1
|
Chen P, Chang C, Kong L. Whole Genome Identification and Integrated Analysis of Long Non-Coding RNAs Responding ABA-Mediated Drought Stress in Panax ginseng C.A. Meyer. Curr Issues Mol Biol 2024; 47:5. [PMID: 39852120 PMCID: PMC11763544 DOI: 10.3390/cimb47010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Panax ginseng C.A. Meyer is a perennial herb that is used worldwide for a number of medical purposes. Long non-coding RNAs (lncRNAs) play a crucial role in diverse biological processes but still remain poorly understood in ginseng, which has limited the application of molecular breeding in this plant. In this study, we identified 17,478 lncRNAs and 3106 novel mRNAs from ginseng by high-throughput illumine sequencing. 50 and 257 differentially expressed genes (DEGs) and DE lncRNAs (DELs) were detected under drought + ABA vs. drought conditions, respectively. The DEGs and DELs target genes main enrichment is focused on the "biosynthesis of secondary metabolites", "starch and sucrose metabolism", and "carbon metabolism" pathways under drought + ABA vs. drought conditions according to KEGG pathway enrichment analysis, suggesting that these secondary metabolites biosynthesis pathways might be crucial for ABA-mediated drought stress response in ginseng. Together, we identified drought stress response lncRNAs in ginseng for the first time and found that the target genes of these lncRNAs mainly regulate the biosynthesis of secondary metabolites pathway to response to drought stress. These findings also open up a new visual for molecular breeding in ginseng.
Collapse
Affiliation(s)
| | | | - Lingyao Kong
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (P.C.); (C.C.)
| |
Collapse
|
2
|
Sahraei S, Mahdinezhad N, Emamjomeh A, Kavousi K, Solouki M, Delledonne M. Transcriptomic analysis reveals role of lncRNA LOC100257036 to regulate AGAMOUS during cluster compactness of Vitis vinifera cv. sistan yaghooti. Sci Rep 2024; 14:28331. [PMID: 39550496 PMCID: PMC11569177 DOI: 10.1038/s41598-024-79890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024] Open
Abstract
Yaghooti grape, as the earliest grape variety in Iran, is considered as more resistant to heat, drought, and salinity than other cultivars. Cluster compactness is regarded as an inappropriate feature for the productivity of Yaghooti grape as a critical commercial and nutritional product. In plants, lncRNAs play a critical role in regulating biological processes related to growth and development. However, the potential role of lncRNAs was not assessed in cluster compactness. Totally, 1549 lncRNAs were identified by RNA-Seq data analysis in three steps of cluster formation, berry formation, and final cluster size after a thorough screening process. In addition, 229 lncRNAs were differentially expressed in the cluster development steps. Based on the functional analysis, lncRNAs are related to AG and MYB, bHLH, LBD, NAC, and WRKY TFs. Further, the target genes enrichment analysis revealed a relationship between lncRNAs with grape growth and development, as well as resistance to abiotic stresses such as heat and drought, plant defense against pathogens, and early grapes ripening. The study identified four lncRNAs as precursors of miRNAs, predicting that 112 other lncRNAs could potentially be targeted by 166 miRNAs. The results provide new insights into the regulatory functions of lncRNAs in Yaghooti grape to improve overall understanding of the molecular mechanisms related to grape compactness.
Collapse
Affiliation(s)
- Shahla Sahraei
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Postal Code: 9861753557, Zabol, Iran
| | - Nafiseh Mahdinezhad
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Postal Code: 9861753557, Zabol, Iran.
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Postal Code: 9861753557, Zabol, Iran.
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Bioinformatics, University of Zabol, Zabol, Iran.
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mahmood Solouki
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Postal Code: 9861753557, Zabol, Iran
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| |
Collapse
|
3
|
Nath P, Bhuyan K, Bhattacharyya DK, Barah P. ETENLNC: An end to end lncRNA identification and analysis framework to facilitate construction of known and novel lncRNA regulatory networks. Comput Biol Chem 2024; 112:108140. [PMID: 38996755 DOI: 10.1016/j.compbiolchem.2024.108140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/22/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in the regulation of gene expression and maintenance of genomic integrity through various interactions with DNA, RNA, and proteins. The availability of large-scale sequence data from various high-throughput platforms has opened possibilities to identify, predict, and functionally annotate lncRNAs. As a result, there is a growing demand for an integrative computational framework capable of identifying known lncRNAs, predicting novel lncRNAs, and inferring the downstream regulatory interactions of lncRNAs at the genome-scale. We present ETENLNC (End-To-End-Novel-Long-NonCoding), a user-friendly, integrative, open-source, scalable, and modular computational framework for identifying and analyzing lncRNAs from raw RNA-Seq data. ETENLNC employs six stringent filtration steps to identify novel lncRNAs, performs differential expression analysis of mRNA and lncRNA transcripts, and predicts regulatory interactions between lncRNAs, mRNAs, miRNAs, and proteins. We benchmarked ETENLNC against six existing tools and optimized it for desktop workstations and high-performance computing environments using data from three different species. ETENLNC is freely available on GitHub: https://github.com/EvolOMICS-TU/ETENLNC.
Collapse
Affiliation(s)
- Prangan Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam 784028, India
| | - Kaveri Bhuyan
- Department of Computer Science and Engineering, Tezpur University, Assam 784028, India; Department of Electrical Engineering, Tezpur University, Assam 784028, India
| | | | - Pankaj Barah
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam 784028, India.
| |
Collapse
|
4
|
Zhang P, Li F, Tian Y, Wang D, Fu J, Rong Y, Wu Y, Gao T, Zhang H. Transcriptome Analysis of Sesame ( Sesamum indicum L.) Reveals the LncRNA and mRNA Regulatory Network Responding to Low Nitrogen Stress. Int J Mol Sci 2024; 25:5501. [PMID: 38791539 PMCID: PMC11122487 DOI: 10.3390/ijms25105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Nitrogen is one of the important factors restricting the development of sesame planting and industry in China. Cultivating sesame varieties tolerant to low nitrogen is an effective way to solve the problem of crop nitrogen deficiency. To date, the mechanism of low nitrogen tolerance in sesame has not been elucidated at the transcriptional level. In this study, two sesame varieties Zhengzhi HL05 (ZZ, nitrogen efficient) and Burmese prolific (MD, nitrogen inefficient) in low nitrogen were used for RNA-sequencing. A total of 3964 DEGs (differentially expressed genes) and 221 DELs (differentially expressed lncRNAs) were identified in two sesame varieties at 3d and 9d after low nitrogen stress. Among them, 1227 genes related to low nitrogen tolerance are mainly located in amino acid metabolism, starch and sucrose metabolism and secondary metabolism, and participate in the process of transporter activity and antioxidant activity. In addition, a total of 209 pairs of lncRNA-mRNA were detected, including 21 pairs of trans and 188 cis. WGCNA (weighted gene co-expression network analysis) analysis divided the obtained genes into 29 modules; phenotypic association analysis identified three low-nitrogen response modules; through lncRNA-mRNA co-expression network, a number of hub genes and cis/trans-regulatory factors were identified in response to low-nitrogen stress including GS1-2 (glutamine synthetase 1-2), PAL (phenylalanine ammonia-lyase), CHS (chalcone synthase, CHS), CAB21 (chlorophyll a-b binding protein 21) and transcription factors MYB54, MYB88 and NAC75 and so on. As a trans regulator, lncRNA MSTRG.13854.1 affects the expression of some genes related to low nitrogen response by regulating the expression of MYB54, thus responding to low nitrogen stress. Our research is the first to provide a more comprehensive understanding of DEGs involved in the low nitrogen stress of sesame at the transcriptome level. These results may reveal insights into the molecular mechanisms of low nitrogen tolerance in sesame and provide diverse genetic resources involved in low nitrogen tolerance research.
Collapse
Affiliation(s)
- Pengyu Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (P.Z.); (F.L.); (Y.T.); (D.W.); (J.F.); (Y.R.); (Y.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Feng Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (P.Z.); (F.L.); (Y.T.); (D.W.); (J.F.); (Y.R.); (Y.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Yuan Tian
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (P.Z.); (F.L.); (Y.T.); (D.W.); (J.F.); (Y.R.); (Y.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Dongyong Wang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (P.Z.); (F.L.); (Y.T.); (D.W.); (J.F.); (Y.R.); (Y.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Jinzhou Fu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (P.Z.); (F.L.); (Y.T.); (D.W.); (J.F.); (Y.R.); (Y.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Yasi Rong
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (P.Z.); (F.L.); (Y.T.); (D.W.); (J.F.); (Y.R.); (Y.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Yin Wu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (P.Z.); (F.L.); (Y.T.); (D.W.); (J.F.); (Y.R.); (Y.W.)
| | - Tongmei Gao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (P.Z.); (F.L.); (Y.T.); (D.W.); (J.F.); (Y.R.); (Y.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (P.Z.); (F.L.); (Y.T.); (D.W.); (J.F.); (Y.R.); (Y.W.)
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
5
|
Rungratanawanich W, Ballway JW, Wang X, Won KJ, Hardwick JP, Song BJ. Post-translational modifications of histone and non-histone proteins in epigenetic regulation and translational applications in alcohol-associated liver disease: Challenges and research opportunities. Pharmacol Ther 2023; 251:108547. [PMID: 37838219 DOI: 10.1016/j.pharmthera.2023.108547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Epigenetic regulation is a process that takes place through adaptive cellular pathways influenced by environmental factors and metabolic changes to modulate gene activity with heritable phenotypic variations without altering the DNA sequences of many target genes. Epigenetic regulation can be facilitated by diverse mechanisms: many different types of post-translational modifications (PTMs) of histone and non-histone nuclear proteins, DNA methylation, altered levels of noncoding RNAs, incorporation of histone variants, nucleosomal positioning, chromatin remodeling, etc. These factors modulate chromatin structure and stability with or without the involvement of metabolic products, depending on the cellular context of target cells or environmental stimuli, such as intake of alcohol (ethanol) or Western-style high-fat diets. Alterations of epigenetics have been actively studied, since they are frequently associated with multiple disease states. Consequently, explorations of epigenetic regulation have recently shed light on the pathogenesis and progression of alcohol-associated disorders. In this review, we highlight the roles of various types of PTMs, including less-characterized modifications of nuclear histone and non-histone proteins, in the epigenetic regulation of alcohol-associated liver disease (ALD) and other disorders. We also describe challenges in characterizing specific PTMs and suggest future opportunities for basic and translational research to prevent or treat ALD and many other disease states.
Collapse
Affiliation(s)
- Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Jacob W Ballway
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kyoung-Jae Won
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, 90069, USA
| | - James P Hardwick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Zhao Q, Xu Q, Serafino MA, Zhang Q, Wang C, Yu Y. Comprehensive analysis of circular RNAs in porcine small intestine epithelial cells associated with susceptibility to Escherichia coli F4ac diarrhea. BMC Genomics 2023; 24:211. [PMID: 37085748 PMCID: PMC10122348 DOI: 10.1186/s12864-022-08994-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/06/2022] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Diarrhea is one of the most common diseases in pig industry, which seriously threatens the health of piglets and causes huge economic losses. Enterotoxigenic Escherichia coli (ETEC) F4 is regarded as the most important cause of diarrhea in piglets. Some pigs are naturally resistant to those diarrheas caused by ETEC-F4, because they have no F4 receptors (F4R) on their small intestine epithelial cells that allow F4 fimbriae adhesion. Circular RNA (circRNA) has been shown to play an important regulatory role in the pathogenesis of disease. We hypothesized that circRNAs may also regulate the adhesion of piglet small intestinal epithelial cells to ETEC F4 fimbriae. However, the circRNA expression profiles of piglets with different Enterotoxigenic Escherichia coli F4 fimbriae (ETEC-F4ac) adhesion phenotypes are still unclear, and the intermediate regulatory mechanisms need to be explored. Hence, the present study assessed the circRNA expression profiling in small intestine epithelial cells of eight male piglets with different ETEC-F4 adhesion phenotypes and ITGB5 genotypes to unravel their regulatory function in susceptibility to ETEC-F4ac diarrhea. Piglets were divided into two groups: non-adhesive group (n = 4) with CC genotype and adhesive group (n = 4) with TT genotype. RESULTS The RNA-seq data analysis identified 13,199 circRNAs from eight samples, most of which were exon-derived. In the small intestine epithelial cells, 305 were differentially expressed (DE) circRNAs between the adhesive and non-adhesive groups; of which 46 circRNAs were upregulated, and 259 were downregulated. Gene ontology and KEGG enrichment analysis revealed that most significantly enriched DE circRNAs' host genes were linked to cytoskeletal components, protein phosphorylation, cell adhesion, ion transport and pathways (such as adherens junction, gap junction) associated with ETEC diarrhea. The circRNA-miRNA-mRNA interaction network was also constructed to elucidate their underlying regulatory relationships. Our results identified several candidate circRNAs that affects susceptibility to ETEC diarrhea. Among them, circ-SORBS1 can adsorb ssc-miR-345-3p to regulate the expression of its host gene SORBS1, thus improving cell adhesion. CONCLUSION Our results provided insights into the regulation function of circRNAs in susceptibility to ETEC diarrhea of piglets, and enhanced our understanding of the role of circRNAs in regulating ETEC diarrhea, and reveal the great potential of circRNA as a diagnostic marker for susceptibility of ETEC diarrhea in piglets.
Collapse
Affiliation(s)
- Qingyao Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qinglei Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - M A Serafino
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
- School of Natural Resources and Environmental Studies, University of Juba, B. O. Pox 82, Juba, South Sudan
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong, 271018, China
| | - Chuduan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
7
|
Ren J, Zhang F, Zhu S, Zhang W, Hou J, He R, Wang K, Wang Z, Liang T. Exosomal long non-coding RNA TRAFD1-4:1 derived from fibroblast-like synoviocytes suppresses chondrocyte proliferation and migration by degrading cartilage extracellular matrix in rheumatoid arthritis. Exp Cell Res 2023; 422:113441. [PMID: 36481205 DOI: 10.1016/j.yexcr.2022.113441] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/21/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune and systemic inflammatory disease affecting 1% of the population worldwide. Immune suppression of the activity and progress of RA is vital to reduce the disability and mortality rate as well as improve the quality of life of RA patients. However, the immune molecular mechanism of RA has not been clarified yet. Our results indicated that exosomes derived from TNFα-stimulated RA fibroblast-like synoviocytes (RA-FLSs) suppressed chondrocyte proliferation and migration through modulating cartilage extracellular matrix (CECM) determining by MTS assay, cell cycle analysis, Transwell assay and Western blot (WB). Besides, RNA sequencing and verification by qRT-PCR revealed that exosomal long non-coding RNA (lncRNA) tumor necrosis factor-associated factor 1 (TRAF1)-4:1 derived from RA-FLSs treated with TNFα was a candidate lncRNA, which also inhibited chondrocyte proliferation and migration through degrading CECM. Moreover, RNA sequencing and bioinformatics analysis identified that C-X-C motif chemokine ligand 1 (CXCL1) was a target mRNA of miR-27a-3p while miR-27a-3p was a target miRNA of lnc-TRAF1-4:1 in chondrocytes. Mechanistically, lnc-TRAF1-4:1 upregulated CXCL1 expression through sponging miR-27a-3p as a competing endogenous RNA (ceRNA) in chondrocytes identifying by Dual-luciferase reporter gene assay. Summarily, exosomal lncRNA TRAFD1-4:1 derived from RA-FLSs suppressed chondrocyte proliferation and migration through degrading CECM by upregulating CXCL1 as a sponge of miR-27a-3p. This study uncovered a novel RA-related lncRNA and investigated the roles of RA-FLS-derived exosomes and exosomal lnc-TRAF1-4:1 in articular cartilage impairment, which might provide novel therapeutic targets for RA.
Collapse
Affiliation(s)
- Jianhua Ren
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fei Zhang
- Department of Joint and Trauma Surgery, Zhongshan City People's Hospital, Zhongshan, China
| | - Shaoshen Zhu
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenhui Zhang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Hou
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ronghan He
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kun Wang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhe Wang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Tangzhao Liang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Jiang B, Liu M, Li P, Zhu Y, Liu Y, Zhu K, Zuo Y, Li Y. RNA-seq reveals a novel porcine lncRNA MPHOSPH9-OT1 induces CXCL8/IL-8 expression in ETEC infected IPEC-J2 cells. Front Cell Infect Microbiol 2022; 12:996841. [PMID: 36093177 PMCID: PMC9452961 DOI: 10.3389/fcimb.2022.996841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of bacterial diarrhea in piglets, leading to economic losses in the pig industry. In past decades, long non-coding RNAs (lncRNAs) have shown to be widely involved in the regulation of host immunity in porcine infection diseases. In this study, we explored the lncRNAs associated with ETEC F41 infection in IPEC-J2 cells by high-throughput sequencing and bioinformatic analysis. A total of 10150 novel porcine lncRNAs were identified. There were 161 differentially expressed (DE) lncRNAs associated with ETEC F41 infection, of which 65 DE lncRNAs were up-regulated and 96 DE lncRNAs were down-regulated. Functional and KEGG enrichment analysis of predicted target genes of DE lncRNAs indicated they are enriched in cell growth and inflammation-related pathways, such as endocytosis, focal adhesion, TGF-β signaling pathway, and adherens junctions. We revealed a novel candidate lncRNA MPHOSPH9-OT1 that was up-regulated after ETEC infection. The qRT-PCR validation and ELISA assessment showed the knockdown and overexpression of MPHOSPH9-OT1 resulted in significantly down- and up-regulation of cellular mRNA levels and secreted cytokine levels of CXCL8/IL-8, respectively. Meanwhile, MPHOSPH9-OT1 equilibrium is important to maintain the transepithelial electric resistance value and tight junction protein expression of IPEC-J2 cells. This study provides insights into the functionality of novel porcine lncRNAs in host immune responses to ETEC infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuzhu Zuo
- *Correspondence: Yan Li, ; Yuzhu Zuo,
| | - Yan Li
- *Correspondence: Yan Li, ; Yuzhu Zuo,
| |
Collapse
|
9
|
Jiang S, Chen J, Li X, Ren W, Li F, Wang T, Li C, Dong Z, Tian X, Zhang L, Wang L, Lu C, Chi J, Feng L, Yan M. Identification and integrated analysis of lncRNAs and miRNAs in IPEC-J2 cells provide novel insight into the regulation of the innate immune response by PDCoV infection. BMC Genomics 2022; 23:486. [PMID: 35787252 PMCID: PMC9251034 DOI: 10.1186/s12864-022-08722-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are pivotal regulators involved in the pathogenic mechanism of multiple coronaviruses. Porcine deltacoronavirus (PDCoV) has evolved multiple strategies to escape the innate immune response of host cells, but whether ncRNAs are involved in this process during PDCoV infection is still unknown. Results In this study, the expression profiles of miRNAs, lncRNAs and mRNAs in IPEC-J2 cells infected with PDCoV at 0, 12 and 24 hours postinfection (hpi) were identified through small RNA and RNA sequencing. The differentially expressed miRNAs (DEmiRNAs), lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were screened from the comparison group of IPEC-J2 cells at 0 and 12 hpi as well as the comparison group of IPEC-J2 cells at 12 and 24 hpi. The target genes of these DEncRNAs were predicted. The bioinformatics analysis of the target genes revealed multiple significantly enriched functions and pathways. Among them, the genes that were associated with innate immunity were specifically screened. The expression of innate immunity-related ncRNAs and mRNAs was validated by RT–qPCR. Competing endogenous RNA (ceRNA) regulatory networks among innate immunity-related ncRNAs and their target mRNAs were established. Moreover, we found that the replication of PDCoV was significantly inhibited by two innate immunity-related miRNAs, ssc-miR-30c-3p and ssc-miR-374b-3p, in IPEC-J2 cells. Conclusions This study provides a data platform to conduct studies of the pathogenic mechanism of PDCoV from a new perspective and will be helpful for further elucidation of the functional role of ncRNAs involved in PDCoV escaping the innate immune response. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08722-2.
Collapse
Affiliation(s)
- Shan Jiang
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiuli Li
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Weike Ren
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Fengxiang Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Ting Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Cheng Li
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Zhimin Dong
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Xiangxue Tian
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Li Zhang
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Lili Wang
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Chao Lu
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Jingjing Chi
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Minghua Yan
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China. .,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China.
| |
Collapse
|
10
|
Chen W, Lv X, Zhang W, Hu T, Cao X, Ren Z, Getachew T, Mwacharo JM, Haile A, Sun W. Insights Into Long Non-Coding RNA and mRNA Expression in the Jejunum of Lambs Challenged With Escherichia coli F17. Front Vet Sci 2022; 9:819917. [PMID: 35498757 PMCID: PMC9039264 DOI: 10.3389/fvets.2022.819917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
It has long been recognized that enterotoxigenic Escherichia coli (ETEC) is the major pathogen responsible for vomiting and diarrhea. E. coli F17, a main subtype of ETEC, is characterized by high morbidity and mortality in young livestock. However, the transcriptomic basis underlying E. coli F17 infection has not been fully understood. In the present study, RNA sequencing was conducted to explore the expression profiles of mRNAs and long non-coding RNAs (lncRNAs) in the jejunum of lambs who were identified as resistant or sensitive to E. coli F17 that was obtained in a challenge experiment. A total of 772 differentially expressed (DE) mRNAs and 190 DE lncRNAs were detected between the E. coli F17—resistance and E. coli F17-sensitive lambs (i.e., TFF2, LOC105606142, OLFM4, LYPD8, REG4, APOA4, TCONS_00223467, and TCONS_00241897). Then, a two-step machine learning approach (RX) combination Random Forest and Extreme Gradient Boosting were performed, which identified 16 mRNAs and 17 lncRNAs as potential biomarkers, within which PPP2R3A and TCONS_00182693 were prioritized as key biomarkers involved in E. coli F17 infection. Furthermore, functional enrichment analysis showed that peroxisome proliferator-activated receptor (PPAR) pathway was significantly enriched in response to E. coli F17 infection. Our finding will help to improve the knowledge of the mechanisms underlying E. coli F17 infection and may provide novel targets for future treatment of E. coli F17 infection.
Collapse
Affiliation(s)
- Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Weibo Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tingyan Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ziming Ren
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- *Correspondence: Wei Sun
| |
Collapse
|
11
|
Liu P, Zhang Y, Zou C, Yang C, Pan G, Ma L, Shen Y. Integrated analysis of long non-coding RNAs and mRNAs reveals the regulatory network of maize seedling root responding to salt stress. BMC Genomics 2022; 23:50. [PMID: 35026983 PMCID: PMC8756644 DOI: 10.1186/s12864-021-08286-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) play important roles in response to abiotic stresses in plants, by acting as cis- or trans-acting regulators of protein-coding genes. As a widely cultivated crop worldwide, maize is sensitive to salt stress particularly at the seedling stage. However, it is unclear how the expressions of protein-coding genes are affected by non-coding RNAs in maize responding to salt tolerance. Results The whole transcriptome sequencing was employed to investigate the differential lncRNAs and target transcripts responding to salt stress between two maize inbred lines with contrasting salt tolerance. We developed a flexible, user-friendly, and modular RNA analysis workflow, which facilitated the identification of lncRNAs and novel mRNAs from whole transcriptome data. Using the workflow, 12,817 lncRNAs and 8,320 novel mRNAs in maize seedling roots were identified and characterized. A total of 742 lncRNAs and 7,835 mRNAs were identified as salt stress-responsive transcripts. Moreover, we obtained 41 cis- and 81 trans-target mRNA for 88 of the lncRNAs. Among these target transcripts, 11 belonged to 7 transcription factor (TF) families including bHLH, C2H2, Hap3/NF-YB, HAS, MYB, WD40, and WRKY. The above 8,577 salt stress-responsive transcripts were further classified into 28 modules by weighted gene co-expression network analysis. In the salt-tolerant module, we constructed an interaction network containing 79 nodes and 3081 edges, which included 5 lncRNAs, 18 TFs and 56 functional transcripts (FTs). As a trans-acting regulator, the lncRNA MSTRG.8888.1 affected the expressions of some salt tolerance-relative FTs, including protein-serine/threonine phosphatase 2C and galactinol synthase 1, by regulating the expression of the bHLH TF. Conclusions The contrasting genetic backgrounds of the two inbred lines generated considerable variations in the expression abundance of lncRNAs and protein-coding transcripts. In the co-expression networks responding to salt stress, some TFs were targeted by the lncRNAs, which further regulated the salt tolerance-related functional transcripts. We constructed a regulatory pathway of maize seedlings to salt stress, which was mediated by the hub lncRNA MSTRG.8888.1 and participated by the bHLH TF and its downstream target transcripts. Future work will be focused on the functional revelation of the regulatory pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08286-7.
Collapse
|
12
|
Yang J, Yang Q, Zhang J, Gao X, Luo R, Xie K, Wang W, Li J, Huang X, Yan Z, Wang P, Gun S. N6-Methyladenosine Methylation Analysis of Long Noncoding RNAs and mRNAs in IPEC-J2 Cells Treated With Clostridium perfringens beta2 Toxin. Front Immunol 2021; 12:769204. [PMID: 34880865 PMCID: PMC8646102 DOI: 10.3389/fimmu.2021.769204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Background The n6-methyladenosine (m6A) modification is present widely in mRNAs and long non-coding RNAs (lncRNAs), and is related to the occurrence and development of certain diseases. However, the role of m6A methylation in Clostridium perfringens type C infectious diarrhea remains unclear. Methods Here, we treated intestinal porcine jejunum epithelial cells (IPEC-J2 cells) with Clostridium perfringens beta2 (CPB2) toxin to construct an in vitro model of Clostridium perfringens type C (C. perfringens type C) infectious diarrhea, and then used methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) to identify the methylation profiles of mRNAs and lncRNAs in IPEC-J2 cells. Results We identified 6,413 peaks, representing 5,825 m6A-modified mRNAs and 433 modified lncRNAs, of which 4,356 m6A modified mRNAs and 221 m6A modified lncRNAs were significantly differential expressed between the control group and CPB2 group. The motif GGACU was enriched significantly in both the control group and the CPB2 group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analysis showed that the differentially methylated modified mRNAs were mainly enriched in Hippo signaling pathway and Wnt signaling pathway. In addition, the target genes of the differentially m6A modified lncRNAs were related to defense response to virus and immune response. For example, ENSSSCG00000042575, ENSSSCG00000048701 and ENSSSCG00000048785 might regulate the defense response to virus, immune and inflammatory response to resist the harmful effects of viruses on cells. Conclusion In summary, this study established the m6A transcription profile of mRNAs and lncRNAs in IPEC-J2 cells treated by CPB2 toxin. Further analysis showed that m6A-modified RNAs were related to defense against viruses and immune response after CPB2 toxin treatment of the cells. Threem6A-modified lncRNAs, ENSSSCG00000042575, ENSSSCG00000048785 and ENSSSCG00000048701, were most likely to play a key role in CPB2 toxin-treated IPEC-J2 cells. The results provide a theoretical basis for further research on the role of m6A modification in piglet diarrhea.
Collapse
Affiliation(s)
- Jiaojiao Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Juanli Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ruirui Luo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Kaihui Xie
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wei Wang
- College of Animal Science and Technology, Northwest A&F University, Xian, China
| | - Jie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, China
| |
Collapse
|