1
|
Li JW, Zhou P, Hu ZH, Xiong AS, Li XH, Chen X, Zhuang J. The transcription factor CsPAT1 from tea plant (Camellia sinensis) is involved in drought tolerance by modulating phenylpropanoid biosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2025; 308:154474. [PMID: 40154189 DOI: 10.1016/j.jplph.2025.154474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025]
Abstract
Tea plants, in particular, leafy cash crops, prefer warm and humid climates. Our previous work identified CsPAT1 as a facilitator of lignin biosynthesis in tea plants. The specific role of CsPAT1 in tea plants' abiotic stress response remains unclear. In this study, we found that the expression of CsPAT1 in tea plants was induced under drought, cold, heat, and ABA treatments. CsPAT1 transgenic Arabidopsis lines displayed enhanced drought tolerance compared with wild-type (WT) controls. The SOD and POD activities, proline content, and expression levels of drought-responsive genes were significantly increased in transgenic Arabidopsis under drought stress treatment. Transcriptome analysis revealed a significant enrichment of differentially expressed genes (DEGs) in the flavonoid biosynthesis pathway. Correspondingly, total flavonoid contents were significantly higher in the CsPAT1 transgenic lines. Through UPLC-MS/MS-based flavonoid metabolome analysis, we identified and quantified 24 flavonoid metabolites. Notably, CsPAT1 transgenic lines exhibited significantly lower levels of phenylpropanoids and hydroxycinnamic acids, key precursors in phenylpropanoid biosynthesis. Conversely, nine flavonoid compounds were significantly elevated in the transgenic lines, including apigenin, luteolin 7-O-glucoside, kaempferide, naringenin, butin, catechin, biochanin A, daidzin, and genistein. These findings suggest that CsPAT1 may enhance drought resistance by regulating the phenylpropanoid metabolic pathway. Our results provide insights for future breeding strategies to enhance drought tolerance in tea plants.
Collapse
Affiliation(s)
- Jing-Wen Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ping Zhou
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xuan Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
2
|
Li GZ, Liu J, Li NY, Zhang DD, Fan P, Liu HT, Chen Y, Seth CS, Ge Q, Guo TC, Kang GZ. TaERFL1a enhances drought resilience through DHAR-mediated ASA-GSH biosynthesis in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109587. [PMID: 39908933 DOI: 10.1016/j.plaphy.2025.109587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Wheat is one of the important cereal crops around the world, but it often suffers from abiotic stresses, which threaten food security. Thus, it is critical to identify the genes that determine drought tolerance in wheat. AP2/ERFs are known to regulate drought stress in various crops. In this study, TaERFL1a-overexpressing wheat transgenic lines (TaERFL1a-OEs) were used to determine drought resilience mechanism. After 12 d without watering, the growth phenotype of TaERFL1a-OEs was better than that of the wild type (WT), whose activities of superoxide dismutase and catalase, and contents of ascorbate acid (ASA) and glutathione (GSH) were significantly increased, while malondialdehyde content was significantly decreased. Transcriptome analysis revealed that 28,520 genes were differentially expressed between TaERFL1a-OEs and WT under drought condition. Further analysis found that these DEGs were involved in multiple stress-response processes, especially in the ASA-GSH pathway. qPCR revealed that the expression levels of GPX, DHAR, and MDHAR, which are suggested to be participated in ASA-GSH biosynthesis, were significantly up-regulated in TaERFL1a-OEs under drought stress, especially the DHAR gene. Moreover, dual-luciferase and luciferase complementation imaging revealed that TaERFL1a was more promoted DHAR transcription to a greater extent than other genes. Furthermore, yeast one-hybrid, electrophoretic mobility shift assay, and chromatin immunoprecipitation combined with qPCR revealed that TaERFL1a regulates DHAR expression by binding to the cis-element ERF in DHAR promoter and promotes the transcription of later in vivo and in vitro. Overall, our results provided molecular regulatory evidence for TaERFL1a in wheat drought stress and suggested candidate genes for improving drought-tolerant wheat breeding.
Collapse
Affiliation(s)
- Ge-Zi Li
- The National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China; Henan Technological Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jin Liu
- The National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Na-Ying Li
- Henan Technological Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Dan-Dan Zhang
- Henan Technological Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Peng Fan
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hai-Tao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | | | - Qiang Ge
- The National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Tian-Cai Guo
- The National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China; Henan Technological Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guo-Zhang Kang
- The National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China; Henan Technological Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China; The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Bohra A, Choudhary M, Bennett D, Joshi R, Mir RR, Varshney RK. Drought-tolerant wheat for enhancing global food security. Funct Integr Genomics 2024; 24:212. [PMID: 39535570 DOI: 10.1007/s10142-024-01488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Wheat is among the most produced grain crops of the world and alone provides a fifth of the world's calories and protein. Wheat has played a key role in food security since the crop served as a Neolithic founder crop for the establishment of world agriculture. Projections showing a decline in global wheat yields in changing climates imply that food security targets could be jeopardized. Increased frequency and intensity of drought occurrence is evident in major wheat-producing regions worldwide, and notably, the wheat-producing area under drought is projected to swell globally by 60% by the end of the 21st century. Wheat yields are significantly reduced due to changes in plant morphological, physiological, biochemical, and molecular activities in response to drought stress. Advances in wheat genetics, multi-omics technologies and plant phenotyping have enhanced the understanding of crop responses to drought conditions. Research has elucidated key genomic regions, candidate genes, signalling molecules and associated networks that orchestrate tolerance mechanisms under drought stress. Robust and low-cost selection tools are now available in wheat for screening genetic variations for drought tolerance traits. New breeding techniques and selection tools open a unique opportunity to tailor future wheat crop with optimal trait combinations that help withstand extreme drought. Adoption of the new wheat varieties will increase crop diversity in rain-fed agriculture and ensure sustainable improvements in crop yields to safeguard the world's food security in drier environments.
Collapse
Affiliation(s)
- Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, PAU campus, Ludhiana, 141001, India
| | - Dion Bennett
- Australian Grain technologies (AGT), Northam, WA, 6401, Australia
| | - Rohit Joshi
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST, Srinagar, 190025, Shalimar, India
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
4
|
Wen X, Liu C, Yang F, Wei Z, Li L, Chen H, Han X, Jiao C, Sha A. Accurate Long-Read RNA Sequencing Analysis Reveals the Key Pathways and Candidate Genes under Drought Stress in the Seed Germination Stage in Faba Bean. Int J Mol Sci 2024; 25:8875. [PMID: 39201560 PMCID: PMC11354372 DOI: 10.3390/ijms25168875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Faba bean is an important pulse. It provides proteins for the human diet and is used in industrial foodstuffs, such as flours. Drought stress severely reduces the yield of faba bean, and this can be efficiently overcome through the identification and application of key genes in response to drought. In this study, PacBio and Illumina RNA sequencing techniques were used to identify the key pathways and candidate genes involved in drought stress response. During seed germination, a total of 17,927 full-length transcripts and 12,760 protein-coding genes were obtained. There were 1676 and 811 differentially expressed genes (DEGs) between the varieties E1 and C105 at 16 h and 64 h under drought stress, respectively. Six and nine KEGG pathways were significantly enriched at 16 h and 64 h under drought stress, which produced 40 and 184 nodes through protein-protein interaction (PPI) analysis, respectively. The DEGs of the PPI nodes were involved in the ABA (abscisic acid) and MAPK (mitogen-activated protein kinase) pathways, N-glycosylation, sulfur metabolism, and sugar metabolism. Furthermore, the ectopic overexpression of a key gene, AAT, encoding aspartate aminotransferase (AAT), in tobacco, enhanced drought tolerance. The activities of AAT and peroxidase (POD), the contents of cysteine and isoleucine, were increased, and the contents of malonaldehyde (MDA) and water loss decreased in the overexpressed plants. This study provides a novel insight into genetic response to drought stress and some candidate genes for drought tolerance genetic improvements in this plant.
Collapse
Affiliation(s)
- Xin Wen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China; (X.W.); (Z.W.)
| | - Changyan Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan 430064, China; (C.L.); (L.L.); (H.C.); (X.H.)
| | - Fangwen Yang
- Shanghai Agrobiological Gene Center, Shanghai 201106, China;
| | - Zhengxin Wei
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China; (X.W.); (Z.W.)
| | - Li Li
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan 430064, China; (C.L.); (L.L.); (H.C.); (X.H.)
| | - Hongwei Chen
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan 430064, China; (C.L.); (L.L.); (H.C.); (X.H.)
| | - Xuesong Han
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan 430064, China; (C.L.); (L.L.); (H.C.); (X.H.)
| | - Chunhai Jiao
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan 430064, China; (C.L.); (L.L.); (H.C.); (X.H.)
| | - Aihua Sha
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China; (X.W.); (Z.W.)
| |
Collapse
|
5
|
Bouard W, Ouellet F, Houde M. Modulation of the wheat transcriptome by TaZFP13D under well-watered and drought conditions. PLANT MOLECULAR BIOLOGY 2024; 114:16. [PMID: 38332456 PMCID: PMC10853348 DOI: 10.1007/s11103-023-01403-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/16/2023] [Indexed: 02/10/2024]
Abstract
Maintaining global food security in the context of climate changes will be an important challenge in the next century. Improving abiotic stress tolerance of major crops such as wheat can contribute to this goal. This can be achieved by the identification of the genes involved and their use to develop tools for breeding programs aiming to generate better adapted cultivars. Recently, we identified the wheat TaZFP13D gene encoding Zinc Finger Protein 13D as a new gene improving water-stress tolerance. The current work analyzes the TaZFP13D-dependent transcriptome modifications that occur in well-watered and dehydration conditions to better understand its function during normal growth and during drought. Plants that overexpress TaZFP13D have a higher biomass under well-watered conditions, indicating a positive effect of the protein on growth. Survival rate and stress recovery after a severe drought stress are improved compared to wild-type plants. The latter is likely due the higher activity of key antioxidant enzymes and concomitant reduction of drought-induced oxidative damage. Conversely, down-regulation of TaZFP13D decreases drought tolerance and protection against drought-induced oxidative damage. RNA-Seq transcriptome analysis identified many genes regulated by TaZFP13D that are known to improve drought tolerance. The analysis also revealed several genes involved in the photosynthetic electron transfer chain known to improve photosynthetic efficiency and chloroplast protection against drought-induced ROS damage. This study highlights the important role of TaZFP13D in wheat drought tolerance, contributes to unravel the complex regulation governed by TaZFPs, and suggests that it could be a promising marker to select wheat cultivars with higher drought tolerance.
Collapse
Affiliation(s)
- William Bouard
- Département des Sciences biologiques, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada
| | - François Ouellet
- Département des Sciences biologiques, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada
| | - Mario Houde
- Département des Sciences biologiques, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada.
| |
Collapse
|
6
|
Yoo Y, Yoo YH, Lee DY, Jung KH, Lee SW, Park JC. Caffeine Produced in Rice Plants Provides Tolerance to Water-Deficit Stress. Antioxidants (Basel) 2023; 12:1984. [PMID: 38001837 PMCID: PMC10669911 DOI: 10.3390/antiox12111984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Exogenous or endogenous caffeine application confers resistance to diverse biotic stresses in plants. In this study, we demonstrate that endogenous caffeine in caffeine-producing rice (CPR) increases tolerance even to abiotic stresses such as water deficit. Caffeine produced by CPR plants influences the cytosolic Ca2+ ion concentration gradient. We focused on examining the expression of Ca2+-dependent protein kinase genes, a subset of the numerous proteins engaged in abiotic stress signaling. Under normal conditions, CPR plants exhibited increased expressions of seven OsCPKs (OsCPK10, OsCPK12, OsCPK21, OsCPK25, OsCPK26, OsCPK30, and OsCPK31) and biochemical modifications, including antioxidant enzyme (superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase) activity and non-enzymatic antioxidant (ascorbic acid) content. CPR plants exhibited more pronounced gene expression changes and biochemical alterations in response to water-deficit stress. CPR plants revealed increased expressions of 16 OsCPKs (OsCPK1, OsCPK2, OsCPK3, OsCPK4, OsCPK5, OsCPK6, OsCPK9, OsCPK10, OsCPK11, OsCPK12, OsCPK14, OsCPK16, OsCPK18, OsCPK22, OsCPK24, and OsCPK25) and 8 genes (OsbZIP72, OsLEA25, OsNHX1, OsRab16d, OsDREB2B, OsNAC45, OsP5CS, and OsRSUS1) encoding factors related to abiotic stress tolerance. The activity of antioxidant enzymes increased, and non-enzymatic antioxidants accumulated. In addition, a decrease in reactive oxygen species, an accumulation of malondialdehyde, and physiological alterations such as the inhibition of chlorophyll degradation and the protection of photosynthetic machinery were observed. Our results suggest that caffeine is a natural chemical that increases the potential ability of rice to cope with water-deficit stress and provides robust resistance by activating a rapid and comprehensive resistance mechanism in the case of water-deficit stress. The discovery, furthermore, presents a new approach for enhancing crop tolerance to abiotic stress, including water deficit, via the utilization of a specific natural agent.
Collapse
Affiliation(s)
- Youngchul Yoo
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea;
| | - Yo-Han Yoo
- Central Area Crop Breeding Division, Department of Central Area Crop Science, National Institute of Crop Science, RDA, Suwon 16429, Republic of Korea;
| | - Dong Yoon Lee
- Graduate School of Green-Bio Science, Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (D.Y.L.); (K.-H.J.)
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science, Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (D.Y.L.); (K.-H.J.)
| | - Sang-Won Lee
- Graduate School of Green-Bio Science, Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (D.Y.L.); (K.-H.J.)
| | - Jong-Chan Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Alavilli H, Yolcu S, Skorupa M, Aciksoz SB, Asif M. Salt and drought stress-mitigating approaches in sugar beet (Beta vulgaris L.) to improve its performance and yield. PLANTA 2023; 258:30. [PMID: 37358618 DOI: 10.1007/s00425-023-04189-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
MAIN CONCLUSION Although sugar beet is a salt- and drought-tolerant crop, high salinity, and water deprivation significantly reduce its yield and growth. Several reports have demonstrated stress tolerance enhancement through stress-mitigating strategies including the exogenous application of osmolytes or metabolites, nanoparticles, seed treatments, breeding salt/drought-tolerant varieties. These approaches would assist in achieving sustainable yields despite global climatic changes. Sugar beet (Beta vulgaris L.) is an economically vital crop for ~ 30% of world sugar production. They also provide essential raw materials for bioethanol, animal fodder, pulp, pectin, and functional food-related industries. Due to fewer irrigation water requirements and shorter regeneration time than sugarcane, beet cultivation is spreading to subtropical climates from temperate climates. However, beet varieties from different geographical locations display different stress tolerance levels. Although sugar beet can endure moderate exposure to various abiotic stresses, including high salinity and drought, prolonged exposure to salt and drought stress causes a significant decrease in crop yield and production. Hence, plant biologists and agronomists have devised several strategies to mitigate the stress-induced damage to sugar beet cultivation. Recently, several studies substantiated that the exogenous application of osmolytes or metabolite substances can help plants overcome injuries induced by salt or drought stress. Furthermore, these compounds likely elicit different physio-biochemical impacts, including improving nutrient/ionic homeostasis, photosynthetic efficiency, strengthening defense response, and water status improvement under various abiotic stress conditions. In the current review, we compiled different stress-mitigating agricultural strategies, prospects, and future experiments that can secure sustainable yields for sugar beets despite high saline or drought conditions.
Collapse
Affiliation(s)
- Hemasundar Alavilli
- Department of Biotechnology, GITAM (Deemed to be) University, Visakhapatnam, 530045, India
| | - Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey.
| | - Monika Skorupa
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100, Torun, Poland
| | - Seher Bahar Aciksoz
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Muhammad Asif
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
| |
Collapse
|
8
|
Yue JY, Jiao JL, Wang WW, Jie XR, Wang HZ. Silencing of the calcium-dependent protein kinase TaCDPK27 improves wheat resistance to powdery mildew. BMC PLANT BIOLOGY 2023; 23:134. [PMID: 36882703 PMCID: PMC9993671 DOI: 10.1186/s12870-023-04140-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Calcium ions (Ca2+), secondary messengers, are crucial for the signal transduction process of the interaction between plants and pathogens. Ca2+ signaling also regulates autophagy. As plant calcium signal-decoding proteins, calcium-dependent protein kinases (CDPKs) have been found to be involved in biotic and abiotic stress responses. However, information on their functions in response to powdery mildew attack in wheat crops is limited. RESULT In the present study, the expression levels of TaCDPK27, four essential autophagy-related genes (ATGs) (TaATG5, TaATG7, TaATG8, and TaATG10), and two major metacaspase genes, namely, TaMCA1 and TaMCA9, were increased by powdery mildew (Blumeria graminis f. sp. tritici, Bgt) infection in wheat seedling leaves. Silencing TaCDPK27 improves wheat seedling resistance to powdery mildew, with fewer Bgt hyphae occurring on TaCDPK27-silenced wheat seedling leaves than on normal seedlings. In wheat seedling leaves under powdery mildew infection, silencing TaCDPK27 induced excess contents of reactive oxygen species (ROS); decreased the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT); and led to an increase in programmed cell death (PCD). Silencing TaCDPK27 also inhibited autophagy in wheat seedling leaves, and silencing TaATG7 also enhanced wheat seedling resistance to powdery mildew infection. TaCDPK27-mCherry and GFP-TaATG8h colocalized in wheat protoplasts. Overexpressed TaCDPK27-mCherry fusions required enhanced autophagy activity in wheat protoplast under carbon starvation. CONCLUSION These results suggested that TaCDPK27 negatively regulates wheat resistance to PW infection, and functionally links with autophagy in wheat.
Collapse
Affiliation(s)
- Jie-Yu Yue
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, People's Republic of China.
| | - Jin-Lan Jiao
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, People's Republic of China
| | - Wen-Wen Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, People's Republic of China
| | - Xin-Rui Jie
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, People's Republic of China
| | - Hua-Zhong Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, People's Republic of China.
| |
Collapse
|
9
|
Genome-Wide Identification and Analysis of FKBP Gene Family in Wheat ( Triticum asetivum). Int J Mol Sci 2022; 23:ijms232314501. [PMID: 36498828 PMCID: PMC9739119 DOI: 10.3390/ijms232314501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
FK506-binding protein (FKBP) genes have been found to play vital roles in plant development and abiotic stress responses. However, limited information is available about this gene family in wheat (Triticum aestivum L.). In this study, a total of 64 FKBP genes were identified in wheat via a genome-wide analysis involving a homologous search of the latest wheat genome data, which was unevenly distributed in 21 chromosomes, encoded 152 to 649 amino acids with molecular weights ranging from 16 kDa to 72 kDa, and was localized in the chloroplast, cytoplasm, nucleus, mitochondria, peroxisome and endoplasmic reticulum. Based on sequence alignment and phylogenetic analysis, 64 TaFKBPs were divided into four different groups or subfamilies, providing evidence of an evolutionary relationship with Aegilops tauschii, Brachypodium distachyon, Triticum dicoccoides, Arabidopsis thaliana and Oryza sativa. Hormone-related, abiotic stress-related and development-related cis-elements were preferentially presented in promoters of TaFKBPs. The expression levels of TaFKBP genes were investigated using transcriptome data from the WheatExp database, which exhibited tissue-specific expression patterns. Moreover, TaFKBPs responded to drought and heat stress, and nine of them were randomly selected for validation by qRT-PCR. Yeast cells expressing TaFKBP19-2B-2 or TaFKBP18-6B showed increased influence on drought stress, indicating their negative roles in drought tolerance. Collectively, our results provide valuable information about the FKBP gene family in wheat and contribute to further characterization of FKBPs during plant development and abiotic stress responses, especially in drought stress.
Collapse
|
10
|
Yue JY, Jiao JL, Wang WW, Wang HZ. The Calcium-Dependent Protein Kinase TaCDPK27 Positively Regulates Salt Tolerance in Wheat. Int J Mol Sci 2022; 23:ijms23137341. [PMID: 35806346 PMCID: PMC9266408 DOI: 10.3390/ijms23137341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
As essential calcium ion (Ca2+) sensors in plants, calcium-dependent protein kinases (CDPKs) function in regulating the environmental adaptation of plants. However, the response mechanism of CDPKs to salt stress is not well understood. In the current study, the wheat salt-responsive gene TaCDPK27 was identified. The open reading frame (ORF) of TaCDPK27 was 1875 bp, coding 624 amino acids. The predicted molecular weight and isoelectric point were 68.905 kDa and 5.6, respectively. TaCDPK27 has the closest relationship with subgroup III members of the CDPK family of rice. Increased expression of TaCDPK27 in wheat seedling roots and leaves was triggered by 150 mM NaCl treatment. TaCDPK27 was mainly located in the cytoplasm. After NaCl treatment, some of this protein was transferred to the membrane. The inhibitory effect of TaCDPK27 silencing on the growth of wheat seedlings was slight. After exposure to 150 mM NaCl for 6 days, the NaCl stress tolerance of TaCDPK27-silenced wheat seedlings was reduced, with shorter lengths of both roots and leaves compared with those of the control seedlings. Moreover, silencing of TaCDPK27 further promoted the generation of reactive oxygen species (ROS); reduced the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT); aggravated the injury to photosystem II (PS II); and increased programmed cell death (PCD) in wheat leaves under NaCl treatment, confirming that the TaCDPK27-silenced seedlings exhibited more NaCl injury than control seedlings. Taken together, the decrease in NaCl tolerance in TaCDPK27-silenced seedlings was due to excessive ROS accumulation and subsequent aggravation of the NaCl-induced PCD. TaCDPK27 may be essential for positively regulating salt tolerance in wheat seedlings.
Collapse
|
11
|
Liu T, Liu Y, Fu G, Chen J, Lv T, Su D, Wang Y, Hu X, Su X, Harris AJ. Identification of genes involved in drought tolerance in seedlings of the desert grass, Psammochloa villosa (Poaceae), based on full-length isoform sequencing and de novo assembly from short reads. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153630. [PMID: 35193087 DOI: 10.1016/j.jplph.2022.153630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Psammochloa villosa is a perennial herbaceous plant that is dominant within arid regions of the Inner Mongolian Plateau and the Qinghai-Tibet Plateau in China, where it is an endemic species and exhibits strong drought tolerance and wind resistance. To study drought tolerance in P. villosa and determine its molecular basis, we simulated high and moderate drought stress in a controlled environment and then analyzed transcriptome sequences by combining long-read sequences from a representative, wild-grown individual with short reads from the treatment groups. We obtained 184,076 high-quality isoforms as a reference and 168,650 genes (91.6%), which we were able to annotate according to public databases. Ultimately, we obtained 119,005 unigenes representing the transcriptome of P. villosa under drought stress and, among these, we identified 3089 differentially expressed genes and 1484 transcription factors. Physiologically, P. villosa that was exposed to high and moderate drought stress had reduced germination rates and shorter buds but generated more chlorophyll, which is atypical under drought stress and possibly reflects an adaptation of these plants to their arid environment. We inferred that significantly upregulated genes were annotated as 'Chlorophyll a-b binding protein' and 'Light-harvesting chlorophyll-protein' among drought and control groups. Broadly, our analyses revealed that drought stress triggered many genome-level responses, especially related to mitigation of radical oxygen species (ROS), which increase in concentration under drought stress. In particular, in the high drought stress group compared with the control, GO enrichment analysis revealed a significant enrichment of upregulated genes (n = 10) involved in mitigation of oxidative stress. Similarly, using KEGG we found significant enrichment of genes in the phenylpropanoid biosynthesis pathway (11 genes), which yields phenols that scavenge ROS. We also inferred that many genes involved in metabolism of arginine and proline, which may serve as both scavengers of ROS and osmoprotectants that interact with stress response genes based on our protein-protein interaction network analysis. We verified the relative expression levels of eight genes associated with mitigation of ROS, DNA repair, and transmembrane transporter activity using qRT-PCR, and the results were consistent with our inferences from transcriptomes. This study provides insights into the genomic and physiological basis of drought tolerance in P. villosa and represents a resource for development of the species as a forage crop via molecular breeding within arid lands.
Collapse
Affiliation(s)
- Tao Liu
- School of Geography, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Yuping Liu
- School of Life Sciences, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Gui Fu
- School of Geography, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Jinyuan Chen
- School of Life Sciences, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Ting Lv
- School of Geography, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Dandan Su
- School of Life Sciences, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Yanan Wang
- School of Life Sciences, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Xiayu Hu
- School of Life Sciences, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Xu Su
- School of Life Sciences, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China; Academy of Plateau Science and Sustainability, Xueyuan Road, Xining, 810016, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China; Key Laboratory of Education Ministry of Earth Surface Processes and Ecological Conservation of the Qinghai-Tibet Plateau, Qinghai Normal University, No. 38 Wusixi Road, Xining, Xining, 810008, China.
| | - A J Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
12
|
Liu Y, Cheng H, Cheng P, Wang C, Li J, Liu Y, Song A, Chen S, Chen F, Wang L, Jiang J. The BBX gene CmBBX22 negatively regulates drought stress tolerance in chrysanthemum. HORTICULTURE RESEARCH 2022; 9:uhac181. [PMID: 36338842 PMCID: PMC9630972 DOI: 10.1093/hr/uhac181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/07/2022] [Indexed: 05/13/2023]
Abstract
BBX transcription factors play vital roles in plant growth, development, and stress responses. Although BBX proteins have been studied in great detail in the model plant Arabidopsis, their roles in crop plants such as chrysanthemum are still largely uninvestigated. Here, we cloned CmBBX22 and further determined the function of CmBBX22 in response to drought treatment. Subcellular localization and transactivation assay analyses revealed that CmBBX22 was localized in the nucleus and possessed transactivation activity. Overexpression of CmBBX22 in chrysanthemum was found to reduce plant drought tolerance, whereas expression of the chimeric repressor CmBBX22-SRDX was found to promote a higher drought tolerance than that shown by wild-type plants, indicating that CmBBX22 negatively regulates drought tolerance in chrysanthemum. Transcriptome analysis and physiological measurements indicated the potential involvement of the CmBBX22-mediated ABA response, stomatal conductance, and antioxidant responses in the negative regulation of drought tolerance in chrysanthemum. Based on the findings of this study, we were thus able to establish the mechanisms whereby the transcriptional activator CmBBX22 negatively regulates drought tolerance in chrysanthemum via the regulation of the abscisic acid response, stomatal conductance, and antioxidant responses.
Collapse
Affiliation(s)
| | | | - Peilei Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmeng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayu Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | |
Collapse
|
13
|
iTRAQ based protein profile analysis revealed key proteins involved in regulation of drought-tolerance during seed germination in Adzuki bean. Sci Rep 2021; 11:23725. [PMID: 34887505 PMCID: PMC8660776 DOI: 10.1038/s41598-021-03178-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/29/2021] [Indexed: 01/21/2023] Open
Abstract
Adzuki bean is an important legume crop due to its high-quality protein, fiber, vitamins, minerals as well as rich bioactive substances. However, it is vulnerable to drought at the germination stage. However, little information is available about the genetic control of drought tolerance during seed germination in adzuki bean. In this study, some differential expression proteins (DEPs) were identified during seed germination between the drought-tolerant variety 17235 and drought-sensitive variety 17033 in adzuki bean using iTRAQ method. A total of 2834 proteins were identified in the germinating seeds of these two adzuki beans. Compared with the variety 17033, 87 and 80 DEPs were increased and decreased accumulation in variety 17235 under drought, respectively. Meanwhile, in the control group, a few DEPs, including 9 up-regulated and 21 down-regulated proteins, were detected in variety 17235, respectively. GO, KEGG, and PPI analysis revealed that the DEPs related to carbohydrate metabolism and energy production were significantly increased in response to drought stresses. To validate the proteomic function, the ectopic overexpression of V-ATPase in tobacco was performed and the result showed that V-ATPase upregulation could enhance the drought tolerance of tobacco. The results provide valuable insights into genetic response to drought stress in adzuki bean, and the DEPs could be applied to develop biomarkers related to drought tolerant in adzuki bean breeding projects.
Collapse
|
14
|
Wang Y, Chai C, Khatabi B, Scheible WR, Udvardi MK, Saha MC, Kang Y, Nelson RS. An Efficient Brome mosaic virus-Based Gene Silencing Protocol for Hexaploid Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:685187. [PMID: 34220905 PMCID: PMC8253535 DOI: 10.3389/fpls.2021.685187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/07/2021] [Indexed: 05/09/2023]
Abstract
Virus-induced gene silencing (VIGS) is a rapid and powerful method to evaluate gene function, especially for species like hexaploid wheat that have large, redundant genomes and are difficult and time-consuming to transform. The Brome mosaic virus (BMV)-based VIGS vector is widely used in monocotyledonous species but not wheat. Here we report the establishment of a simple and effective VIGS procedure in bread wheat using BMVCP5, the most recently improved BMV silencing vector, and wheat genes PHYTOENE DESATURASE (TaPDS) and PHOSPHATE2 (TaPHO2) as targets. Time-course experiments revealed that smaller inserts (~100 nucleotides, nt) were more stable in BMVCP5 and conferred higher silencing efficiency and longer silencing duration, compared with larger inserts. When using a 100-nt insert and a novel coleoptile inoculation method, BMVCP5 induced extensive silencing of TaPDS transcript and a visible bleaching phenotype in the 2nd to 5th systemically-infected leaves from nine to at least 28 days post inoculation (dpi). For TaPHO2, the ability of BMVCP5 to simultaneously silence all three homoeologs was demonstrated. To investigate the feasibility of BMV VIGS in wheat roots, ectopically expressed enhanced GREEN FLUORESCENT PROTEIN (eGFP) in a transgenic wheat line was targeted for silencing. Silencing of eGFP fluorescence was observed in both the maturation and elongation zones of roots. BMVCP5 mediated significant silencing of eGFP and TaPHO2 mRNA expression in roots at 14 and 21 dpi, and TaPHO2 silencing led to the doubling of inorganic phosphate concentration in the 2nd through 4th systemic leaves. All 54 wheat cultivars screened were susceptible to BMV infection. BMVCP5-mediated TaPDS silencing resulted in the expected bleaching phenotype in all eight cultivars examined, and decreased TaPDS transcript was detected in all three cultivars examined. This BMVCP5 VIGS technology may serve as a rapid and effective functional genomics tool for high-throughput gene function studies in aerial and root tissues and in many wheat cultivars.
Collapse
|