1
|
Lax C, Mondo SJ, Martínez JF, Muszewska A, Baumgart LA, Pérez-Ruiz JA, Carrillo-Marín P, LaButti K, Lipzen A, Zhang Y, Guo J, Ng V, Navarro E, Pawlowska TE, Grigoriev IV, Nicolás FE, Garre V. Symmetric adenine methylation is an essential DNA modification in the early-diverging fungus Rhizopus microsporus. Nat Commun 2025; 16:3843. [PMID: 40268918 PMCID: PMC12019607 DOI: 10.1038/s41467-025-59170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 04/13/2025] [Indexed: 04/25/2025] Open
Abstract
The discovery of N6-methyladenine (6mA) in eukaryotic genomes, typically found in prokaryotic DNA, has revolutionized epigenetics. Here, we show that symmetric 6mA is essential in the early diverging fungus Rhizopus microsporus, as the absence of the MT-A70 complex (MTA1c) responsible for this modification results in a lethal phenotype. 6mA is present in 70% of the genes, correlating with the presence of H3K4me3 and H2A.Z in open euchromatic regions. This modification is found predominantly in nucleosome linker regions, influencing the nucleosome positioning around the transcription start sites of highly expressed genes. Controlled downregulation of MTA1c reduces symmetric 6mA sites affecting nucleosome positioning and histone modifications, leading to altered gene expression, which is likely the cause of the severe phenotypic changes observed. Our study highlights the indispensable role of the DNA 6mA in a multicellular organism and delineates the mechanisms through which this epigenetic mark regulates gene expression in a eukaryotic genome.
Collapse
Affiliation(s)
- Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Stephen J Mondo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - José F Martínez
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Leo A Baumgart
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - José A Pérez-Ruiz
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Pablo Carrillo-Marín
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yu Zhang
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jie Guo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eusebio Navarro
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Teresa E Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Francisco E Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain.
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
2
|
Liu XL, Duan Z, Yu M, Liu X. Epigenetic control of circadian clocks by environmental signals. Trends Cell Biol 2024; 34:992-1006. [PMID: 38423855 DOI: 10.1016/j.tcb.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Circadian clocks have evolved to enable organisms to respond to daily environmental changes. Maintaining a robust circadian rhythm under various perturbations and stresses is essential for the fitness of an organism. In the core circadian oscillator conserved in eukaryotes (from fungi to mammals), a negative feedback loop based on both transcription and translation drives circadian rhythms. The expression of circadian clock genes depends both on the binding of transcription activators at the promoter and on the chromatin state of the clock genes, and epigenetic modifications of chromatin are crucial for transcriptional regulation of circadian clock genes. Herein we review current knowledge of epigenetic regulation of circadian clock mechanisms and discuss how environmental cues can control clock gene expression by affecting chromatin states.
Collapse
Affiliation(s)
- Xiao-Lan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zeyu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Muqun Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Wu Z, Gao H, Liu Z. COMPASS core subunits MpSet1 and MpSwd3 regulate Monascus pigments synthesis in Monascus purpureus. J Basic Microbiol 2024; 64:e2300686. [PMID: 38362934 DOI: 10.1002/jobm.202300686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
In eukaryotes, methylation of histone H3 at lysine 4 (H3K4me) catalyzed by the complex of proteins associated with Set1 (COMPASS) is crucial for the transcriptional regulation of genes and the development of organisms. In Monascus, the functions of COMPASS in establishing H3K4me remain unclear. This study first identified the conserved COMPASS core subunits MpSet1 and MpSwd3 in Monascus purpureus and confirmed their roles in establishing H3K4me2/3. Loss of MpSet1 and MpSwd3 resulted in slower growth and development and inhibited the formation of cleistothecia, ascospores, and conidia. The loss of these core subunits also decreased the production of extracellular and intracellular Monascus pigments (MPs) by 94.2%, 93.5%, 82.7%, and 82.5%, respectively. In addition, RNA high-throughput sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) showed that the loss of MpSet1 and MpSwd3 altered the expression of 2646 and 2659 genes, respectively, and repressed the transcription of MPs synthesis-related genes. In addition, the ΔMpset1 and ΔMpswd3 strains demonstrated increased sensitivity to cell wall stress with the downregulation of chitin synthase-coding genes. These results indicated that the COMPASS core subunits MpSet1 and MpSwd3 help establish H3K4me2/3 for growth and development, spore formation, and pigment synthesis in Monascus. These core subunits also assist in maintaining cell wall integrity.
Collapse
Affiliation(s)
- Zhongling Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Hongyan Gao
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| |
Collapse
|
4
|
Scadden AW, Graybill AS, Hull-Crew C, Lundberg TJ, Lande NM, Klocko AD. Histone deacetylation and cytosine methylation compartmentalize heterochromatic regions in the genome organization of Neurospora crassa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547530. [PMID: 37461718 PMCID: PMC10349943 DOI: 10.1101/2023.07.03.547530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Chromosomes must correctly fold in eukaryotic nuclei for proper genome function. Eukaryotic organisms hierarchically organize their genomes, including in the fungus Neurospora crassa, where chromatin fiber loops compact into Topologically Associated Domain (TAD)-like structures formed by heterochromatic region aggregation. However, insufficient data exists on how histone post-translational modifications, including acetylation, affect genome organization. In Neurospora, the HCHC complex (comprised of the proteins HDA-1, CDP-2, HP1, and CHAP) deacetylates heterochromatic nucleosomes, as loss of individual HCHC members increases centromeric acetylation and alters the methylation of cytosines in DNA. Here, we assess if the HCHC complex affects genome organization by performing Hi-C in strains deleted of the cdp-2 or chap genes. CDP-2 loss increases intra- and inter-chromosomal heterochromatic region interactions, while loss of CHAP decreases heterochromatic region compaction. Individual HCHC mutants exhibit different patterns of histone post-translational modifications genome-wide: without CDP-2, heterochromatic H4K16 acetylation is increased, yet smaller heterochromatic regions lose H3K9 trimethylation and gain inter-heterochromatic region interactions; CHAP loss produces minimal acetylation changes but increases heterochromatic H3K9me3 enrichment. Loss of both CDP-2 and the DIM-2 DNA methyltransferase causes extensive genome disorder, as heterochromatic-euchromatic contacts increase despite additional H3K9me3 enrichment. Our results highlight how the increased cytosine methylation in HCHC mutants ensures genome compartmentalization when heterochromatic regions become hyperacetylated without HDAC activity.
Collapse
Affiliation(s)
- Ashley W. Scadden
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Alayne S. Graybill
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Clayton Hull-Crew
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Tiffany J. Lundberg
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Nickolas M. Lande
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Andrew D. Klocko
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| |
Collapse
|
5
|
Torres DE, Reckard AT, Klocko AD, Seidl MF. Nuclear genome organization in fungi: from gene folding to Rabl chromosomes. FEMS Microbiol Rev 2023; 47:fuad021. [PMID: 37197899 PMCID: PMC10246852 DOI: 10.1093/femsre/fuad021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Comparative genomics has recently provided unprecedented insights into the biology and evolution of the fungal lineage. In the postgenomics era, a major research interest focuses now on detailing the functions of fungal genomes, i.e. how genomic information manifests into complex phenotypes. Emerging evidence across diverse eukaryotes has revealed that the organization of DNA within the nucleus is critically important. Here, we discuss the current knowledge on the fungal genome organization, from the association of chromosomes within the nucleus to topological structures at individual genes and the genetic factors required for this hierarchical organization. Chromosome conformation capture followed by high-throughput sequencing (Hi-C) has elucidated how fungal genomes are globally organized in Rabl configuration, in which centromere or telomere bundles are associated with opposite faces of the nuclear envelope. Further, fungal genomes are regionally organized into topologically associated domain-like (TAD-like) chromatin structures. We discuss how chromatin organization impacts the proper function of DNA-templated processes across the fungal genome. Nevertheless, this view is limited to a few fungal taxa given the paucity of fungal Hi-C experiments. We advocate for exploring genome organization across diverse fungal lineages to ensure the future understanding of the impact of nuclear organization on fungal genome function.
Collapse
Affiliation(s)
- David E Torres
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research,Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Andrew T Reckard
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Andrew D Klocko
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
6
|
Rodriguez S, Ward A, Reckard AT, Shtanko Y, Hull-Crew C, Klocko AD. The genome organization of Neurospora crassa at high resolution uncovers principles of fungal chromosome topology. G3 (BETHESDA, MD.) 2022; 12:jkac053. [PMID: 35244156 PMCID: PMC9073679 DOI: 10.1093/g3journal/jkac053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/25/2022] [Indexed: 01/17/2023]
Abstract
The eukaryotic genome must be precisely organized for its proper function, as genome topology impacts transcriptional regulation, cell division, replication, and repair, among other essential processes. Disruptions to human genome topology can lead to diseases, including cancer. The advent of chromosome conformation capture with high-throughput sequencing (Hi-C) to assess genome organization has revolutionized the study of nuclear genome topology; Hi-C has elucidated numerous genomic structures, including chromosomal territories, active/silent chromatin compartments, Topologically Associated Domains, and chromatin loops. While low-resolution heatmaps can provide important insights into chromosomal level contacts, high-resolution Hi-C datasets are required to reveal folding principles of individual genes. Of particular interest are high-resolution chromosome conformation datasets of organisms modeling the human genome. Here, we report the genome topology of the fungal model organism Neurospora crassa at a high resolution. Our composite Hi-C dataset, which merges 2 independent datasets generated with restriction enzymes that monitor euchromatin (DpnII) and heterochromatin (MseI), along with our DpnII/MseI double digest dataset, provide exquisite detail for both the conformation of entire chromosomes and the folding of chromatin at the resolution of individual genes. Within constitutive heterochromatin, we observe strong yet stochastic internal contacts, while euchromatin enriched with either activating or repressive histone post-translational modifications associates with constitutive heterochromatic regions, suggesting intercompartment contacts form to regulate transcription. Consistent with this, a strain with compromised heterochromatin experiences numerous changes in gene expression. Our high-resolution Neurospora Hi-C datasets are outstanding resources to the fungal community and provide valuable insights into higher organism genome topology.
Collapse
Affiliation(s)
- Sara Rodriguez
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Ashley Ward
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Andrew T Reckard
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Yulia Shtanko
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Clayton Hull-Crew
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Andrew D Klocko
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| |
Collapse
|
7
|
Mendonca A, Sánchez OF, Xie J, Carneiro A, Lin L, Yuan C. Identifying distinct heterochromatin regions using combinatorial epigenetic probes in live cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194725. [PMID: 34174495 DOI: 10.1016/j.bbagrm.2021.194725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
The 3D spatial organization of the genome controls gene expression and cell functionality. Heterochromatin (HC), which is the densely compacted and largely silenced part of the chromatin, is the driver for the formation and maintenance of nuclear organization in the mammalian nucleus. It is functionally divided into highly compact constitutive heterochromatin (cHC) and transcriptionally poised facultative heterochromatin (fHC). Long regarded as a static structure, the highly dynamic nature of the heterochromatin is being slowly understood and studied. These changes in HC occur on various temporal scales during the cell cycle and differentiation processes. Most methods that capture information about the heterochromatin are static techniques that cannot provide a readout of how the HC organization evolves with time. The delineation of specific areas such as fHC are also rendered difficult due to its diffusive nature and lack of specific features. Another degree of complexity in characterizing changes in heterochromatin occurs due to the heterogeneity in the HC organization of individual cells, necessitating single cell studies. Overall, there is a need for live cell compatible tools that can stably track the heterochromatin as it undergoes re-organization. In this work, we present an approach to track cHC and fHC based on the epigenetic hallmarks associated with them. Unlike conventional immunostaining approaches, we use small recombinant protein probes that allow us to dynamically monitor the HC by binding to modifications specific to the cHC and fHC, such as H3K9me3, DNA methylation and H3K27me3. We demonstrate the use of the probes to follow the changes in HC induced by drug perturbations at the single cell level. We also use the probe sets combinatorically to simultaneously track chromatin regions enriched in two selected epigenetic modifications using a FRET based approach that enabled us tracking distinctive chromatin features in situ.
Collapse
Affiliation(s)
- Agnes Mendonca
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Oscar F Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Ana Carneiro
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Li Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
8
|
Zhao F, Liu Y, Su X, Lee JE, Song Y, Wang D, Ge K, Gao J, Zhang MQ, Li H. Molecular basis for histone H3 "K4me3-K9me3/2" methylation pattern readout by Spindlin1. J Biol Chem 2020; 295:16877-16887. [PMID: 32994220 PMCID: PMC7864079 DOI: 10.1074/jbc.ra120.013649] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Histone recognition by "reader" modules serves as a fundamental mechanism in epigenetic regulation. Previous studies have shown that Spindlin1 is a reader of histone H3K4me3 as well as "K4me3-R8me2a" and promotes transcription of rDNA or Wnt/TCF4 target genes. Here we show that Spindlin1 also acts as a potent reader of histone H3 "K4me3-K9me3/2" bivalent methylation pattern. Calorimetric titration revealed a binding affinity of 16 nm between Spindlin1 and H3 "K4me3-K9me3" peptide, which is one to three orders of magnitude stronger than most other histone readout events at peptide level. Structural studies revealed concurrent recognition of H3K4me3 and H3K9me3/2 by aromatic pockets 2 and 1 of Spindlin1, respectively. Epigenomic profiling studies showed that Spindlin1 colocalizes with both H3K4me3 and H3K9me3 peaks in a subset of genes enriched in biological processes of transcription and its regulation. Moreover, the distribution of Spindlin1 peaks is primarily associated with H3K4me3 but not H3K9me3, which suggests that Spindlin1 is a downstream effector of H3K4me3 generated in heterochromatic regions. Collectively, our work calls attention to an intriguing function of Spindlin1 as a potent H3 "K4me3-K9me3/2" bivalent mark reader, thereby balancing gene expression and silencing in H3K9me3/2-enriched regions.
Collapse
Affiliation(s)
- Fan Zhao
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yunan Liu
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, Center for Synthetic and Systems Biology, BNRist, Tsinghua University, Beijing, China
| | - Xiaonan Su
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Ji-Eun Lee
- Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland USA
| | - Yutong Song
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Daliang Wang
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland USA
| | - Juntao Gao
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, Center for Synthetic and Systems Biology, BNRist, Tsinghua University, Beijing, China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, Center for Synthetic and Systems Biology, BNRist, Tsinghua University, Beijing, China; Department of Biological Sciences Center for Systems Biology, University of Texas at Dallas, Richardson, Texas, USA
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
9
|
Molecular Regulation of Circadian Chromatin. J Mol Biol 2020; 432:3466-3482. [PMID: 31954735 DOI: 10.1016/j.jmb.2020.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inhibition serving as signaling platform for chromatin-remodeling enzymes. Current models indicate circadian-regulated facultative heterochromatin (CRFH) is a conserved mechanism at clock genes in Neurospora, Drosophila, and mice. CRFH consists of antiphasic rhythms in activating and repressive modifications generating chromatin states that cycle between transcriptionally permissive and nonpermissive. There are rhythms in histone H3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac) and histone H3 lysine 4 methylation (H3K4me) during activation; while deacetylation, histone H3 lysine 9 methylation (H3K9me) and heterochromatin protein 1 (HP1) are hallmarks of repression. ATP-dependent chromatin-remodeling enzymes control accessibility, nucleosome positioning/occupancy, and nuclear organization. In Neurospora, the rhythm in facultative heterochromatin is mediated by the frequency (frq) natural antisense transcript (NAT) qrf. While in mammals, histone deacetylases (HDACs), histone H3 lysine 9 methyltransferase (KMT1/SUV39), and components of nucleosome remodeling and deacetylase (NuRD) are part of the nuclear PERIOD complex (PER complex). Genomics efforts have found relationships among rhythmic chromatin modifications at clock-controlled genes (ccg) revealing circadian control of genome-wide chromatin states. There are also circadian clock-regulated lncRNAs with an emerging function that includes assisting in chromatin dynamics. In this review, we explore the connections between circadian clock, chromatin remodeling, lncRNAs, and CRFH and how these impact rhythmicity, amplitude, period, and phase of circadian clock genes.
Collapse
|