1
|
Shymialevich D, Wójcicki M, Sokołowska B. The Novel Concept of Synergically Combining: High Hydrostatic Pressure and Lytic Bacteriophages to Eliminate Vegetative and Spore-Forming Bacteria in Food Products. Foods 2024; 13:2519. [PMID: 39200446 PMCID: PMC11353811 DOI: 10.3390/foods13162519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
The article focuses on the ongoing challenge of eliminating vegetative and spore-forming bacteria from food products that exhibit resistance to the traditional preservation methods. In response to this need, the authors highlight an innovative approach based on the synergistic utilization of high-hydrostatic-pressure (HHP) and lytic bacteriophages. The article reviews the current research on the use of HHP and lytic bacteriophages to combat bacteria in food products. The scope includes a comprehensive review of the existing literature on bacterial cell damage following HHP application, aiming to elucidate the synergistic effects of these technologies. Through this in-depth analysis, the article aims to contribute to a deeper understanding of how these innovative techniques can improve food safety and quality. There is no available research on the use of HHP and bacteriophages in the elimination of spore-forming bacteria; however, an important role of the synergistic effect of HHP and lytic bacteriophages with the appropriate adjustment of the parameters has been demonstrated in the more effective elimination of non-spore-forming bacteria from food products. This suggests that, when using this approach in the case of spore-forming bacteria, there is a high chance of the effective inactivation of this biological threat.
Collapse
Affiliation(s)
- Dziyana Shymialevich
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (M.W.); (B.S.)
| | | | | |
Collapse
|
2
|
Wiśniewski P, Chajęcka-Wierzchowska W, Zadernowska A. Impact of High-Pressure Processing (HPP) on Listeria monocytogenes-An Overview of Challenges and Responses. Foods 2023; 13:14. [PMID: 38201041 PMCID: PMC10778341 DOI: 10.3390/foods13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
High-pressure processing (HPP) is currently one of the leading methods of non-thermal food preservation as an alternative to traditional methods based on thermal processing. The application of HPP involves the simultaneous action of a combination of several factors-pressure values (100-600 MPa), time of operation (a few-several minutes), and temperature of operation (room temperature or lower)-using a liquid medium responsible for pressure transfer. The combination of these three factors results in the inactivation of microorganisms, thus extending food shelf life and improving the food's microbiological safety. HPP can provide high value for the sensory and quality characteristics of products and reduce the population of pathogenic microorganisms such as L. monocytogenes to the required safety level. Nevertheless, the technology is not without impact on the cellular response of pathogens. L. monocytogenes cells surviving the HPP treatment may have multiple damages, which may impact the activation of mechanisms involved in the repair of cellular damage, increased virulence, or antibiotic resistance, as well as an increased expression of genes encoding pathogenicity and antibiotic resistance. This review has demonstrated that HPP is a technology that can reduce L. monocytogenes cells to below detection levels, thus indicating the potential to provide the desired level of safety. However, problems have been noted related to the possibilities of cell recovery during storage and changes in virulence and antibiotic resistance due to the activation of gene expression mechanisms, and the lack of a sufficient number of studies explaining these changes has been reported.
Collapse
Affiliation(s)
- Patryk Wiśniewski
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland; (W.C.-W.); (A.Z.)
| | | | | |
Collapse
|
3
|
Wiśniewski P, Chajęcka-Wierzchowska W, Zadernowska A. High-Pressure Processing-Impacts on the Virulence and Antibiotic Resistance of Listeria monocytogenes Isolated from Food and Food Processing Environments. Foods 2023; 12:3899. [PMID: 37959018 PMCID: PMC10650155 DOI: 10.3390/foods12213899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
High-pressure processing (HPP) is one of the non-thermal methods of food preservation considered to be safe but may cause an increase/decrease in virulence potential and antibiotic resistance. The aim of the present study was to evaluate the survival of L. monocytogenes isolates after high-pressure processing (200 and 400 MPa for 5 min) and to determine changes in phenotypic and genotypic antibiotic resistance and virulence after this treatment. The 400 MPa treatment was shown to be effective in reducing pathogens to safe levels; however, the potential for cell recovery during storage was observed. In addition, studies on changes in virulence indicated possibilities related to a decrease in actA gene expression, overexpression of the hly and osfX gene, and an increase in biofilm-forming ability. The studies on changes in antibiotic resistance of isolates showed that all isolates showing initial susceptibility to lincomycin, fosfomycin, trimethoprim/sulfamethoxazole, and tetracycline became resistant to these antibiotics, which was associated with an increase in the values of minimum inhibitory concentrations. An increase in the expression of antibiotic resistance genes (mainly tetA_1, tetA_3, tetC) was also observed (mainly after the application of 200 MPa pressure), which was isolate dependent. However, it is noteworthy that the induced changes were permanent, i.e., they persisted even after the restoration of optimal environmental conditions. The results presented in our work indicate that the stress occurring during HPP can affect both phenotypic and genotypic changes in the virulence and antibiotic resistance potential of pathogens isolated from food and food processing environments. The potential associated with cell recovery and persistence of changes may influence the spread of virulent isolates of pathogens with increased antibiotic resistance in the food and food processing environment.
Collapse
Affiliation(s)
- Patryk Wiśniewski
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland; (W.C.-W.); (A.Z.)
| | | | | |
Collapse
|
4
|
Bucur FI, Borda D, Neagu C, Grigore-Gurgu L, Nicolau AI. Deterministic Approach and Monte Carlo Simulation to Predict Listeria monocytogenes Time to Grow on Refrigerated Ham: A Study Supporting Risk-based Decisions for Consumers' Health. J Food Prot 2023; 86:100026. [PMID: 36916585 DOI: 10.1016/j.jfp.2022.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
This study assessed the growth of Listeria monocytogenes in ready-to-eat (RTE) ham during storage under conditions simulating domestic practices with the intention to offer support in the elaboration of food safety policies that should better protect consumers against food poisoning at home. RTE ham, artificially contaminated at either medium (102-103 CFU/g) or high (104-105 CFU/g) concentration, was stored at both isothermal (4℃ in a refrigerator able to maintain a relatively constant temperature and 5℃ and 7℃ in a refrigerator with fluctuating temperature) and dynamic (5℃ and 7℃ with intermittent exposure to ambient temperature, e.g. 25℃) conditions. Under isothermal conditions, the increasing storage temperature determined a significantly increased (p < 0.05) capacity of L. monocytogenes to grow. The kinetic growth parameters were derived by fitting the Baranyi and Roberts model to the experimental data and, based on the maximum specific growth rates, it was estimated the temperature dependence of L. monocytogenes growth in RTE ham. At medium contamination level, sanitary risk time calculation revealed that, unlike storage at 5℃ and 7℃, storage at 4℃ of the RTE ham extends the time period during which the product is safe for consumption by ∼40 and 52%, respectively. However, the real temperature fluctuations included in the Monte Carlo simulations at low L. monocytogenes counts (1, 5 and 10 CFU/g) have shortened the safety margins. Stochastic models also proved to be useful tools for describing the pathogen's behavior when refrigeration of the RTE ham alternates with periods of ham being kept at room temperature, considered dynamic conditions of growth.
Collapse
Affiliation(s)
- Florentina Ionela Bucur
- Dunărea de Jos University of Galați, Faculty of Food Science and Engineering, Domnească Street 111, Galați 800201, Romania
| | - Daniela Borda
- Dunărea de Jos University of Galați, Faculty of Food Science and Engineering, Domnească Street 111, Galați 800201, Romania
| | - Corina Neagu
- Dunărea de Jos University of Galați, Faculty of Food Science and Engineering, Domnească Street 111, Galați 800201, Romania
| | - Leontina Grigore-Gurgu
- Dunărea de Jos University of Galați, Faculty of Food Science and Engineering, Domnească Street 111, Galați 800201, Romania
| | - Anca Ioana Nicolau
- Dunărea de Jos University of Galați, Faculty of Food Science and Engineering, Domnească Street 111, Galați 800201, Romania.
| |
Collapse
|
5
|
Bar N, Nikparvar B, Jayavelu ND, Roessler FK. Constrained Fourier estimation of short-term time-series gene expression data reduces noise and improves clustering and gene regulatory network predictions. BMC Bioinformatics 2022; 23:330. [PMID: 35945515 PMCID: PMC9364503 DOI: 10.1186/s12859-022-04839-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/12/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Biological data suffers from noise that is inherent in the measurements. This is particularly true for time-series gene expression measurements. Nevertheless, in order to to explore cellular dynamics, scientists employ such noisy measurements in predictive and clustering tools. However, noisy data can not only obscure the genes temporal patterns, but applying predictive and clustering tools on noisy data may yield inconsistent, and potentially incorrect, results. RESULTS To reduce the noise of short-term (< 48 h) time-series expression data, we relied on the three basic temporal patterns of gene expression: waves, impulses and sustained responses. We constrained the estimation of the true signals to these patterns by estimating the parameters of first and second-order Fourier functions and using the nonlinear least-squares trust-region optimization technique. Our approach lowered the noise in at least 85% of synthetic time-series expression data, significantly more than the spline method ([Formula: see text]). When the data contained a higher signal-to-noise ratio, our method allowed downstream network component analyses to calculate consistent and accurate predictions, particularly when the noise variance was high. Conversely, these tools led to erroneous results from untreated noisy data. Our results suggest that at least 5-7 time points are required to efficiently de-noise logarithmic scaled time-series expression data. Investing in sampling additional time points provides little benefit to clustering and prediction accuracy. CONCLUSIONS Our constrained Fourier de-noising method helps to cluster noisy gene expression and interpret dynamic gene networks more accurately. The benefit of noise reduction is large and can constitute the difference between a successful application and a failing one.
Collapse
Affiliation(s)
- Nadav Bar
- grid.5947.f0000 0001 1516 2393Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Sem Sælandsvei 4, Trondheim, NO-7491 Norway
| | - Bahareh Nikparvar
- grid.5947.f0000 0001 1516 2393Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Sem Sælandsvei 4, Trondheim, NO-7491 Norway
| | - Naresh Doni Jayavelu
- grid.34477.330000000122986657Division of Medical Genetics, Department of Medicine, University of Washington Seattle, Seattle, WA 98195-7720 USA
| | - Fabienne Krystin Roessler
- grid.5947.f0000 0001 1516 2393Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Sem Sælandsvei 4, Trondheim, NO-7491 Norway
| |
Collapse
|
6
|
Aganovic K, Hertel C, Vogel RF, Johne R, Schlüter O, Schwarzenbolz U, Jäger H, Holzhauser T, Bergmair J, Roth A, Sevenich R, Bandick N, Kulling SE, Knorr D, Engel KH, Heinz V. Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Compr Rev Food Sci Food Saf 2021; 20:3225-3266. [PMID: 34056857 DOI: 10.1111/1541-4337.12763] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/02/2021] [Accepted: 04/10/2021] [Indexed: 11/29/2022]
Abstract
The last two decades saw a steady increase of high hydrostatic pressure (HHP) used for treatment of foods. Although the science of biomaterials exposed to high pressure started more than a century ago, there still seem to be a number of unanswered questions regarding safety of foods processed using HHP. This review gives an overview on historical development and fundamental aspects of HHP, as well as on potential risks associated with HHP food applications based on available literature. Beside the combination of pressure and temperature, as major factors impacting inactivation of vegetative bacterial cells, bacterial endospores, viruses, and parasites, factors, such as food matrix, water content, presence of dissolved substances, and pH value, also have significant influence on their inactivation by pressure. As a result, pressure treatment of foods should be considered for specific food groups and in accordance with their specific chemical and physical properties. The pressure necessary for inactivation of viruses is in many instances slightly lower than that for vegetative bacterial cells; however, data for food relevant human virus types are missing due to the lack of methods for determining their infectivity. Parasites can be inactivated by comparatively lower pressure than vegetative bacterial cells. The degrees to which chemical reactions progress under pressure treatments are different to those of conventional thermal processes, for example, HHP leads to lower amounts of acrylamide and furan. Additionally, the formation of new unknown or unexpected substances has not yet been observed. To date, no safety-relevant chemical changes have been described for foods treated by HHP. Based on existing sensitization to non-HHP-treated food, the allergenic potential of HHP-treated food is more likely to be equivalent to untreated food. Initial findings on changes in packaging materials under HHP have not yet been adequately supported by scientific data.
Collapse
Affiliation(s)
- Kemal Aganovic
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| | - Christian Hertel
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| | - Rudi F Vogel
- Technical University of Munich (TUM), Munich, Germany
| | - Reimar Johne
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Oliver Schlüter
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany.,Alma Mater Studiorum, University of Bologna, Cesena, Italy
| | | | - Henry Jäger
- University of Natural Resources and Life Sciences (BOKU), Wien, Austria
| | - Thomas Holzhauser
- Division of Allergology, Paul-Ehrlich-Institut (PEI), Langen, Germany
| | | | - Angelika Roth
- Senate Commission on Food Safety (DFG), IfADo, Dortmund, Germany
| | - Robert Sevenich
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany.,Technical University of Berlin (TUB), Berlin, Germany
| | - Niels Bandick
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | - Volker Heinz
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| |
Collapse
|
7
|
Nikparvar B, Subires A, Capellas M, Hernandez-Herrero M, Crauwels P, Riedel CU, Bar N. A Diffusion Model to Quantify Membrane Repair Process in Listeria monocytogenes Exposed to High Pressure Processing Based on Fluorescence Microscopy Data. Front Microbiol 2021; 12:598739. [PMID: 34054742 PMCID: PMC8155719 DOI: 10.3389/fmicb.2021.598739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
The effects of environmental stresses on microorganisms have been well-studied, and cellular responses to stresses such as heat, cold, acids, and salts have been extensively discussed. Although high pressure processing (HPP) is becoming more popular as a preservation method in the food industry, the characteristics of the cellular damage caused by high pressure are unclear, and the microbial response to this stress has not yet been well-explored. We exposed the pathogen Listeria monocytogenes to HPP (400 MPa, 8 min, 8°C) and found that the high pressure created plasma membrane pores. Using a common staining technique involving propidium iodide (PI) combined with high-frequency fluorescence microscopy, we monitored the rate of diffusion of PI molecules into hundreds of bacterial cells through these pores on days 0, 1, 2, 3, and 4 after pressurization. We also developed a mathematical dynamic model based on mass transfer and passive diffusion laws, calibrated using our microscopy experiments, to evaluate the response of bacteria to HPP. We found that the rate of diffusion of PI into the cells decreased over the 4 consecutive days after exposure to HPP, indicating repair of the pressure-created membrane pores. The model suggested a temporal change in the size of pores until closure. To the best of our knowledge, this is the first time that pressure-created membrane pores have been quantitatively described and shown to diminish with time. In addition, we found that the membrane repair rate in response to HPP was linear, and growth was temporarily arrested at the population level during the repair period. These results support the existence of a progressive repair process in some of the cells that take up PI, which can therefore be considered as being sub-lethally injured rather than dead. Hence, we showed that a subgroup of bacteria survived HPP and actively repaired their membrane pores.
Collapse
Affiliation(s)
- Bahareh Nikparvar
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alicia Subires
- Department of Animal and Food Science, Autonomous University of Barcelona, Barcelona, Spain
| | - Marta Capellas
- Department of Animal and Food Science, Autonomous University of Barcelona, Barcelona, Spain
| | | | - Peter Crauwels
- Department of Biology, Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | - Christian U Riedel
- Department of Biology, Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
8
|
Duru IC, Bucur FI, Andreevskaya M, Ylinen A, Crauwels P, Grigore-Gurgu L, Nikparvar B, Rode TM, Laine P, Paulin L, Løvdal T, Riedel CU, Bar N, Borda D, Nicolau AI, Auvinen P. The complete genome sequence of Listeria monocytogenes strain S2542 and expression of selected genes under high-pressure processing. BMC Res Notes 2021; 14:137. [PMID: 33858503 PMCID: PMC8048338 DOI: 10.1186/s13104-021-05555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/02/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES The study aims to generate the whole genome sequence of L. monocytogenes strain S2542 and to compare it to the genomes of strains RO15 and ScottA. In addition, we aimed to compare gene expression profiles of L. monocytogenes strains S2542, ScottA and RO15 after high-pressure processing (HPP) using ddPCR. RESULTS The whole genome sequence of L. monocytogenes S2542 indicates that this strain belongs to serotype 4b, in contrast to the previously reported serotype 1/2a. Strain S2542 appears to be more susceptible to the treatment at 400 MPa compared to RO15 and ScottA strains. In contrast to RO15 and ScottA strains, viable cell counts of strain S2542 were below the limit of detection after HPP (400 MPa/8 min) when stored at 8 °C for 24 and 48 h. The transcriptional response of all three strains to HPP was not significantly different.
Collapse
Affiliation(s)
- Ilhan Cem Duru
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Florentina Ionela Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Margarita Andreevskaya
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Blueprint Genetics, Espoo, Finland
| | - Anne Ylinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Peter Crauwels
- Institute of Microbiology and Biotechnology, Ulm, University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Bahareh Nikparvar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tone Mari Rode
- Department of Process Technology, Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, 4068, Stavanger, Norway
| | - Pia Laine
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Trond Løvdal
- Department of Process Technology, Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, 4068, Stavanger, Norway
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, Ulm, University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Daniela Borda
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Nikparvar B, Andreevskaya M, Duru IC, Bucur FI, Grigore-Gurgu L, Borda D, Nicolau AI, Riedel CU, Auvinen P, Bar N. Analysis of temporal gene regulation of Listeria monocytogenes revealed distinct regulatory response modes after exposure to high pressure processing. BMC Genomics 2021; 22:266. [PMID: 33853520 PMCID: PMC8045354 DOI: 10.1186/s12864-021-07461-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/10/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The pathogen Listeria (L.) monocytogenes is known to survive heat, cold, high pressure, and other extreme conditions. Although the response of this pathogen to pH, osmotic, temperature, and oxidative stress has been studied extensively, its reaction to the stress produced by high pressure processing HPP (which is a preservation method in the food industry), and the activated gene regulatory network (GRN) in response to this stress is still largely unknown. RESULTS We used RNA sequencing transcriptome data of L. monocytogenes (ScottA) treated at 400 MPa and 8∘C, for 8 min and combined it with current information in the literature to create a transcriptional regulation database, depicting the relationship between transcription factors (TFs) and their target genes (TGs) in L. monocytogenes. We then applied network component analysis (NCA), a matrix decomposition method, to reconstruct the activities of the TFs over time. According to our findings, L. monocytogenes responded to the stress applied during HPP by three statistically different gene regulation modes: survival mode during the first 10 min post-treatment, repair mode during 1 h post-treatment, and re-growth mode beyond 6 h after HPP. We identified the TFs and their TGs that were responsible for each of the modes. We developed a plausible model that could explain the regulatory mechanism that L. monocytogenes activated through the well-studied CIRCE operon via the regulator HrcA during the survival mode. CONCLUSIONS Our findings suggest that the timely activation of TFs associated with an immediate stress response, followed by the expression of genes for repair purposes, and then re-growth and metabolism, could be a strategy of L. monocytogenes to survive and recover extreme HPP conditions. We believe that our results give a better understanding of L. monocytogenes behavior after exposure to high pressure that may lead to the design of a specific knock-out process to target the genes or mechanisms. The results can help the food industry select appropriate HPP conditions to prevent L. monocytogenes recovery during food storage.
Collapse
Affiliation(s)
- Bahareh Nikparvar
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Ilhan C Duru
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Florentina I Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Daniela Borda
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Anca I Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
10
|
González-Angulo M, Serment-Moreno V, Clemente-García L, Tonello C, Jaime I, Rovira J. Assessing the pressure resistance of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella enterica to high pressure processing (HPP) in citric acid model solutions for process validation. Food Res Int 2021; 140:110091. [PMID: 33648306 DOI: 10.1016/j.foodres.2020.110091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 10/22/2022]
Abstract
Despite the commercial success of high pressure processing (HPP) in the juice industry, some regulatory agencies still require process validation. However, there is a lack of consensus on various aspects regarding validation protocols, including the selection of representative strains to be used in challenge tests. This study characterized the variable response of Escherichia coli O157:H7 (34 strains), Listeria monocytogenes (44 strains) and Salmonella enterica (45 strains) to HPP, and identified potential candidates to use in process validation. Stationary phase cells were submitted to 500 MPa for 1 min at 10 °C in model solutions consisting of tryptic soy broth + 0.6% yeast extract (TSBYE) adjusted to pH 4.5 and 6.0 with citric acid. At pH 6.0, pressure resistance widely varied between species and within strains of the same species. E. coli O157:H7 and L. monocytogenes were the most pressure resistant and showed high variability at strain level, as the total count range given by minimum and maximum counts spread between 2.0 and 6.5 log10 CFU/ml. S. enterica was the least resistant pathogen with more than 82% of the isolates displaying non-detectable counts after HPP. Recovery through storage at 12 °C was also variable for all pathogens, but eventually most strains recovered with median counts on day 14 between 8.3 and 8.9 log10 CFU/ml. For pH 4.5 solutions, 26 E. coli O157:H7 strains displayed survivors after HPP but did not adapt, registering non-detectable counts in the next sampling dates. None of the L. monocytogenes and S. enterica strains survived HPP or incubation at pH 4.5 (<2.0 log10 CFU/ml), suggesting that citric acid at 4.16 g/l is a safe barrier for pathogen control under moderate HPP conditions. Principal component and cluster analyses served to propose strain cocktails for each species based on their pressure resistant and adaptation phenotypes. Additionally, S. enterica was identified as less pressure resistant and less prone to recover following HPP than E. coli O157:H7 and L. monocytogenes, so its relevance in process validation for juices should be questioned. Future work will validate the proposed strain cocktails on real food systems.
Collapse
Affiliation(s)
- Mario González-Angulo
- Hiperbaric, S.A., Department of Applications and Food Processing, C/ Condado de Treviño, 6, 09001 Burgos, Spain; University of Burgos, Department of Biotechnology and Food Science, Faculty of Sciences, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Vinicio Serment-Moreno
- Hiperbaric USA Corporation, Department of Applications and Food Processing, 2250 NW 84(th) Avenue, 101, Miami, FL 33122, United States
| | - Laura Clemente-García
- Hiperbaric, S.A., Department of Applications and Food Processing, C/ Condado de Treviño, 6, 09001 Burgos, Spain
| | - Carole Tonello
- Hiperbaric, S.A., Department of Applications and Food Processing, C/ Condado de Treviño, 6, 09001 Burgos, Spain
| | - Isabel Jaime
- University of Burgos, Department of Biotechnology and Food Science, Faculty of Sciences, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Jordi Rovira
- University of Burgos, Department of Biotechnology and Food Science, Faculty of Sciences, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| |
Collapse
|
11
|
Duru IC, Bucur FI, Andreevskaya M, Nikparvar B, Ylinen A, Grigore-Gurgu L, Rode TM, Crauwels P, Laine P, Paulin L, Løvdal T, Riedel CU, Bar N, Borda D, Nicolau AI, Auvinen P. High-pressure processing-induced transcriptome response during recovery of Listeria monocytogenes. BMC Genomics 2021; 22:117. [PMID: 33579201 PMCID: PMC7881616 DOI: 10.1186/s12864-021-07407-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Background High-pressure processing (HPP) is a commonly used technique in the food industry to inactivate pathogens, including L. monocytogenes. It has been shown that L. monocytogenes is able to recover from HPP injuries and can start to grow again during long-term cold storage. To date, the gene expression profiling of L. monocytogenes during HPP damage recovery at cooling temperature has not been studied. In order identify key genes that play a role in recovery of the damage caused by HPP treatment, we performed RNA-sequencing (RNA-seq) for two L. monocytogenes strains (barotolerant RO15 and barosensitive ScottA) at nine selected time points (up to 48 h) after treatment with two pressure levels (200 and 400 MPa). Results The results showed that a general stress response was activated by SigB after HPP treatment. In addition, the phosphotransferase system (PTS; mostly fructose-, mannose-, galactitol-, cellobiose-, and ascorbate-specific PTS systems), protein folding, and cobalamin biosynthesis were the most upregulated genes during HPP damage recovery. We observed that cell-division-related genes (divIC, dicIVA, ftsE, and ftsX) were downregulated. By contrast, peptidoglycan-synthesis genes (murG, murC, and pbp2A) were upregulated. This indicates that cell-wall repair occurs as a part of HPP damage recovery. We also observed that prophage genes, including anti-CRISPR genes, were induced by HPP. Interestingly, a large amount of RNA-seq data (up to 85%) was mapped to Rli47, which is a non-coding RNA that is upregulated after HPP. Thus, we predicted that Rli47 plays a role in HPP damage recovery in L. monocytogenes. Moreover, gene-deletion experiments showed that amongst peptidoglycan biosynthesis genes, pbp2A mutants are more sensitive to HPP. Conclusions We identified several genes and mechanisms that may play a role in recovery from HPP damage of L. monocytogenes. Our study contributes to new information on pathogen inactivation by HPP. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07407-6.
Collapse
Affiliation(s)
- Ilhan Cem Duru
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Florentina Ionela Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | | | - Bahareh Nikparvar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anne Ylinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Tone Mari Rode
- Department of Process Technology, Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, N-4068, Stavanger, Norway
| | - Peter Crauwels
- Institute of Microbiology and Biotechnology, Ulm, University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Pia Laine
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Trond Løvdal
- Department of Process Technology, Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, N-4068, Stavanger, Norway
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, Ulm, University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Daniela Borda
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Prokopenko I, Pokintelitsa N, Velyaev Y, Eryomenko D, Svetlichnaya O. The use of high hydrostatic pressure in the technology of whole muscle meat products. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213605004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The work examined the effect of high hydrostatic pressure on the chemical composition and microbiological indicators of poultry meat. Data on the mass fraction of moisture, fat, protein and ash before and after processing the product with high hydrostatic pressure are presented. Pressure treatment modes are justified, at which it is possible to obtain finished products. The formulation of a whole-muscle product from poultry meat has been developed, as well as a technological scheme for preparing a new product using innovative technology.
Collapse
|