1
|
New malic acid producer strains of Saccharomyces cerevisiae for preserving wine acidity during alcoholic fermentation. Food Microbiol 2023; 112:104209. [PMID: 36906297 DOI: 10.1016/j.fm.2022.104209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
In the context of climate change, the chemical composition of wines is characterized by a massive drop of malic acid concentration in grape berries. Then wine professionals have to find out physical and/or microbiological solutions to manage wine acidity. The aim of this study is to develop wine Saccharomyces cerevisiae strains able to produce significant amount of malic acid during the alcoholic fermentation. By applying a large phenotypic survey in small scale fermentations, the production level of malic acid in seven grape juices confirmed the importance of the grape juice in the production of malic acid during the alcoholic fermentation. Beside the grape juice effect, our results demonstrated that extreme individuals able to produce up to 3 g/L of malic acid can be selected by crossing together appropriate parental strains. A multivariate analysis of the dataset generated illustrate that the initial the amount of malic acid produced by yeast is a determining exogenous factor for controlling the final pH of wine. Interestingly most of the acidifying strains selected are particularly enriched in alleles that have been previously reported for increasing the level of malic acid at the end of the alcoholic fermentation. A small set of acidifying strains were compared with strains able to consume a large amount of malic acid previously selected. The total acidity of resulting wines was statistically different and a panelist of 28 judges was able to discriminate the two groups of strains during a free sorting task analysis.
Collapse
|
2
|
Offei B, Braun-Galleani S, Venkatesh A, Casey WT, O’Connor KE, Byrne KP, Wolfe KH. Identification of genetic variants of the industrial yeast Komagataella phaffii (Pichia pastoris) that contribute to increased yields of secreted heterologous proteins. PLoS Biol 2022; 20:e3001877. [PMID: 36520709 PMCID: PMC9754263 DOI: 10.1371/journal.pbio.3001877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 10/13/2022] [Indexed: 12/23/2022] Open
Abstract
The yeast Komagataella phaffii (formerly called Pichia pastoris) is used widely as a host for secretion of heterologous proteins, but only a few isolates of this species exist and all the commonly used expression systems are derived from a single genetic background, CBS7435 (NRRL Y-11430). We hypothesized that other genetic backgrounds could harbor variants that affect yields of secreted proteins. We crossed CBS7435 with 2 other K. phaffii isolates and mapped quantitative trait loci (QTLs) for secretion of a heterologous protein, β-glucosidase, by sequencing individual segregant genomes. A major QTL mapped to a frameshift mutation in the mannosyltransferase gene HOC1, which gives CBS7435 a weaker cell wall and higher protein secretion than the other isolates. Inactivation of HOC1 in the other isolates doubled β-glucosidase secretion. A second QTL mapped to an amino acid substitution in IRA1 that tripled β-glucosidase secretion in 1-week batch cultures but reduced cell viability, and its effects are specific to this heterologous protein. Our results demonstrate that QTL analysis is a powerful method for dissecting the basis of biotechnological traits in nonconventional yeasts, and a route to improving their industrial performance.
Collapse
Affiliation(s)
- Benjamin Offei
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Stephanie Braun-Galleani
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Anjan Venkatesh
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - William T. Casey
- Bioplastech Ltd., NovaUCD, Belfield Innovation Park, University College Dublin, Dublin, Ireland
| | - Kevin E. O’Connor
- UCD Earth Institute and School of Biomolecular & Biomedical Science, University College Dublin, Dublin, Ireland
- BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
| | - Kevin P. Byrne
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Kenneth H. Wolfe
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
3
|
García-Ríos E, Guillamón JM. Genomic Adaptations of Saccharomyces Genus to Wine Niche. Microorganisms 2022; 10:microorganisms10091811. [PMID: 36144411 PMCID: PMC9500811 DOI: 10.3390/microorganisms10091811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Wine yeast have been exposed to harsh conditions for millennia, which have led to adaptive evolutionary strategies. Thus, wine yeasts from Saccharomyces genus are considered an interesting and highly valuable model to study human-drive domestication processes. The rise of whole-genome sequencing technologies together with new long reads platforms has provided new understanding about the population structure and the evolution of wine yeasts. Population genomics studies have indicated domestication fingerprints in wine yeast, including nucleotide variations, chromosomal rearrangements, horizontal gene transfer or hybridization, among others. These genetic changes contribute to genetically and phenotypically distinct strains. This review will summarize and discuss recent research on evolutionary trajectories of wine yeasts, highlighting the domestication hallmarks identified in this group of yeast.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Spain
- Department of Science, Universidad Internacional de Valencia-VIU, Pintor Sorolla 21, 46002 Valencia, Spain
- Correspondence:
| | - José Manuel Guillamón
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Spain
| |
Collapse
|
4
|
Genetic bases for the metabolism of the DMS precursor S-methylmethionine by Saccharomyces cerevisiae. Food Microbiol 2022; 106:104041. [DOI: 10.1016/j.fm.2022.104041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023]
|
5
|
Adebami GE, Kuila A, Ajunwa OM, Fasiku SA, Asemoloye MD. Genetics and metabolic engineering of yeast strains for efficient ethanol production. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Arindam Kuila
- Department of Bioscience and Biotechnology Banasthali University Vanasthali India
| | - Obinna M. Ajunwa
- Department of Microbiology Modibbo Adama University of Technology Yola Nigeria
| | - Samuel A. Fasiku
- Department of Biological Sciences Ajayi Crowther University Oyo Nigeria
| | - Michael D. Asemoloye
- Department of Pharmaceutical Science and Technology Tianjin University Tianjin China
| |
Collapse
|
6
|
Gonzalez R, Morales P. Truth in wine yeast. Microb Biotechnol 2021; 15:1339-1356. [PMID: 34173338 PMCID: PMC9049622 DOI: 10.1111/1751-7915.13848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Evolutionary history and early association with anthropogenic environments have made Saccharomyces cerevisiae the quintessential wine yeast. This species typically dominates any spontaneous wine fermentation and, until recently, virtually all commercially available wine starters belonged to this species. The Crabtree effect, and the ability to grow under fully anaerobic conditions, contribute decisively to their dominance in this environment. But not all strains of Saccharomyces cerevisiae are equally suitable as starter cultures. In this article, we review the physiological and genetic characteristics of S. cerevisiae wine strains, as well as the biotic and abiotic factors that have shaped them through evolution. Limited genetic diversity of this group of yeasts could be a constraint to solving the new challenges of oenology. However, research in this field has for many years been providing tools to increase this diversity, from genetic engineering and classical genetic tools to the inclusion of other yeast species in the catalogues of wine yeasts. On occasion, these less conventional species may contribute to the generation of interspecific hybrids with S. cerevisiae. Thus, our knowledge about wine strains of S. cerevisiae and other wine yeasts is constantly expanding. Over the last decades, wine yeast research has been a pillar for the modernisation of oenology, and we can be confident that yeast biotechnology will keep contributing to solving any challenges, such as climate change, that we may face in the future.
Collapse
Affiliation(s)
- Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos, km 6, Logroño, La Rioja, 26071, Spain
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos, km 6, Logroño, La Rioja, 26071, Spain
| |
Collapse
|
7
|
QTL mapping: an innovative method for investigating the genetic determinism of yeast-bacteria interactions in wine. Appl Microbiol Biotechnol 2021; 105:5053-5066. [PMID: 34106310 DOI: 10.1007/s00253-021-11376-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
The two most commonly used wine microorganisms, Saccharomyces cerevisiae yeast and Oenococcus oeni bacteria, are responsible for completion of alcoholic and malolactic fermentation (MLF), respectively. For successful co-inoculation, S. cerevisiae and O. oeni must be able to complete fermentation; however, this relies on compatibility between yeast and bacterial strains. For the first time, quantitative trait loci (QTL) analysis was used to elucidate whether S. cerevisiae genetic makeup can play a role in the ability of O. oeni to complete MLF. Assessment of 67 progeny from a hybrid S. cerevisiae strain (SBxGN), co-inoculated with a single O. oeni strain, SB3, revealed a major QTL linked to MLF completion by O. oeni. This QTL encompassed a well-known translocation, XV-t-XVI, that results in increased SSU1 expression and is functionally linked with numerous phenotypes including lag phase duration and sulphite export and production. A reciprocal hemizygosity assay was performed to elucidate the effect of the gene SSU1 in the SBxGN background. Our results revealed a strong effect of SSU1 haploinsufficiency on O. oeni's ability to complete malolactic fermentation during co-inoculation and pave the way for the implementation of QTL mapping projects for deciphering the genetic bases of microbial interactions. KEY POINTS: • For the first time, QTL analysis has been used to study yeast-bacteria interactions. • A QTL encompassing a translocation, XV-t-XVI, was linked to MLF outcomes. • S. cerevisiae SSU1 haploinsufficiency positively impacted MLF by O. oeni.
Collapse
|
8
|
Vion C, Peltier E, Bernard M, Muro M, Marullo P. Marker Assisted Selection of Malic-Consuming Saccharomyces cerevisiae Strains for Winemaking. Efficiency and Limits of a QTL's Driven Breeding Program. J Fungi (Basel) 2021; 7:304. [PMID: 33921151 PMCID: PMC8071496 DOI: 10.3390/jof7040304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Natural Saccharomyces cerevisiae yeast strains exhibit very large genotypic and phenotypic diversity. Breeding programs that take advantage of this characteristic are widely used for selecting starters for wine industry, especially in the recent years when winemakers need to adapt their production to climate change. The aim of this work was to evaluate a marker assisted selection (MAS) program to improve malic acid consumption capacity of Saccharomyces cerevisiae in grape juice. Optimal individuals of two unrelated F1-hybrids were crossed to get a new genetic background carrying many "malic consumer" loci. Then, eleven quantitative trait loci (QTLs) already identified were used for implementing the MAS breeding program. By this method, extreme individuals able to consume more than 70% of malic acid in grape juice were selected. These individuals were tested in different enological matrixes and compared to their original parental strains. They greatly reduced the malic acid content at the end of alcoholic fermentation, they appeared to be robust to the environment, and they accelerated the ongoing of malolactic fermentations by Oenococcus oeni. This study illustrates how MAS can be efficiently used for selecting industrial Saccharomyces cerevisiae strains with outlier properties for winemaking.
Collapse
Affiliation(s)
- Charlotte Vion
- Unité de Recherche Œnologie EA 4577, USC 1366 INRAe, Bordeaux INP, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (C.V.); (E.P.); (M.B.); (M.M.)
- Biolaffort, 33000 Bordeaux, France
| | - Emilien Peltier
- Unité de Recherche Œnologie EA 4577, USC 1366 INRAe, Bordeaux INP, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (C.V.); (E.P.); (M.B.); (M.M.)
- Biolaffort, 33000 Bordeaux, France
- CNRS, GMGM UMR 7156, Université de Strasbourg, 67000 Strasbourg, France
| | - Margaux Bernard
- Unité de Recherche Œnologie EA 4577, USC 1366 INRAe, Bordeaux INP, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (C.V.); (E.P.); (M.B.); (M.M.)
- Biolaffort, 33000 Bordeaux, France
| | - Maitena Muro
- Unité de Recherche Œnologie EA 4577, USC 1366 INRAe, Bordeaux INP, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (C.V.); (E.P.); (M.B.); (M.M.)
- Biolaffort, 33000 Bordeaux, France
| | - Philippe Marullo
- Unité de Recherche Œnologie EA 4577, USC 1366 INRAe, Bordeaux INP, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (C.V.); (E.P.); (M.B.); (M.M.)
- Biolaffort, 33000 Bordeaux, France
| |
Collapse
|
9
|
Yeast Fermentation at Low Temperatures: Adaptation to Changing Environmental Conditions and Formation of Volatile Compounds. Molecules 2021; 26:molecules26041035. [PMID: 33669237 PMCID: PMC7919833 DOI: 10.3390/molecules26041035] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Yeast plays a key role in the production of fermented foods and beverages, such as bread, wine, and other alcoholic beverages. They are able to produce and release from the fermentation environment large numbers of volatile organic compounds (VOCs). This is the reason for the great interest in the possibility of adapting these microorganisms to fermentation at reduced temperatures. By doing this, it would be possible to obtain better sensory profiles of the final products. It can reduce the addition of artificial flavors and enhancements to food products and influence other important factors of fermented food production. Here, we reviewed the genetic and physiological mechanisms by which yeasts adapt to low temperatures. Next, we discussed the importance of VOCs for the food industry, their biosynthesis, and the most common volatiles in fermented foods and described the beneficial impact of decreased temperature as a factor that contributes to improving the composition of the sensory profiles of fermented foods.
Collapse
|
10
|
Stojiljkovic M, Foulquié-Moreno MR, Thevelein JM. Polygenic analysis of very high acetic acid tolerance in the yeast Saccharomyces cerevisiae reveals a complex genetic background and several new causative alleles. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:126. [PMID: 32695222 PMCID: PMC7364526 DOI: 10.1186/s13068-020-01761-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND High acetic acid tolerance is of major importance in industrial yeast strains used for second-generation bioethanol production, because of the high acetic acid content of lignocellulose hydrolysates. It is also important in first-generation starch hydrolysates and in sourdoughs containing significant acetic acid levels. We have previously identified snf4 E269* as a causative allele in strain MS164 obtained after whole-genome (WG) transformation and selection for improved acetic acid tolerance. RESULTS We have now performed polygenic analysis with the same WG transformant MS164 to identify novel causative alleles interacting with snf4 E269* to further enhance acetic acid tolerance, from a range of 0.8-1.2% acetic acid at pH 4.7, to previously unmatched levels for Saccharomyces cerevisiae. For that purpose, we crossed the WG transformant with strain 16D, a previously identified strain displaying very high acetic acid tolerance. Quantitative trait locus (QTL) mapping with pooled-segregant whole-genome sequence analysis identified four major and two minor QTLs. In addition to confirmation of snf4 E269* in QTL1, we identified six other genes linked to very high acetic acid tolerance, TRT2, MET4, IRA2 and RTG1 and a combination of MSH2 and HAL9, some of which have never been connected previously to acetic acid tolerance. Several of these genes appear to be wild-type alleles that complement defective alleles present in the other parent strain. CONCLUSIONS The presence of several novel causative genes highlights the distinct genetic basis and the strong genetic background dependency of very high acetic acid tolerance. Our results suggest that elimination of inferior mutant alleles might be equally important for reaching very high acetic acid tolerance as introduction of rare superior alleles. The superior alleles of MET4 and RTG1 might be useful for further improvement of acetic acid tolerance in specific industrial yeast strains.
Collapse
Affiliation(s)
- Marija Stojiljkovic
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
| | - María R. Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
| |
Collapse
|
11
|
Shimoi H, Kawamura N, Yamada M. Cloning of the SPO11 gene that complements a meiotic recombination defect in sake yeast. J Biosci Bioeng 2020; 130:367-373. [PMID: 32646632 DOI: 10.1016/j.jbiosc.2020.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/04/2023]
Abstract
Cross hybridization breeding of sake yeasts is hampered by difficulty in acquisition of haploid cells through sporulation. We previously demonstrated that typical sake yeast strains were defective in meiotic chromosome recombination, which caused poor sporulation and loss of spore viability. In this study, we screened a single copy plasmid genomic DNA library of the laboratory Saccharomyces cerevisiae GRF88 for genes that might complement the meiotic recombination defect of UTCAH-3, a strain derived from the sake yeast Kyokai no. 7 (K7). We identified the SPO11 gene of the laboratory strain (ScSPO11), encoding a meiosis-specific endonuclease that catalyzes DNA double-strand breaks required for meiotic recombination, as a gene that restored meiotic recombination and spore viability of UTCAH-3. K7SPO11 could not restore sporulation efficiency and spore viability of UTCAH-3 and a laboratory strain BY4743 spo11Δ/spo11Δ, indicating that K7SPO11 is not functional. Sequence analysis of the SPO11 genes of various Kyokai sake yeasts (K1, and K3-K10) revealed that the K7 group of sake yeasts (K6, K7, K9, and K10) had a mutual missense mutation (C73T) in addition to other three common mutations present in all Kyokai yeasts tested. ScSPO11C73T created through in vitro mutagenesis could not restore spore viability of BY4743 spo11Δ/spo11Δ. On the other hand, K8SPO11, which have the three common mutations except for C73T could restore spore viability of BY4743 spo11Δ/spo11Δ. These results suggest that C73T might be a causative mutation of recombination defect in K7SPO11. Moreover, we found that the introduction of ScRIM15 restored sporulation efficiency but not spore viability.
Collapse
Affiliation(s)
- Hitoshi Shimoi
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; Brewing Society of Japan, 2-6-30, Takinogawa, Kita-ku, Tokyo 114-0023, Japan.
| | - Natsuki Kawamura
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Miwa Yamada
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
12
|
Quantitative trait loci (QTL) underlying phenotypic variation in bioethanol-related processes in Neurospora crassa. PLoS One 2020; 15:e0221737. [PMID: 32017762 PMCID: PMC6999864 DOI: 10.1371/journal.pone.0221737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/09/2020] [Indexed: 11/19/2022] Open
Abstract
Bioethanol production from lignocellulosic biomass has received increasing attention over the past decade. Many attempts have been made to reduce the cost of bioethanol production by combining the separate steps of the process into a single-step process known as consolidated bioprocessing. This requires identification of organisms that can efficiently decompose lignocellulose to simple sugars and ferment the pentose and hexose sugars liberated to ethanol. There have been many attempts in engineering laboratory strains by adding new genes or modifying genes to expand the capacity of an industrial microorganism. There has been less attention in improving bioethanol-related processes utilizing natural variation existing in the natural ecotypes. In this study, we sought to identify genomic loci contributing to variation in saccharification of cellulose and fermentation of glucose in the fermenting cellulolytic fungus Neurospora crassa through quantitative trait loci (QTL) analysis. We identified one major QTL contributing to fermentation of glucose and multiple putative QTL's underlying saccharification. Understanding the natural variation of the major QTL gene would provide new insights in developing industrial microbes for bioethanol production.
Collapse
|