1
|
Oberin R, Petautschnig S, Jarred EG, Qu Z, Tsai T, Youngson NA, Pulsoni G, Truong TT, Fernando D, Bildsoe H, Blücher RO, van den Buuse M, Gardner DK, Sims NA, Adelson DL, Western PS. Fetal growth delay caused by loss of non-canonical imprinting is resolved late in pregnancy and culminates in offspring overgrowth. eLife 2024; 13:e81875. [PMID: 38813868 PMCID: PMC11139480 DOI: 10.7554/elife.81875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Germline epigenetic programming, including genomic imprinting, substantially influences offspring development. Polycomb Repressive Complex 2 (PRC2) plays an important role in Histone 3 Lysine 27 trimethylation (H3K27me3)-dependent imprinting, loss of which leads to growth and developmental changes in mouse offspring. In this study, we show that offspring from mouse oocytes lacking the PRC2 protein Embryonic Ectoderm Development (EED) were initially developmentally delayed, characterised by low blastocyst cell counts and substantial growth delay in mid-gestation embryos. This initial developmental delay was resolved as offspring underwent accelerated fetal development and growth in late gestation resulting in offspring that were similar stage and weight to controls at birth. The accelerated development and growth in offspring from Eed-null oocytes was associated with remodelling of the placenta, which involved an increase in fetal and maternal tissue size, conspicuous expansion of the glycogen-enriched cell population, and delayed parturition. Despite placental remodelling and accelerated offspring fetal growth and development, placental efficiency, and fetal blood glucose levels were low, and the fetal blood metabolome was unchanged. Moreover, while expression of the H3K27me3-imprinted gene and amino acid transporter Slc38a4 was increased, fetal blood levels of individual amino acids were similar to controls, indicating that placental amino acid transport was not enhanced. Genome-wide analyses identified extensive transcriptional dysregulation and DNA methylation changes in affected placentas, including a range of imprinted and non-imprinted genes. Together, while deletion of Eed in growing oocytes resulted in fetal growth and developmental delay and placental hyperplasia, our data indicate a remarkable capacity for offspring fetal growth to be normalised despite inefficient placental function and the loss of H3K27me3-dependent genomic imprinting.
Collapse
Affiliation(s)
- Ruby Oberin
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash UniversityClaytonAustralia
| | - Sigrid Petautschnig
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash UniversityClaytonAustralia
| | - Ellen G Jarred
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash UniversityClaytonAustralia
| | - Zhipeng Qu
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, University of AdelaideAdelaideAustralia
| | - Tesha Tsai
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash UniversityClaytonAustralia
| | - Neil A Youngson
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash UniversityClaytonAustralia
- School of Biomedical Sciences, University of New South WalesSydneyAustralia
| | - Gabrielle Pulsoni
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash UniversityClaytonAustralia
| | - Thi T Truong
- School of BioSciences, University of MelbourneParkvilleAustralia
| | - Dilini Fernando
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash UniversityClaytonAustralia
| | - Heidi Bildsoe
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash UniversityClaytonAustralia
| | - Rheannon O Blücher
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash UniversityClaytonAustralia
| | | | - David K Gardner
- School of BioSciences, University of MelbourneParkvilleAustralia
| | - Natalie A Sims
- Bone Cell Biology and Disease Unit, St. Vincent’s Institute of Medical Research and Department of Medicine at St. Vincent’s Hospital, University of MelbourneFitzroyAustralia
| | - David L Adelson
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, University of AdelaideAdelaideAustralia
| | - Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash UniversityClaytonAustralia
| |
Collapse
|
2
|
Zhao H, Wong RJ, Stevenson DK. The placental vasculature is affected by changes in gene expression and glycogen-rich cells in a diet-induced obesity mouse model. PLoS One 2023; 18:e0294185. [PMID: 37948457 PMCID: PMC10637699 DOI: 10.1371/journal.pone.0294185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Maternal obesity is a risk factor for pregnancy complications. Obesity caused by a high-fat diet (HFD) may alter maternal glucose/glycogen metabolism. Here, our objective was to investigate whether the placental vasculature is altered via changes in gene expression and glycogen-rich cells using a preclinical mouse model of diet-induced obesity. We subjected female FVB/N mice to one of three feeding regimens: regular chow (RC) given at preconception and during pregnancy (Control); RC given at preconception and then a HFD during pregnancy (HFD-P); or HFD initiated 4 weeks preconception and during pregnancy (HFD-PreCP). Daily food consumption and weekly maternal weights were recorded. Maternal blood glucose levels were measured at preconception and 4 gestational epochs (E6.5-E9.5, E10.5-E12.5, E13.5-E15.5, E16.5-E19.5). At E8.5-E16.5, total RNA in placentas were isolated for gene expression analyses. Placentas were also collected for HE and periodic acid Schiff's (PAS) staining and glycogen content assays. Dams in the HFD-P and HFD-PreCP groups gained significantly more weight than controls. Pre- and antenatal glucose levels were also significantly higher (15%-30%) in HFD-PreCP dams. Expression of several placental genes were also altered in HFD dams compared with controls. Consumption of the HFD also led to phenotypic and morphologic changes in glycogen trophoblasts (GlyTs) and uterine natural killer (uNK) cells. Alterations in vascularity were also observed in the labyrinth of HFD-PreCP placentas, which correlated with decreased placental efficiency. Overall, we observed that a HFD induces gestational obesity in mice, alters expression of placental genes, affects glucose homeostasis, and alters glycogen-positive GlyTs and uNK cells. All these changes may lead to impaired placental vascular development, and thus heighten the risk for pregnancy complications.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Ronald J. Wong
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - David K. Stevenson
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
3
|
Zhang H, Zha X, Zheng Y, Liu X, Elsabagh M, Wang H, Jiang H, Wang M. Mechanisms underlying the role of endoplasmic reticulum stress in the placental injury and fetal growth restriction in an ovine gestation model. J Anim Sci Biotechnol 2023; 14:117. [PMID: 37691111 PMCID: PMC10494380 DOI: 10.1186/s40104-023-00919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/13/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Exposure to bisphenol A (BPA), an environmental pollutant known for its endocrine-disrupting properties, during gestation has been reported to increase the risk of fetal growth restriction (FGR) in an ovine model of pregnancy. We hypothesized that the FGR results from the BPA-induced insufficiency and barrier dysfunction of the placenta, oxidative stress, inflammatory responses, autophagy and endoplasmic reticulum stress (ERS). However, precise mechanisms underlying the BPA-induced placental dysfunction, and subsequently, FGR, as well as the potential involvement of placental ERS in these complications, remain to be investigated. METHODS In vivo experiment, 16 twin-pregnant (from d 40 to 130 of gestation) Hu ewes were randomly distributed into two groups (8 ewes each). One group served as a control and received corn oil once a day, whereas the other group received BPA (5 mg/kg/d as a subcutaneous injection). In vitro study, ovine trophoblast cells (OTCs) were exposed to 4 treatments, 6 replicates each. The OTCs were treated with 400 μmol/L BPA, 400 μmol/L BPA + 0.5 μg/mL tunicamycin (Tm; ERS activator), 400 μmol/L BPA + 1 μmol/L 4-phenyl butyric acid (4-PBA; ERS antagonist) and DMEM/F12 complete medium (control), for 24 h. RESULTS In vivo experiments, pregnant Hu ewes receiving the BPA from 40 to 130 days of pregnancy experienced a decrease in placental efficiency, progesterone (P4) level and fetal weight, and an increase in placental estrogen (E2) level, together with barrier dysfunctions, OS, inflammatory responses, autophagy and ERS in type A cotyledons. In vitro experiment, the OTCs exposed to BPA for 24 h showed an increase in the E2 level and related protein and gene expressions of autophagy, ERS, pro-apoptosis and inflammatory response, and a decrease in the P4 level and the related protein and gene expressions of antioxidant, anti-apoptosis and barrier function. Moreover, treating the OTCs with Tm aggravated BPA-induced dysfunction of barrier and endocrine (the increased E2 level and decreased P4 level), OS, inflammatory responses, autophagy, and ERS. However, treating the OTCs with 4-PBA reversed the counteracted effects of Tm mentioned above. CONCLUSIONS In general, the results reveal that BPA exposure can cause ERS in the ovine placenta and OTCs, and ERS induction might aggravate BPA-induced dysfunction of the placental barrier and endocrine, OS, inflammatory responses, and autophagy. These data offer novel mechanistic insights into whether ERS is involved in BPA-mediated placental dysfunction and fetal development.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, 51240, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Honghua Jiang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Department of Pediatrics, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China.
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi, 832000, China.
| |
Collapse
|
4
|
Al-Thuwaini TM, Al-Shuhaib MBS, Kadhem AF, Alkhammas AH. A Missense p.Q>R234 Mutation in the Osteopontin Gene Is Associated With the Prolificacy of Iraqi Awassi Ewes. Bioinform Biol Insights 2023; 17:11779322231172848. [PMID: 37197213 PMCID: PMC10184200 DOI: 10.1177/11779322231172848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/08/2023] [Indexed: 05/19/2023] Open
Abstract
One of the most valuable traits in production and breeding is a sheep's prolificacy which is influenced by several genes, one of which is the osteopontin (OPN) gene. Thus, this study aimed to determine the effect of genetic variation within the OPN gene on Awassi ewe prolificacy. Genomic DNA was extracted from 123 single-progeny ewes and 109 twin ewes. Polymerase chain reaction (PCR) was used to amplify 4 sequence fragments (289, 275, 338, and 372 bp), representing exons 4, 5, 6, and 7 of the OPN gene. A 372 bp amplicon was identified with 3 different genotypes: TT, TC, and CC. Sequence analysis revealed a novel mutation in TC genotypes p.Q>R234. Statistical analysis revealed that the single nucleotide polymorphism (SNP) p.Q>R234 was associated with prolificacy. Ewes carrying the p.Q>R234 SNP had significantly (P ⩽ .01) lower litter sizes, twinning rates, and lambing rates, and more days to lambing than those with the TC and TT genotypes. The p.Q>R234 SNP was confirmed to be responsible for lower litter size through logistic regression analysis. From these results, we can conclude that the missense variant p.Q>R234 adversely affects the traits of interest and shows that the p.Q>R234 SNP negatively influences the prolificacy of Awassi sheep. Based on this study, it is evident that ewes in this population carrying the p.Q>R234 SNP have a lower litter size and are less prolific.
Collapse
Affiliation(s)
- Tahreer M Al-Thuwaini
- Tahreer M Al-Thuwaini, Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, Babil, 51001, Iraq. Emails: ,
| | | | | | | |
Collapse
|
5
|
Chen Q, Lin L, Xu Q, Tong C, Li M, Wang Y, Zhu Y, Zhao Z, Ge RS. Effect of triadimefon on rat placental morphology, function, and gene expression. Toxicol Lett 2022; 371:25-37. [PMID: 36179991 DOI: 10.1016/j.toxlet.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
Abstract
Triadimefon is a fungicide that is broadly used to treat fungal diseases of plants. It causes developmental toxicity in the animal model. Whether triadimefon disrupts the placental function and the underlying mechanism remains unclear. Thirty-six female pregnant Sprague-Dawley rats were randomly assigned into four groups and were orally administered via gavage of triadimefon (0, 25, 50, and 100 mg/kg/day) for 10 days from gestational day (GD) 12-21. Triadimefon disrupted the structure of the placenta, leading to hypertrophy, abnormal hemodynamics, including fibrin exudation, edema, hemorrhage, infarction, and inflammation. RNA-seq analysis showed that triadimefon down-regulated the expression of developmental and metabolic genes, while up-regulating the immune/inflammatory genes. The qPCR showed that triadimefon markedly down-regulated the expression of Cpt1c, Scd2, Ldlr, Dvl1, Flt4, and Vwf and their proteins, while up-regulating the expression of Cyp1a1, Star, Ccl5, and Cx3cr1 and their proteins at 25-100 mg/kg. Western blot showed that triadimefon reduced the level of STAT3 at doses of 50 and 100 mg/kg and the phosphorylation of AMPK at 100 mg/kg. In conclusion, triadimefon severely damages the structure and function of the placenta, leading to placental hypertrophy, local blood circulation disorders, and inflammation and this may be associated with its down-regulation of genes related to metabolism and nutrient transport and the up-regulation of inflammatory genes via STAT3 and AMPK signals.
Collapse
Affiliation(s)
- Quanxu Chen
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Liben Lin
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qiang Xu
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chenglin Tong
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Mengli Li
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yang Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhiguang Zhao
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
6
|
Kasture V, Sundrani D, Randhir K, Wagh G, Joshi S. Placental apoptotic markers are associated with placental morphometry. Placenta 2021; 115:1-11. [PMID: 34534910 DOI: 10.1016/j.placenta.2021.08.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/03/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Preeclampsia is a hypertensive disorder affecting both mother and the fetus and is a major cause of maternal and neonatal morbidity and mortality. Abnormal placentation is a common feature in preeclampsia that contributes to placental dysfunction. It is likely that increased homocysteine and oxidative stress influence apoptosis in preeclampsia. Increased placental apoptosis may aggravate the symptoms of preeclampsia through disruption of the placental structure. The current study aims to examine the association between various placental apoptotic markers with placental dimensions and maternal and neonatal characteristics in women with preeclampsia. METHODS A total of 80 pregnant women [preeclampsia (n = 40); normotensive control (n = 40)] were included in the study. Placental characteristics such as its major axis, minor axis, breadth, thickness (at centre, cord insertion and periphery) and trimmed placental weight were recorded.Placental protein levels of caspase-3, caspase-8, BAX and Bcl-2 were estimated by ELISA and gene expression were examined by real time quantitative PCR. RESULT Protein levels of proapoptotic markers such as caspase-8 and 3 were higher (p < 0.01) in the preeclampsia group compared to control whereas, the level of antiapoptotic marker Bcl-2 (p < 0.05) was lower in the preeclampsia group. Caspase-3 and Bcl-2 protein levels were negatively associated with thickness of placenta at cord insertion (p < 0.01). Protein levels of caspase-8 and caspase-3 were positively associated with placental MDA levels (p < 0.01). Caspase-8 was negatively associated with baby length (p = 0.055). DISCUSSION This study demonstrates the association of various apoptotic markers with oxidative stress and placental dimensions.
Collapse
Affiliation(s)
- Vaishali Kasture
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to Be University), Pune-Satara Road, Pune, 411043, India
| | - Deepali Sundrani
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to Be University), Pune-Satara Road, Pune, 411043, India
| | - Karuna Randhir
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to Be University), Pune-Satara Road, Pune, 411043, India
| | - Girija Wagh
- Department of Obstetrics and Gynaecology, Bharati Medical College and Hospital, Bharati Vidyapeeth University, Pune, 411043, India
| | - Sadhana Joshi
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to Be University), Pune-Satara Road, Pune, 411043, India.
| |
Collapse
|
7
|
Huang Z, Huang S, Song T, Yin Y, Tan C. Placental Angiogenesis in Mammals: A Review of the Regulatory Effects of Signaling Pathways and Functional Nutrients. Adv Nutr 2021; 12:2415-2434. [PMID: 34167152 PMCID: PMC8634476 DOI: 10.1093/advances/nmab070] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Normal placental development and proper angiogenesis are essential for fetal growth during pregnancy. Angiogenesis involves the regulatory action of many angiogenic factors and a series of signal transduction processes inside and outside the cell. The obstruction of placental angiogenesis causes fetal growth restriction and serious pregnancy complications, even leading to fetal loss and pregnancy cessation. In this review, the effects of placental angiogenesis on fetal development are described, and several signaling pathways related to placental angiogenesis and their key regulatory mediators are summarized. These factors, which include vascular endothelial growth factor (VEGF)-VEGF receptor, delta-like ligand 4 (DLL-4)-Notch, Wnt, and Hedgehog, may affect the placental angiogenesis process. Moreover, the degree of vascularization depends on cell proliferation, migration, and differentiation, which is affected by the synthesis and secretion of metabolites or intermediates and mutual coordination or inhibition in these pathways. Furthermore, we discuss recent advances regarding the role of functional nutrients (including amino acids and fatty acids) in regulating placental angiogenesis. Understanding the specific mechanism of placental angiogenesis and its influence on fetal development may facilitate the establishment of new therapeutic strategies for the treatment of preterm birth, pre-eclampsia, or intrauterine growth restriction, and provide a theoretical basis for formulating nutritional regulation strategies during pregnancy.
Collapse
Affiliation(s)
- Zihao Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuangbo Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tongxing Song
- Huazhong Agricultural University, College of Animal Science and Technology, Wuhan, China
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | | |
Collapse
|
8
|
Maternal Heat Stress Alters Expression of Genes Associated with Nutrient Transport Activity and Metabolism in Female Placentae from Mid-Gestating Pigs. Int J Mol Sci 2021; 22:ijms22084147. [PMID: 33923747 PMCID: PMC8073098 DOI: 10.3390/ijms22084147] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Placental insufficiency is a known consequence of maternal heat stress during gestation in farm animals. The molecular regulation of placentae during the stress response is little known in pigs. This study aims to identify differential gene expression in pig placentae caused by maternal heat exposure during early to mid-gestation. RNA sequencing (RNA-seq) was performed on female placental samples from pregnant pigs exposed to thermoneutral control (CON; constant 20 °C; n = 5) or cyclic heat stress (HS; cyclic 28 to 33 °C; n = 5) conditions between d40 and d60 of gestation. On d60 of gestation, placental efficiency (fetal/placental weight) was decreased (p = 0.023) by maternal HS. A total of 169 genes were differentially expressed (FDR ≤ 0.1) between CON and HS placentae of female fetuses, of which 35 genes were upregulated and 134 genes were downregulated by maternal HS. The current data revealed transport activity (FDR = 0.027), glycoprotein biosynthetic process (FDR = 0.044), and carbohydrate metabolic process (FDR = 0.049) among the terms enriched by the downregulated genes (HS vs. CON). In addition, solute carrier (SLC)-mediated transmembrane transport (FDR = 0.008) and glycosaminoglycan biosynthesis (FDR = 0.027), which modulates placental stroma synthesis, were identified among the pathways enriched by the downregulated genes. These findings provide evidence that heat-stress induced placental inefficiency may be underpinned by altered expression of genes associated with placental nutrient transport capacity and metabolism. A further understanding of the molecular mechanism contributes to the identification of placental gene signatures of summer infertility in pigs.
Collapse
|
9
|
París-Oller E, Navarro-Serna S, Soriano-Úbeda C, Lopes JS, Matás C, Ruiz S, Latorre R, López-Albors O, Romar R, Cánovas S, Coy P. Reproductive fluids, used for the in vitro production of pig embryos, result in healthy offspring and avoid aberrant placental expression of PEG3 and LUM. J Anim Sci Biotechnol 2021; 12:32. [PMID: 33583428 PMCID: PMC7883450 DOI: 10.1186/s40104-020-00544-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Background In vitro embryo production (IVP) and embryo transfer (ET) are two very common assisted reproductive technologies (ART) in human and cattle. However, in pig, the combination of either procedures, or even their use separately, is still considered suboptimal due to the low efficiency of IVP plus the difficulty of performing ET in the long and contorted uterus of the sow. In addition, the potential impact of these two ART on the health of the offspring is unknown. We investigated here if the use of a modified IVP system, with natural reproductive fluids (RF) as supplements to the culture media, combined with a minimally invasive surgery to perform ET, affects the output of the own IVP system as well as the reproductive performance of the mother and placental molecular traits. Results The blastocyst rates obtained by both in vitro systems, conventional (C-IVP) and modified (RF-IVP), were similar. Pregnancy and farrowing rates were also similar. However, when compared to in vivo control (artificial insemination, AI), litter sizes of both IVP groups were lower, while placental efficiency was higher in AI than in RF-IVP. Gene expression studies revealed aberrant expression levels for PEG3 and LUM in placental tissue for C-IVP group when compared to AI, but not for RF-IVP group. Conclusions The use of reproductive fluids as additives for the culture media in pig IVP does not improve reproductive performance of recipient mothers but could mitigate the impact of artificial procedures in the offspring. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-020-00544-0.
Collapse
Affiliation(s)
- E París-Oller
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - S Navarro-Serna
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - C Soriano-Úbeda
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - J S Lopes
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - C Matás
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - S Ruiz
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - R Latorre
- Department of Anatomy and Comparartive Pathology, Faculty of Veterinary Medicine, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain
| | - O López-Albors
- Department of Anatomy and Comparartive Pathology, Faculty of Veterinary Medicine, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain
| | - R Romar
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - S Cánovas
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain. .,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain.
| | - P Coy
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain. .,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
10
|
Ying Y, Pan P, Zou C, Wang Y, Tang Y, Hou X, Li Y, Xu Q, Lin L, Lu J, Ge RS. Tebuconazole exposure disrupts placental function and causes fetal low birth weight in rats. CHEMOSPHERE 2021; 264:128432. [PMID: 33049508 DOI: 10.1016/j.chemosphere.2020.128432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Tebuconazole (TEB) is one of the widely used broad-spectrum triazole fungicides. Its accumulation in mammals leads to various endocrine disruptions. However, it is unclear whether the exposure of TEB during pregnancy affects the growth and development of fetus and placenta. Here, TEB was exposed to pregnant Sprague-Dawley female rats from gestational days 12-21 of 0, 25, 50 or 100 mg/kg for 10 days. TEB reduced placental estradiol levels. TEB disrupted the structure and function of the placenta, leading to hypertrophy, fibrin exudation, edema, calcification, arterial fibroblast proliferation, and trophoblastic infarction. RNA-seq analysis showed that TEB mainly down-regulated the expression of iron transport genes and up-regulated the expression of genes for immune/inflammatory responses. Further qPCR showed that TEB down-regulated Tfrc, Hamp, Eif2ak2 and up-regulated the expression of Cd34, Cd36, Jag1, Pln, Cyp1a1, Esrra, and Aqp1 at 50 and 100 mg/kg. Western blot and semi-quantitative immunohistochemical staining also demonstrated that TEB lowered the levels of TFRC and EIF2AK2 and increased the levels of CD34, CD36, JAG1, CYP1A1, and ESRRA at 50 and 100 mg/kg. In conclusion, TEB severely damages the structure and function of the placenta, leading to hypertrophy of the placenta, low birth weight and feminization of the male fetus possibly via several pathways including iron transport and TNF signaling.
Collapse
Affiliation(s)
- Yingfen Ying
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Peipei Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Cheng Zou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Xiaohong Hou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Yang Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Qiang Xu
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Liben Lin
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Jieqiang Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.
| |
Collapse
|
11
|
Zhao W, Liu F, Bell AW, Le HH, Cottrell JJ, Leury BJ, Green MP, Dunshea FR. Controlled elevated temperatures during early-mid gestation cause placental insufficiency and implications for fetal growth in pregnant pigs. Sci Rep 2020; 10:20677. [PMID: 33244103 PMCID: PMC7691357 DOI: 10.1038/s41598-020-77647-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/10/2020] [Indexed: 01/03/2023] Open
Abstract
It is known that pig offspring born from pregnant pigs exposed to elevated ambient temperatures during gestation have altered phenotypes, possibly due to placental insufficiency and impaired fetal growth. Therefore, the objective of this study was to quantify the effect of maternal heat exposure during early-mid gestation, when pig placentae grow heavily, on placental and fetal development. Fifteen pregnant pigs were allocated to thermoneutral (TN; 20 °C; n = 7) or cyclic elevated temperature conditions (ET; 28 to 33 °C; n = 8) from d40 to d60 of gestation. Following euthanasia of the pigs on d60, placental and fetal morphometry and biochemistry were measured. Compared to TN fetuses, ET fetuses had increased (P = 0.041) placental weights and a lower (P = 0.013) placental efficiency (fetal/placental weight), although fetal weights were not significantly different. Fetuses from ET pigs had reduced (P = 0.032) M. longissimus fibre number density and a thicker (P = 0.017) placental epithelial layer compared to their TN counterparts. Elevated temperatures decreased (P = 0.026) placental mRNA expression of a glucose transporter (GLUT-3) and increased (P = 0.037) placental IGF-2 mRNA expression. In conclusion, controlled elevated temperatures between d40 to d60 of gestation reduced pig placental efficiency, resulting in compensatory growth of the placentae to maintain fetal development. Placental insufficiency during early-mid gestation may have implications for fetal development, possibly causing a long-term phenotypic change of the progeny.
Collapse
Affiliation(s)
- Weicheng Zhao
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia
| | - Fan Liu
- Rivalea Australia Pty Ltd, Corowa, 2646, Australia
| | - Alan W Bell
- Department of Animal Science, Cornell University, Ithaca, 14853-4801, USA
| | - Hieu H Le
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia
| | - Jeremy J Cottrell
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia
| | - Brian J Leury
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia
| | - Mark P Green
- School of BioSciences, University of Melbourne, Parkville, 3010, Australia
| | - Frank R Dunshea
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia. .,Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|