present DeltaSplice, a deep neural network model optimized to learn the impact of mutations on quantitative changes in alternative splicing from the comparative analysis of homologous genes. The model architecture enables DeltaSplice to perform "reference-informed prediction" by incorporating the known splice site usage of a reference gene sequence to improve its prediction on splicing-altering mutations. We benchmarked DeltaSplice and several other state-of-the-art methods on various prediction tasks, including evolutionary sequence divergence on lineage-specific splicing and splicing-altering mutations in human populations and neurodevelopmental disorders, and demonstrated that DeltaSplice outperformed consistently. DeltaSplice predicted ~15% of splicing quantitative trait loci (sQTLs) in the human brain as causal splicing-altering variants. It also predicted splicing-altering de novo mutations outside the splice sites in a subset of patients affected by autism and other neurodevelopmental disorders, including 19 genes with recurrent splicing-altering mutations. Among the new candidate disease risk genes, MFN1 is involved in mitochondria fusion, which is frequently disrupted in autism patients. Our work expanded the capacity of in silico splicing models with potential applications in genetic diagnosis and the development of splicing-based precision medicine.
Collapse
Affiliation(s)
- Chencheng Xu
- Bioinformatics Division, BNRIST, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
- Present address: Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Suying Bao
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Present address: Regeneron Pharmaceuticals, Terrytown, NY 10591, USA
| | - Hao Chen
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA
- Present address: Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Tao Jiang
- Bioinformatics Division, BNRIST, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA
| | - Chaolin Zhang
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
5
|
Shen F, Hu C, Huang X, He H, Yang D, Zhao J, Yang X. Advances in alternative splicing identification: deep learning and pantranscriptome. FRONTIERS IN PLANT SCIENCE 2023; 14:1232466. [PMID: 37790793 PMCID: PMC10544900 DOI: 10.3389/fpls.2023.1232466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023]
Abstract
In plants, alternative splicing is a crucial mechanism for regulating gene expression at the post-transcriptional level, which leads to diverse proteins by generating multiple mature mRNA isoforms and diversify the gene regulation. Due to the complexity and variability of this process, accurate identification of splicing events is a vital step in studying alternative splicing. This article presents the application of alternative splicing algorithms with or without reference genomes in plants, as well as the integration of advanced deep learning techniques for improved detection accuracy. In addition, we also discuss alternative splicing studies in the pan-genomic background and the usefulness of integrated strategies for fully profiling alternative splicing.
Collapse
Affiliation(s)
- Fei Shen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chenyang Hu
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Shanxi Key Lab of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, Shanxi, China
| | - Xin Huang
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hao He
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Deng Yang
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jirong Zhao
- Shanxi Key Lab of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, Shanxi, China
| | - Xiaozeng Yang
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
6
|
Sinha K, Ghosh N, Sil PC. A Review on the Recent Applications of Deep Learning in Predictive Drug Toxicological Studies. Chem Res Toxicol 2023; 36:1174-1205. [PMID: 37561655 DOI: 10.1021/acs.chemrestox.2c00375] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Drug toxicity prediction is an important step in ensuring patient safety during drug design studies. While traditional preclinical studies have historically relied on animal models to evaluate toxicity, recent advances in deep-learning approaches have shown great promise in advancing drug safety science and reducing animal use in preclinical studies. However, deep-learning-based approaches also face challenges in handling large biological data sets, model interpretability, and regulatory acceptance. In this review, we provide an overview of recent developments in deep-learning-based approaches for predicting drug toxicity, highlighting their potential advantages over traditional methods and the need to address their limitations. Deep-learning models have demonstrated excellent performance in predicting toxicity outcomes from various data sources such as chemical structures, genomic data, and high-throughput screening assays. The potential of deep learning for automated feature engineering is also discussed. This review emphasizes the need to address ethical concerns related to the use of deep learning in drug toxicity studies, including the reduction of animal use and ensuring regulatory acceptance. Furthermore, emerging applications of deep learning in drug toxicity prediction, such as predicting drug-drug interactions and toxicity in rare subpopulations, are highlighted. The integration of deep-learning-based approaches with traditional methods is discussed as a way to develop more reliable and efficient predictive models for drug safety assessment, paving the way for safer and more effective drug discovery and development. Overall, this review highlights the critical role of deep learning in predictive toxicology and drug safety evaluation, emphasizing the need for continued research and development in this rapidly evolving field. By addressing the limitations of traditional methods, leveraging the potential of deep learning for automated feature engineering, and addressing ethical concerns, deep-learning-based approaches have the potential to revolutionize drug toxicity prediction and improve patient safety in drug discovery and development.
Collapse
Affiliation(s)
- Krishnendu Sinha
- Department of Zoology, Jhargram Raj College, Jhargram 721507, West Bengal, India
| | - Nabanita Ghosh
- Department of Zoology, Maulana Azad College, Kolkata 700013, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, West Bengal, India
| |
Collapse
|
7
|
Zabardast A, Tamer EG, Son YA, Yılmaz A. An automated framework for evaluation of deep learning models for splice site predictions. Sci Rep 2023; 13:10221. [PMID: 37353532 PMCID: PMC10290104 DOI: 10.1038/s41598-023-34795-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/08/2023] [Indexed: 06/25/2023] Open
Abstract
A novel framework for the automated evaluation of various deep learning-based splice site detectors is presented. The framework eliminates time-consuming development and experimenting activities for different codebases, architectures, and configurations to obtain the best models for a given RNA splice site dataset. RNA splicing is a cellular process in which pre-mRNAs are processed into mature mRNAs and used to produce multiple mRNA transcripts from a single gene sequence. Since the advancement of sequencing technologies, many splice site variants have been identified and associated with the diseases. So, RNA splice site prediction is essential for gene finding, genome annotation, disease-causing variants, and identification of potential biomarkers. Recently, deep learning models performed highly accurately for classifying genomic signals. Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) and its bidirectional version (BLSTM), Gated Recurrent Unit (GRU), and its bidirectional version (BGRU) are promising models. During genomic data analysis, CNN's locality feature helps where each nucleotide correlates with other bases in its vicinity. In contrast, BLSTM can be trained bidirectionally, allowing sequential data to be processed from forward and reverse directions. Therefore, it can process 1-D encoded genomic data effectively. Even though both methods have been used in the literature, a performance comparison was missing. To compare selected models under similar conditions, we have created a blueprint for a series of networks with five different levels. As a case study, we compared CNN and BLSTM models' learning capabilities as building blocks for RNA splice site prediction in two different datasets. Overall, CNN performed better with [Formula: see text] accuracy ([Formula: see text] improvement), [Formula: see text] F1 score ([Formula: see text] improvement), and [Formula: see text] AUC-PR ([Formula: see text] improvement) in human splice site prediction. Likewise, an outperforming performance with [Formula: see text] accuracy ([Formula: see text] improvement), [Formula: see text] F1 score ([Formula: see text] improvement), and [Formula: see text] AUC-PR ([Formula: see text] improvement) is achieved in C. elegans splice site prediction. Overall, our results showed that CNN learns faster than BLSTM and BGRU. Moreover, CNN performs better at extracting sequence patterns than BLSTM and BGRU. To our knowledge, no other framework is developed explicitly for evaluating splice detection models to decide the best possible model in an automated manner. So, the proposed framework and the blueprint would help selecting different deep learning models, such as CNN vs. BLSTM and BGRU, for splice site analysis or similar classification tasks and in different problems.
Collapse
Affiliation(s)
- Amin Zabardast
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Elif Güney Tamer
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Yeşim Aydın Son
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Arif Yılmaz
- Institute of Data Science, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
8
|
Brand CM, Colbran LL, Capra JA. Resurrecting the alternative splicing landscape of archaic hominins using machine learning. Nat Ecol Evol 2023; 7:939-953. [PMID: 37142741 PMCID: PMC11440953 DOI: 10.1038/s41559-023-02053-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/29/2023] [Indexed: 05/06/2023]
Abstract
Alternative splicing contributes to adaptation and divergence in many species. However, it has not been possible to directly compare splicing between modern and archaic hominins. Here, we unmask the recent evolution of this previously unobservable regulatory mechanism by applying SpliceAI, a machine-learning algorithm that identifies splice-altering variants (SAVs), to high-coverage genomes from three Neanderthals and a Denisovan. We discover 5,950 putative archaic SAVs, of which 2,186 are archaic-specific and 3,607 also occur in modern humans via introgression (244) or shared ancestry (3,520). Archaic-specific SAVs are enriched in genes that contribute to traits potentially relevant to hominin phenotypic divergence, such as the epidermis, respiration and spinal rigidity. Compared to shared SAVs, archaic-specific SAVs occur in sites under weaker selection and are more common in genes with tissue-specific expression. Further underscoring the importance of negative selection on SAVs, Neanderthal lineages with low effective population sizes are enriched for SAVs compared to Denisovan and shared SAVs. Finally, we find that nearly all introgressed SAVs in humans were shared across the three Neanderthals, suggesting that older SAVs were more tolerated in human genomes. Our results reveal the splicing landscape of archaic hominins and identify potential contributions of splicing to phenotypic differences among hominins.
Collapse
Affiliation(s)
- Colin M Brand
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Laura L Colbran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Capra
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
| |
Collapse
|
9
|
IUP-BERT: Identification of Umami Peptides Based on BERT Features. Foods 2022; 11:foods11223742. [PMID: 36429332 PMCID: PMC9689418 DOI: 10.3390/foods11223742] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Umami is an important widely-used taste component of food seasoning. Umami peptides are specific structural peptides endowing foods with a favorable umami taste. Laboratory approaches used to identify umami peptides are time-consuming and labor-intensive, which are not feasible for rapid screening. Here, we developed a novel peptide sequence-based umami peptide predictor, namely iUP-BERT, which was based on the deep learning pretrained neural network feature extraction method. After optimization, a single deep representation learning feature encoding method (BERT: bidirectional encoder representations from transformer) in conjugation with the synthetic minority over-sampling technique (SMOTE) and support vector machine (SVM) methods was adopted for model creation to generate predicted probabilistic scores of potential umami peptides. Further extensive empirical experiments on cross-validation and an independent test showed that iUP-BERT outperformed the existing methods with improvements, highlighting its effectiveness and robustness. Finally, an open-access iUP-BERT web server was built. To our knowledge, this is the first efficient sequence-based umami predictor created based on a single deep-learning pretrained neural network feature extraction method. By predicting umami peptides, iUP-BERT can help in further research to improve the palatability of dietary supplements in the future.
Collapse
|
10
|
Postel MD, Culver JO, Ricker C, Craig DW. Transcriptome analysis provides critical answers to the "variants of uncertain significance" conundrum. Hum Mutat 2022; 43:1590-1608. [PMID: 35510381 PMCID: PMC9560997 DOI: 10.1002/humu.24394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/16/2022] [Accepted: 04/26/2022] [Indexed: 12/30/2022]
Abstract
While whole-genome and exome sequencing have transformed our collective understanding of genetics' role in disease pathogenesis, there are certain conditions and populations for whom DNA-level data fails to identify the underlying genetic etiology. Specifically, patients of non-White race and non-European ancestry are disproportionately affected by "variants of unknown/uncertain significance" (VUS), limiting the scope of precision medicine for minority patients and perpetuating health disparities. VUS often include deep intronic and splicing variants which are difficult to interpret from DNA data alone. RNA analysis can illuminate the consequences of VUS, thereby allowing for their reclassification as pathogenic versus benign. Here we review the critical role transcriptome analysis plays in clarifying VUS in both neoplastic and non-neoplastic diseases.
Collapse
Affiliation(s)
- Mackenzie D. Postel
- Department of Translational GenomicsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Julie O. Culver
- Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Charité Ricker
- Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - David W. Craig
- Department of Translational GenomicsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
11
|
Abstract
Interpreting the effects of genetic variants is key to understanding individual susceptibility to disease and designing personalized therapeutic approaches. Modern experimental technologies are enabling the generation of massive compendia of human genome sequence data and associated molecular and phenotypic traits, together with genome-scale expression, epigenomics and other functional genomic data. Integrative computational models can leverage these data to understand variant impact, elucidate the effect of dysregulated genes on biological pathways in specific disease and tissue contexts, and interpret disease risk beyond what is feasible with experiments alone. In this Review, we discuss recent developments in machine learning algorithms for genome interpretation and for integrative molecular-level modelling of cells, tissues and organs relevant to disease. More specifically, we highlight existing methods and key challenges and opportunities in identifying specific disease-causing genetic variants and linking them to molecular pathways and, ultimately, to disease phenotypes.
Collapse
|
12
|
Dutta A, Singh KK, Anand A. SpliceViNCI: Visualizing the splicing of non-canonical introns through recurrent neural networks. J Bioinform Comput Biol 2021; 19:2150014. [PMID: 34088258 DOI: 10.1142/s0219720021500141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Most of the current computational models for splice junction prediction are based on the identification of canonical splice junctions. However, it is observed that the junctions lacking the consensus dimers GT and AG also undergo splicing. Identification of such splice junctions, called the non-canonical splice junctions, is also essential for a comprehensive understanding of the splicing phenomenon. This work focuses on the identification of non-canonical splice junctions through the application of a bidirectional long short-term memory (BLSTM) network. Furthermore, we apply a back-propagation-based (integrated gradient) and a perturbation-based (occlusion) visualization techniques to extract the non-canonical splicing features learned by the model. The features obtained are validated with the existing knowledge from the literature. Integrated gradient extracts features that comprise contiguous nucleotides, whereas occlusion extracts features that are individual nucleotides distributed across the sequence.
Collapse
Affiliation(s)
- Aparajita Dutta
- Department of CSE, Indian Institute of Technology, Guwahati, India
| | | | - Ashish Anand
- Department of CSE, Indian Institute of Technology, Guwahati, India
| |
Collapse
|
13
|
MET Exon 14 Skipping: A Case Study for the Detection of Genetic Variants in Cancer Driver Genes by Deep Learning. Int J Mol Sci 2021; 22:ijms22084217. [PMID: 33921709 PMCID: PMC8072630 DOI: 10.3390/ijms22084217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Disruption of alternative splicing (AS) is frequently observed in cancer and might represent an important signature for tumor progression and therapy. Exon skipping (ES) represents one of the most frequent AS events, and in non-small cell lung cancer (NSCLC) MET exon 14 skipping was shown to be targetable. METHODS We constructed neural networks (NN/CNN) specifically designed to detect MET exon 14 skipping events using RNAseq data. Furthermore, for discovery purposes we also developed a sparsely connected autoencoder to identify uncharacterized MET isoforms. RESULTS The neural networks had a Met exon 14 skipping detection rate greater than 94% when tested on a manually curated set of 690 TCGA bronchus and lung samples. When globally applied to 2605 TCGA samples, we observed that the majority of false positives was characterized by a blurry coverage of exon 14, but interestingly they share a common coverage peak in the second intron and we speculate that this event could be the transcription signature of a LINE1 (Long Interspersed Nuclear Element 1)-MET (Mesenchymal Epithelial Transition receptor tyrosine kinase) fusion. CONCLUSIONS Taken together, our results indicate that neural networks can be an effective tool to provide a quick classification of pathological transcription events, and sparsely connected autoencoders could represent the basis for the development of an effective discovery tool.
Collapse
|
14
|
Albaradei S, Magana-Mora A, Thafar M, Uludag M, Bajic VB, Gojobori T, Essack M, Jankovic BR. Splice2Deep: An ensemble of deep convolutional neural networks for improved splice site prediction in genomic DNA. Gene 2020; 763S:100035. [PMID: 32550561 PMCID: PMC7285987 DOI: 10.1016/j.gene.2020.100035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
Abstract
Background The accurate identification of the exon/intron boundaries is critical for the correct annotation of genes with multiple exons. Donor and acceptor splice sites (SS) demarcate these boundaries. Therefore, deriving accurate computational models to predict the SS are useful for functional annotation of genes and genomes, and for finding alternative SS associated with different diseases. Although various models have been proposed for the in silico prediction of SS, improving their accuracy is required for reliable annotation. Moreover, models are often derived and tested using the same genome, providing no evidence of broad application, i.e. to other poorly studied genomes. Results With this in mind, we developed the Splice2Deep models for SS detection. Each model is an ensemble of deep convolutional neural networks. We evaluated the performance of the models based on the ability to detect SS in Homo sapiens, Oryza sativa japonica, Arabidopsis thaliana, Drosophila melanogaster, and Caenorhabditis elegans. Results demonstrate that the models efficiently detect SS in other organisms not considered during the training of the models. Compared to the state-of-the-art tools, Splice2Deep models achieved significantly reduced average error rates of 41.97% and 28.51% for acceptor and donor SS, respectively. Moreover, the Splice2Deep cross-organism validation demonstrates that models correctly identify conserved genomic elements enabling annotation of SS in new genomes by choosing the taxonomically closest model. Conclusions The results of our study demonstrated that Splice2Deep both achieved a considerably reduced error rate compared to other state-of-the-art models and the ability to accurately recognize SS in other organisms for which the model was not trained, enabling annotation of poorly studied or newly sequenced genomes. Splice2Deep models are implemented in Python using Keras API; the models and the data are available at https://github.com/SomayahAlbaradei/Splice_Deep.git.
Collapse
Key Words
- AUC, area under curve
- AcSS, acceptor splice site
- Acc, accuracy
- Bioinformatics
- CNN, convolutional neural network
- CONV, convolutional layers
- DL, deep learning
- DNA, deoxyribonucleic acid
- DT, decision trees
- Deep-learning
- DoSS, donor splice site
- FC, fully connected layer
- ML, machine learning
- NB, naive Bayes
- NN, neural network
- POOL, pooling layer
- Prediction
- RF, random forest
- RNA, ribonucleic acid
- ReLU, rectified linear unit layer
- SS, splice site
- SVM, support vector machine
- Sn, sensitivity
- Sp, specificity
- Splice sites
- Splicing
Collapse
Affiliation(s)
- Somayah Albaradei
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Faculty of Computing and Information Technology, King Abdulaziz University, Saudi Arabia
| | - Arturo Magana-Mora
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Saudi Aramco, EXPEC-ARC, Drilling Technology Team, Dhahran 31311, Saudi Arabia
| | - Maha Thafar
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Faculty of Computers and Information Systems, Taif University, Saudi Arabia
| | - Mahmut Uludag
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Vladimir B Bajic
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Boris R Jankovic
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
15
|
Scalzitti N, Jeannin-Girardon A, Collet P, Poch O, Thompson JD. A benchmark study of ab initio gene prediction methods in diverse eukaryotic organisms. BMC Genomics 2020; 21:293. [PMID: 32272892 PMCID: PMC7147072 DOI: 10.1186/s12864-020-6707-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/30/2020] [Indexed: 02/02/2023] Open
Abstract
Background The draft genome assemblies produced by new sequencing technologies present important challenges for automatic gene prediction pipelines, leading to less accurate gene models. New benchmark methods are needed to evaluate the accuracy of gene prediction methods in the face of incomplete genome assemblies, low genome coverage and quality, complex gene structures, or a lack of suitable sequences for evidence-based annotations. Results We describe the construction of a new benchmark, called G3PO (benchmark for Gene and Protein Prediction PrOgrams), designed to represent many of the typical challenges faced by current genome annotation projects. The benchmark is based on a carefully validated and curated set of real eukaryotic genes from 147 phylogenetically disperse organisms, and a number of test sets are defined to evaluate the effects of different features, including genome sequence quality, gene structure complexity, protein length, etc. We used the benchmark to perform an independent comparative analysis of the most widely used ab initio gene prediction programs and identified the main strengths and weaknesses of the programs. More importantly, we highlight a number of features that could be exploited in order to improve the accuracy of current prediction tools. Conclusions The experiments showed that ab initio gene structure prediction is a very challenging task, which should be further investigated. We believe that the baseline results associated with the complex gene test sets in G3PO provide useful guidelines for future studies.
Collapse
Affiliation(s)
- Nicolas Scalzitti
- Department of Computer Science, ICube, CNRS, University of Strasbourg, Strasbourg, France
| | - Anne Jeannin-Girardon
- Department of Computer Science, ICube, CNRS, University of Strasbourg, Strasbourg, France
| | - Pierre Collet
- Department of Computer Science, ICube, CNRS, University of Strasbourg, Strasbourg, France
| | - Olivier Poch
- Department of Computer Science, ICube, CNRS, University of Strasbourg, Strasbourg, France
| | - Julie D Thompson
- Department of Computer Science, ICube, CNRS, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
16
|
Using the Chou's 5-steps rule to predict splice junctions with interpretable bidirectional long short-term memory networks. Comput Biol Med 2019; 116:103558. [PMID: 31783254 DOI: 10.1016/j.compbiomed.2019.103558] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 11/21/2022]
Abstract
Neural models have been able to obtain state-of-the-art performances on several genome sequence-based prediction tasks. Such models take only nucleotide sequences as input and learn relevant features on their own. However, extracting the interpretable motifs from the model remains a challenge. This work explores various existing visualization techniques in their ability to infer relevant sequence information learnt by a recurrent neural network (RNN) on the task of splice junction identification. The visualization techniques have been modulated to suit the genome sequences as input. The visualizations inspect genomic regions at the level of a single nucleotide as well as a span of consecutive nucleotides. This inspection is performed based on the modification of input sequences (perturbation based) or the embedding space (back-propagation based). We infer features pertaining to both canonical and non-canonical splicing from a single neural model. Results indicate that the visualization techniques produce comparable performances for branchpoint detection. However, in the case of canonical donor and acceptor junction motifs, perturbation based visualizations perform better than back-propagation based visualizations, and vice-versa for non-canonical motifs. The source code of our stand-alone SpliceVisuL tool is available at https://github.com/aaiitggrp/SpliceVisuL.
Collapse
|
17
|
RBM20 Regulates CaV1.2 Surface Expression by Promoting Exon 9* Inclusion of CACNA1C in Neonatal Rat Cardiomyocytes. Int J Mol Sci 2019; 20:ijms20225591. [PMID: 31717392 PMCID: PMC6888234 DOI: 10.3390/ijms20225591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 01/25/2023] Open
Abstract
The CACNA1C gene encodes for the CaV1.2 protein, which is the pore subunit of cardiac l-type voltage-gated calcium (Ca2+) channels (l-channels). Through alternative splicing, CACNA1C encodes for various CaV1.2 isoforms with different electrophysiological properties. Splice variants of CaV1.2 are differentially expressed during heart development or pathologies. The molecular mechanisms of CACNA1C alternative splicing still remain incompletely understood. RNA sequencing analysis has suggested that CACNA1C is a potential target of the splicing factor RNA-binding protein motif 20 (RBM20). Here, we aimed at elucidating the role of RBM20 in the regulation of CACNA1C alternative splicing. We found that in neonatal rat cardiomyocytes (NRCMs), RBM20 overexpression promoted the inclusion of CACNA1C’s exon 9*, whereas the skipping of exon 9* occurred upon RBM20 siRNA knockdown. The splicing of other known alternative exons was not altered by RBM20. RNA immunoprecipitation suggested that RBM20 binds to introns flanking exon 9*. Functionally, in NRCMs, RBM20 overexpression decreased l-type Ca2+ currents, whereas RBM20 siRNA knockdown increased l-type Ca2+ currents. Finally, we found that RBM20 overexpression reduced CaV1.2 membrane surface expression in NRCMs. Taken together, our results suggest that RBM20 specifically regulates the inclusion of exon 9* in CACNA1C mRNA, resulting in reduced cell-surface membrane expression of l-channels in cardiomyocytes.
Collapse
|
18
|
Deep Splicing Code: Classifying Alternative Splicing Events Using Deep Learning. Genes (Basel) 2019; 10:genes10080587. [PMID: 31374967 PMCID: PMC6722613 DOI: 10.3390/genes10080587] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/20/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing (AS) is the process of combining different parts of the pre-mRNA to produce diverse transcripts and eventually different protein products from a single gene. In computational biology field, researchers try to understand AS behavior and regulation using computational models known as “Splicing Codes”. The final goal of these algorithms is to make an in-silico prediction of AS outcome from genomic sequence. Here, we develop a deep learning approach, called Deep Splicing Code (DSC), for categorizing the well-studied classes of AS namely alternatively skipped exons, alternative 5’ss, alternative 3’ss, and constitutively spliced exons based only on the sequence of the exon junctions. The proposed approach significantly improves the prediction and the obtained results reveal that constitutive exons have distinguishable local characteristics from alternatively spliced exons. Using the motif visualization technique, we show that the trained models learned to search for competitive alternative splice sites as well as motifs of important splicing factors with high precision. Thus, the proposed approach greatly expands the opportunities to improve alternative splicing modeling. In addition, a web-server for AS events prediction has been developed based on the proposed method.
Collapse
|