1
|
Quan C, Zhang Q, Zhang X, Chai K, Cheng G, Ma C, Dai C. Interspecific hybridization in Brassica species leads to changes in agronomic traits through the regulation of gene expression by chromatin accessibility and DNA methylation. Gigascience 2025; 14:giaf029. [PMID: 40272880 PMCID: PMC12012897 DOI: 10.1093/gigascience/giaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/17/2025] [Accepted: 03/03/2025] [Indexed: 04/26/2025] Open
Abstract
Interspecific hybridization is a common method in plant breeding to combine traits from different species, resulting in allopolyploidization and significant genetic and epigenetic changes. However, our understanding of genome-wide chromatin and gene expression dynamics during allopolyploidization remains limited. This study generated two Brassica allotriploid hybrids via interspecific hybridization. We observed that accessible chromatin regions (ACRs) and DNA methylation interact to regulates gene expression after interspecific hybridization, ultimately influencing the agronomic traits of the hybrids. In total, 234,649 ACRs were identified in the parental lines and hybrids; the hybridization process induces changes in the distribution and abundance of their accessible chromatin regions, particularly in gene regions and their proximity. Genes associated with proximal ACRs were more highly expressed than those associated with distal and genic ACRs. More than half of novel ACRs drove transgressive gene expression in the hybrids, and the transgressive upregulated genes showed significant enrichment in metal ion binding, especially magnesium ion, calcium ion, and potassium ion binding. We also identified Bna.bZIP11 in the single-parent activation ACR, which binds to BnaA06.UF3GT to promote anthocyanin accumulation in F1 hybrids. DNA methylation plays a role in repressing gene expression, and unmethylated ACRs are more transcriptionally active. Additionally, the A-subgenome ACRs were associated with genome dosage rather than DNA methylation. The interplay among DNA methylation, transposable elements, and sRNA contributes to the dynamic landscape of ACRs during interspecific hybridization, resulting in distinct gene expression patterns on the genome.
Collapse
Affiliation(s)
- Chengtao Quan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiaoni Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Kexin Chai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Guoting Cheng
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
2
|
Abbey J, Jose S, Percival D, Jaakola L, Asiedu SK. Modulation of defense genes and phenolic compounds in wild blueberry in response to Botrytis cinerea under field conditions. BMC PLANT BIOLOGY 2023; 23:117. [PMID: 36849912 PMCID: PMC9972761 DOI: 10.1186/s12870-023-04090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Botrytis blight is an important disease of wild blueberry [(Vaccinium angustifolium (Va) and V. myrtilloides (Vm))] with variable symptoms in the field due to differences in susceptibility among blueberry phenotypes. Representative blueberry plants of varying phenotypes were inoculated with spores of B. cinerea. The relative expression of pathogenesis-related genes (PR3, PR4), flavonoid biosynthesis genes, and estimation of the concentration of ten phenolic compounds between uninoculated and inoculated samples at different time points were analyzed. Representative plants of six phenotypes (brown stem Va, green stem Va, Va f. nigrum, tall, medium, and short stems of Vm) were collected and studied using qRT-PCR. The expression of targeted genes indicated a response of inoculated plants to B. cinerea at either 12, 24, 48 or 96 h post inoculation (hpi). The maximum expression of PR3 occurred at 24 hpi in all the phenotypes except Va f. nigrum and tall stem Vm. Maximum expression of both PR genes occurred at 12 hpi in Va f. nigrum. Chalcone synthase, flavonol synthase and anthocyanin synthase were suppressed at 12 hpi followed by an upregulation at 24 hpi. The expression of flavonoid pathway genes was phenotype-specific with their regulation patterns showing temporal differences among the phenotypes. Phenolic compound accumulation was temporally regulated at different post-inoculation time points. M-coumaric acid and kaempferol-3-glucoside are the compounds that were increased with B. cinerea inoculation. Results from this study suggest that the expression of PR and flavonoid genes, and the accumulation of phenolic compounds associated with B. cinerea infection could be phenotype specific. This study may provide a starting point for understanding and determining the mechanisms governing the wild blueberry-B. cinerea pathosystem.
Collapse
Affiliation(s)
- Joel Abbey
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, P.O. Box 550, Truro, NS, B2N 2R8, Canada.
| | - Sherin Jose
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, P.O. Box 550, Truro, NS, B2N 2R8, Canada
| | - David Percival
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, P.O. Box 550, Truro, NS, B2N 2R8, Canada
| | - Laura Jaakola
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromso, Norway
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, NO‑1431, Ås, Norway
| | - Samuel K Asiedu
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, P.O. Box 550, Truro, NS, B2N 2R8, Canada
| |
Collapse
|
3
|
Sarwar R, Geng R, Li L, Shan Y, Zhu KM, Wang J, Tan XL. Genome-Wide Prediction, Functional Divergence, and Characterization of Stress-Responsive BZR Transcription Factors in B. napus. FRONTIERS IN PLANT SCIENCE 2022; 12:790655. [PMID: 35058951 PMCID: PMC8764130 DOI: 10.3389/fpls.2021.790655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/01/2021] [Indexed: 05/12/2023]
Abstract
BRASSINAZOLE RESISTANT (BZR) are transcriptional factors that bind to the DNA of targeted genes to regulate several plant growth and physiological processes in response to abiotic and biotic stresses. However, information on such genes in Brassica napus is minimal. Furthermore, the new reference Brassica napus genome offers an excellent opportunity to systematically characterize this gene family in B. napus. In our study, 21 BnaBZR genes were distributed across 19 chromosomes of B. napus and clustered into four subgroups based on Arabidopsis thaliana orthologs. Functional divergence analysis among these groups evident the shifting of evolutionary rate after the duplication events. In terms of structural analysis, the BnaBZR genes within each subgroup are highly conserved but are distinctive within groups. Organ-specific expression analyses of BnaBZR genes using RNA-seq data and quantitative real-time polymerase chain reaction (qRT-PCR) revealed complex expression patterns in plant tissues during stress conditions. In which genes belonging to subgroups III and IV were identified to play central roles in plant tolerance to salt, drought, and Sclerotinia sclerotiorum stress. The insights from this study enrich our understanding of the B. napus BZR gene family and lay a foundation for future research in improving rape seed environmental adaptability.
Collapse
Affiliation(s)
- Rehman Sarwar
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Rui Geng
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Lei Li
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yue Shan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ke-Ming Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jin Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Zhang L, He J, He H, Wu J, Li M. Genome-wide unbalanced expression bias and expression level dominance toward Brassica oleracea in artificially synthesized intergeneric hybrids of Raphanobrassica. HORTICULTURE RESEARCH 2021; 8:246. [PMID: 34848691 PMCID: PMC8633066 DOI: 10.1038/s41438-021-00672-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 05/04/2023]
Abstract
Raphanobrassica (RrRrCrCr, 2n = 4x = 36), which is generated by distant hybridization between the maternal parent Raphanus sativus (RsRs, 2n = 2x = 18) and the paternal parent Brassica oleracea (C°C°, 2n = 2x = 18), displays intermediate silique phenotypes compared to diploid progenitors. However, the hybrid shares much more similarities in silique phenotypes with those of B. oleracea than those of R. sativus. Strikingly, the silique of Raphanobrassica is obviously split into two parts. To investigate the gene expression patterns behind these phenomena, transcriptome analysis was performed on the upper, middle, and lower sections of pods (RCsiu, RCsim, and RCsil), seeds in the upper and lower sections of siliques (RCseu and RCsel) from Raphanobrassica, whole pods (Rsi and Csi) and all seeds in the siliques (Rse and Cse) from R. sativus and B. oleracea. Transcriptome shock was observed in all five aforementioned tissues of Raphanobrassica. Genome-wide unbalanced biased expression and expression level dominance were also discovered, and both of them were toward B. oleracea in Raphanobrassica, which is consistent with the observed phenotypes. The present results reveal the global gene expression patterns of different sections of siliques of Raphanobrassica, pods, and seeds of B. oleracea and R. sativus, unraveling the tight correlation between global gene expression patterns and phenotypes of the hybrid and its parents.
Collapse
Affiliation(s)
- Libin Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianjie He
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongsheng He
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiangsheng Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
5
|
Ding Y, Yu S, Wang J, Li M, Qu C, Li J, Liu L. Comparative transcriptomic analysis of seed coats with high and low lignin contents reveals lignin and flavonoid biosynthesis in Brassica napus. BMC PLANT BIOLOGY 2021; 21:246. [PMID: 34051742 PMCID: PMC8164251 DOI: 10.1186/s12870-021-03030-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Brassica napus L. (2n = 38, AACC) is one of the most important oil crops and sources of protein for animal feed worldwide. Lignin is a large molecule aromatic polymer and a major cell wall component. However, lignin in the seed coat reduces the availability and restricts the development of rapeseed cake. Therefore, it is critical to reduce the lignin content of the seed coat. Here, high-lignin (H-lignin) and low-lignin (L-lignin) content recombinant inbred lines (RILs) were selected from an RIL population for analysis. RESULTS The cross-section results indicated that the seed coat of the H-lignin lines was thicker than that of the L-lignin lines, especially the palisade layer. The seed coats and embryos at 35, 40 and 46 days after flowering (DAF) were subjected to RNA sequencing (RNA-Seq), and the expression of the BnPAL and BnC4H gene families in the lignin pathway was significantly higher in the H-lignin seed coat than in the L-lignin seed coat. The Bn4CL gene family also showed this trend. In addition, among the genes related to plant hormone synthesis, BnaC02g01710D was upregulated and BnaA07g11700D and BnaC09g00190D were downregulated in H-lignin lines. Some transcription factors were upregulated, such as BnNAC080, BnNAC083, BnMYB9, BnMYB9-1, BnMYB60 and BnMYB60-1, while BnMYB91 was downregulated in H-lignin lines. Moreover, most genes of the flavonoid pathway, such as BnCHS and BnDFR, were strongly expressed in H-lignin seed coat. CONCLUSIONS In Our study, some key genes such as hormone synthesis genes, transcription factors and miRNAs related to lignin and flavonoid biosynthesis were identified. A regulatory model of B. napus seed coat lignin was proposed. These results provide new insight into lignin and flavonoid biosynthesis in B. napus.
Collapse
Affiliation(s)
- Yiran Ding
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Shizhou Yu
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guizhou, 550008, China
| | - Jia Wang
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Maoteng Li
- Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430070, Hubei, China
| | - Cunmin Qu
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|