1
|
Lyu L, Li L, Zhao C, Ning Y, Luo Y, He X, Nan M. Whole-Genome DNA Methylation Analysis of Inoculation with Trichothecium roseum in Harvested Muskmelons. J Fungi (Basel) 2025; 11:243. [PMID: 40278064 PMCID: PMC12027829 DOI: 10.3390/jof11040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
DNA methylation is a crucial epigenetic marker linked to plant defense responses, but its significance in fungal infection of postharvest fruits remains poorly understood. This study indicated that Trichothecium roseum inoculation increased ROS production, enhanced phenylpropanoid metabolism-related enzyme activity, and promoted lignin accumulation in harvested muskmelon fruits (Cucumis melo cv. Yujinxiang) within 24 h post-inoculation (hpi). In addition, whole-genome bisulfite sequencing showed that genomic DNA methylation levels of muskmelon decreased by 6.15% at 24 hpi. Notably, CG sites exhibited a higher methylation level and the largest number of differentially methylated regions (DMRs). Moreover, 176 DMR-associated genes (DMGs) involved in the defense response, 134 DMGs in the ROS metabolic pathway, and 41 DMGs in phenylpropanoid metabolism were identified. The differentially expressed genes harboring differential methylation were mainly influenced by hypomethylation and exhibited elevated transcript levels, involved in phenylpropanoid biosynthesis and biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Liang Lyu
- College of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Lei Li
- College of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Chenglong Zhao
- College of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yuchao Ning
- College of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yawen Luo
- College of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xining He
- College of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Mina Nan
- Laboratory and Practice Base Management Center, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Hong Y, Wen Z, Qiao G, Tian T, Wen X. Single-Base Methylome Analysis of Sweet Cherry ( Prunus avium L.) on Dwarfing Rootstocks Reveals Epigenomic Differences Associated with Scion Dwarfing Conferred by Grafting. Int J Mol Sci 2024; 25:11100. [PMID: 39456883 PMCID: PMC11508414 DOI: 10.3390/ijms252011100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Plant grafting using dwarfing rootstocks is one of the important cultivation measures in the sweet cherry (Prunus avium) industry. In this work, we aimed to explore the effects of the dwarfing rootstock "Pd1" (Prunus tomentosa) on sweet cherry 'Shuguang2' scions by performing morphological observations using the paraffin slice technique, detecting GA (gibberellin) and IAA (auxin) contents using UPLC-QTRAP-MS (ultra-performance liquid chromatography coupled with a hybrid triple quadrupole-linear ion trap mass spectrometer), and implementing integration analyses of the epigenome and transcriptome using whole-genome bisulfite sequencing and transcriptome sequencing. Anatomical analysis indicated that the cell division ability of the SAM (shoot apical meristem) in dwarfing plants was reduced. Pd1 rootstock significantly decreased the levels of GAs and IAA in sweet cherry scions. Methylome analysis showed that the sweet cherry genome presented 15.2~18.6%, 59.88~61.55%, 28.09~33.78%, and 2.99~5.28% methylation at total C, CG, CHG, and CHH sites, respectively. Shoot tips from dwarfing plants exhibited a hypermethylated pattern mostly due to increased CHH methylation, while leaves exhibited a hypomethylated pattern. According to GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, DMGs (differentially methylated genes) and DEGs (differentially expressed genes) were enriched in hormone-related GO terms and KEGG pathways. Global correlation analysis between methylation and transcription revealed that mCpG in the gene body region enhanced gene expression and mCHH in the region near the TSS (transcription start site) was positively correlated with gene expression. Next, we found some hormone-related genes and TFs with significant changes in methylation and transcription, including SAURs, ARF, GA2ox, ABS1, bZIP, MYB, and NAC. This study presents a methylome map of the sweet cherry genome, revealed widespread DNA methylation alterations in scions caused by dwarfing rootstock, and obtained abundant genes with methylation and transcription alterations that are potentially involved in rootstock-induced growth changes in sweet cherry scions. Our findings can lay a good basis for further epigenetic studies on sweet cherry dwarfing and provide valuable new insight into understanding rootstock-scion interactions.
Collapse
Affiliation(s)
| | | | | | | | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; (Y.H.); (Z.W.); (G.Q.); (T.T.)
| |
Collapse
|
3
|
Yin M, Wang S, Wang Y, Wei R, Liang Y, Zuo L, Huo M, Huang Z, Lang J, Zhao X, Zhang F, Xu J, Fu B, Li Z, Wang W. Impact of Abiotic Stress on Rice and the Role of DNA Methylation in Stress Response Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:2700. [PMID: 39409570 PMCID: PMC11478684 DOI: 10.3390/plants13192700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024]
Abstract
With the intensification of global climate change and the increasing complexity of agricultural environments, the improvement of rice stress tolerance is an important focus of current breeding research. This review summarizes the current knowledge on the impact of various abiotic stresses on rice and the associated epigenetic responses (DNA methylation). Abiotic stress factors, including high temperature, drought, cold, heavy metal pollution, and high salinity, have a negative impact on crop productivity. Epigenetic changes are key regulatory factors in plant stress responses, and DNA methylation is one of the earliest discovered and thoroughly studied mechanisms in these epigenetic regulatory mechanisms. The normal growth of rice is highly dependent on the environment, and changes in the environment can lead to rice sterility and severe yield loss. Changes in the regulation of the DNA methylation pathway are involved in rice's response to stress. Various DNA methylation-regulating protein complexes that function during rice development have been identified. Significant changes in DNA methylation occur in numerous stress-responsive genes, particularly those in the abscisic acid signaling pathway. These findings underscore the complex mechanisms of the abiotic stress response in rice. We propose the effective improvement of tolerance traits by regulating the epigenetic status of rice and emphasize the role of DNA methylation in abiotic stress tolerance, thereby addressing global climate change and ensuring food security.
Collapse
Affiliation(s)
- Ming Yin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shanwen Wang
- Southwest United Graduate School, Kunming 650092, China;
- Center of Innovation for Perennial Rice Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650091, China; (Z.H.); (J.L.)
| | - Yanfang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Ronghua Wei
- Department of Agronomy, Hebei Agricultural University, Baoding 071001, China;
| | - Yawei Liang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Liying Zuo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Mingyue Huo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Zekai Huang
- Center of Innovation for Perennial Rice Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650091, China; (Z.H.); (J.L.)
| | - Jie Lang
- Center of Innovation for Perennial Rice Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650091, China; (Z.H.); (J.L.)
| | - Xiuqin Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Fan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Jianlong Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Binying Fu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Zichao Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wensheng Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- Southwest United Graduate School, Kunming 650092, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
4
|
Carballo J, Achilli A, Hernández F, Bocchini M, Pasten MC, Marconi G, Albertini E, Zappacosta D, Echenique V. Differentially methylated genes involved in reproduction and ploidy levels in recent diploidized and tetraploidized Eragrostis curvula genotypes. PLANT REPRODUCTION 2024; 37:133-145. [PMID: 38055074 PMCID: PMC11180019 DOI: 10.1007/s00497-023-00490-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023]
Abstract
Epigenetics studies changes in gene activity without changes in the DNA sequence. Methylation is an epigenetic mechanism important in many pathways, such as biotic and abiotic stresses, cell division, and reproduction. Eragrostis curvula is a grass species reproducing by apomixis, a clonal reproduction by seeds. This work employed the MCSeEd technique to identify deferentially methylated positions, regions, and genes in the CG, CHG, and CHH contexts in E. curvula genotypes with similar genomic backgrounds but with different reproductive modes and ploidy levels. In this way, we focused the analysis on the cvs. Tanganyika INTA (4x, apomictic), Victoria (2x, sexual), and Bahiense (4x, apomictic). Victoria was obtained from the diploidization of Tanganyika INTA, while Bahiense was produced from the tetraploidization of Victoria. This study showed that polyploid/apomictic genotypes had more differentially methylated positions and regions than the diploid sexual ones. Interestingly, it was possible to observe fewer differentially methylated positions and regions in CG than in the other contexts, meaning CG methylation is conserved across the genotypes regardless of the ploidy level and reproductive mode. In the comparisons between sexual and apomictic genotypes, we identified differentially methylated genes involved in the reproductive pathways, specifically in meiosis, cell division, and fertilization. Another interesting observation was that several differentially methylated genes between the diploid and the original tetraploid genotype recovered their methylation status after tetraploidization, suggesting that methylation is an important mechanism involved in reproduction and ploidy changes.
Collapse
Affiliation(s)
- J Carballo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CCT-CONICET Bahía Blanca), Camino de La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
| | - A Achilli
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CCT-CONICET Bahía Blanca), Camino de La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
| | - F Hernández
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CCT-CONICET Bahía Blanca), Camino de La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000, Bahía Blanca, Argentina
| | - M Bocchini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, 06121, Perugia, Italy
| | - M C Pasten
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CCT-CONICET Bahía Blanca), Camino de La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
| | - G Marconi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, 06121, Perugia, Italy
| | - E Albertini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, 06121, Perugia, Italy.
| | - D Zappacosta
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CCT-CONICET Bahía Blanca), Camino de La Carrindanga Km 7, 8000, Bahía Blanca, Argentina.
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000, Bahía Blanca, Argentina.
| | - V Echenique
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CCT-CONICET Bahía Blanca), Camino de La Carrindanga Km 7, 8000, Bahía Blanca, Argentina.
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
5
|
Xie H, Zheng Y, Xue M, Huang Y, Qian D, Zhao M, Li J. DNA methylation-mediated ROS production contributes to seed abortion in litchi. MOLECULAR HORTICULTURE 2024; 4:12. [PMID: 38561782 PMCID: PMC10986121 DOI: 10.1186/s43897-024-00089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Although there is increasing evidence suggesting that DNA methylation regulates seed development, the underlying mechanisms remain poorly understood. Therefore, we aimed to shed light on this by conducting whole-genome bisulfite sequencing using seeds from the large-seeded cultivar 'HZ' and the abortive-seeded cultivar 'NMC'. Our analysis revealed that the 'HZ' seeds exhibited a hypermethylation level compared to the 'NMC' seeds. Furthermore, we found that the genes associated with differentially methylated regions (DMRs) and differentially expressed genes (DEGs) were mainly enriched in the reactive oxygen species (ROS) metabolic pathway. To investigate this further, we conducted nitroblue tetrazolium (NBT) and 2,7-Dichlorodihydrofluorescein (DCF) staining, which demonstrated a significantly higher amount of ROS in the 'NMC' seeds compared to the 'HZ' seeds. Moreover, we identified that the gene LcGPX6, involved in ROS scavenging, exhibited hypermethylation levels and parallelly lower expression levels in 'NMC' seeds compared to 'HZ' seeds. Interestingly, the ectopic expression of LcGPX6 in Arabidopsis enhanced ROS scavenging and resulted in lower seed production. Together, we suggest that DNA methylation-mediated ROS production plays a significant role in seed development in litchi, during which hypermethylation levels of LcGPX6 might repress its expression, resulting in the accumulation of excessive ROS and ultimately leading to seed abortion.
Collapse
Affiliation(s)
- Hanhan Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yedan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Mengyue Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yulian Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Dawei Qian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Fan J, Zhang H, Shi Y, Li Y, He Y, Wang Q, Liu S, Yao Y, Zhou X, Liao J, Huang Y, Wang Z. Systematic identification and characterization of microRNAs with target genes involved in high night temperature stress at the filling stage of rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14305. [PMID: 38659134 DOI: 10.1111/ppl.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
High night temperature stress is one of the main environmental factors affecting rice yield and quality. More and more evidence shows that microRNA (miRNA) plays an important role in various abiotic stresses. However, the molecular network of miRNA regulation on rice tolerance to high night temperatures remains unclear. Here, small RNA, transcriptome and degradome sequencing were integrated to identify differentially expressed miRNAs, genes, and key miRNA-target gene pairs in rice heat-sensitive and heat-tolerant lines at the filling stage suffering from high night temperature stress. It was discovered that there were notable differences in the relative expression of 102 miRNAs between the two rice lines under stress. Meanwhile, 5263 and 5405 mRNAs were differentially expressed in the heat-sensitive line and heat-tolerant line, and functional enrichment analysis revealed that these genes were involved in heat-related processes and pathways. The miRNAs-mRNAs target relationship was further verified by degradome sequencing. Eventually, 49 miRNAs-222 mRNAs target pairs with reverse expression patterns showed significant relative expression changes between the heat-tolerant and the heat-sensitive line, being suggested to be responsible for the heat tolerance difference of these two rice lines. Functional analysis of these 222 mRNA transcripts showed that high night temperature-responsive miRNAs targeted these mRNAs involved in many heat-related biological processes, such as transcription regulation, chloroplast regulation, mitochondrion regulation, protein folding, hormone regulation and redox process. This study identified possible miRNA-mRNA regulation relationships in response to high night temperature stress in rice and potentially contributed to heat resistance breeding of rice in the future.
Collapse
Affiliation(s)
- Jiangmin Fan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Hongyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Yan Shi
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Yuewu Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Yuxiang He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Qiang Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Siyi Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Youmin Yao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Xiaoya Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Jianglin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Zhaohai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| |
Collapse
|
7
|
Seem K, Kaur S, Kumar S, Mohapatra T. Epigenome editing for targeted DNA (de)methylation: a new perspective in modulating gene expression. Crit Rev Biochem Mol Biol 2024; 59:69-98. [PMID: 38440883 DOI: 10.1080/10409238.2024.2320659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Traditionally, it has been believed that inheritance is driven as phenotypic variations resulting from changes in DNA sequence. However, this paradigm has been challenged and redefined in the contemporary era of epigenetics. The changes in DNA methylation, histone modification, non-coding RNA biogenesis, and chromatin remodeling play crucial roles in genomic functions and regulation of gene expression. More importantly, some of these changes are inherited to the next generations as a part of epigenetic memory and play significant roles in gene expression. The sum total of all changes in DNA bases, histone proteins, and ncRNA biogenesis constitutes the epigenome. Continuous progress in deciphering epigenetic regulations and the existence of heritable epigenetic/epiallelic variations associated with trait of interest enables to deploy epigenome editing tools to modulate gene expression. DNA methylation marks can be utilized in epigenome editing for the manipulation of gene expression. Initially, genome/epigenome editing technologies relied on zinc-finger protein or transcriptional activator-like effector protein. However, the discovery of clustered regulatory interspaced short palindromic repeats CRISPR)/deadCRISPR-associated protein 9 (dCas9) enabled epigenome editing to be more specific/efficient for targeted DNA (de)methylation. One of the major concerns has been the off-target effects, wherein epigenome editing may unintentionally modify gene/regulatory element which may cause unintended change/harmful effects. Moreover, epigenome editing of germline cell raises several ethical/safety issues. This review focuses on the recent developments in epigenome editing tools/techniques, technological limitations, and future perspectives of this emerging technology in therapeutics for human diseases as well as plant improvement to achieve sustainable developmental goals.
Collapse
Affiliation(s)
- Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Trilochan Mohapatra
- Protection of Plant Varieties and Farmers' Rights Authority, New Delhi, India
| |
Collapse
|
8
|
Guarino F, Cicatelli A, Castiglione S, Agius DR, Orhun GE, Fragkostefanakis S, Leclercq J, Dobránszki J, Kaiserli E, Lieberman-Lazarovich M, Sõmera M, Sarmiento C, Vettori C, Paffetti D, Poma AMG, Moschou PN, Gašparović M, Yousefi S, Vergata C, Berger MMJ, Gallusci P, Miladinović D, Martinelli F. An Epigenetic Alphabet of Crop Adaptation to Climate Change. Front Genet 2022; 13:818727. [PMID: 35251130 PMCID: PMC8888914 DOI: 10.3389/fgene.2022.818727] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/28/2022] [Indexed: 01/10/2023] Open
Abstract
Crop adaptation to climate change is in a part attributed to epigenetic mechanisms which are related to response to abiotic and biotic stresses. Although recent studies increased our knowledge on the nature of these mechanisms, epigenetics remains under-investigated and still poorly understood in many, especially non-model, plants, Epigenetic modifications are traditionally divided into two main groups, DNA methylation and histone modifications that lead to chromatin remodeling and the regulation of genome functioning. In this review, we outline the most recent and interesting findings on crop epigenetic responses to the environmental cues that are most relevant to climate change. In addition, we discuss a speculative point of view, in which we try to decipher the “epigenetic alphabet” that underlies crop adaptation mechanisms to climate change. The understanding of these mechanisms will pave the way to new strategies to design and implement the next generation of cultivars with a broad range of tolerance/resistance to stresses as well as balanced agronomic traits, with a limited loss of (epi)genetic variability.
Collapse
Affiliation(s)
- Francesco Guarino
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università Degli Studi di Salerno, Salerno, Italy
| | - Angela Cicatelli
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università Degli Studi di Salerno, Salerno, Italy
| | - Stefano Castiglione
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università Degli Studi di Salerno, Salerno, Italy
| | - Dolores R. Agius
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Gul Ebru Orhun
- Bayramic Vocational College, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | | | - Julie Leclercq
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Institut Agro, Montpellier, France
| | - Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, FAFSEM, University of Debrecen, Debrecen, Hungary
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Merike Sõmera
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Cecilia Sarmiento
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Cristina Vettori
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), Sesto Fiorentino, Italy
| | - Donatella Paffetti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Anna M. G. Poma
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, Aquila, Italy
| | - Panagiotis N. Moschou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Mateo Gašparović
- Chair of Photogrammetry and Remote Sensing, Faculty of Geodesy, University of Zagreb, Zagreb, Croatia
| | - Sanaz Yousefi
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran
| | - Chiara Vergata
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Margot M. J. Berger
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, Bordeaux, France
| | - Philippe Gallusci
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, Bordeaux, France
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
- *Correspondence: Dragana Miladinović, ; Federico Martinelli,
| | - Federico Martinelli
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
- *Correspondence: Dragana Miladinović, ; Federico Martinelli,
| |
Collapse
|