1
|
Meng J, Wang Y, Song H, Dong W, Dong N. Insights into Phylogeny, Taxonomy, Origins and Evolution of Crataegus and Mespilus, Based on Comparative Chloroplast Genome Analysis. Genes (Basel) 2025; 16:204. [PMID: 40004533 PMCID: PMC11855170 DOI: 10.3390/genes16020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Hawthorns (Crataegus L.) are widely distributed and well known for their medicinal properties and health benefits. Nevertheless, the phylogenetic relationships among Crataegus native to China remain unclear. Additionally, no consensus exists on the origin and evolution of Crataegus, and the relationship between Crataegus and Mespilus is is unclear. Here, we sequenced 20 chloroplast (cp) genomes (19 from Crataegus and 1 from Mespilus) and combined them with 2 existing cp genomes to investigate the phylogenetic relationships, divergence times and biogeographic history of Crataegus. Four hypervariable loci emerged from the newly sequenced genomes. The phylogenetic results indicated that the 14 Chinese Crataegus species analyzed clustered into two clades. One clade and the North American Crataegus species grouped together, while the other clade grouped with the European Crataegus species. Our results favor recognizing Mespilus and Crataegus as one genus. Molecular dating and biogeographic analyses showed that Crataegus originated in Southwest China during the early Oligocene, approximately 30.23 Ma ago. Transoceanic migration of East Asian Crataegus species across the Bering land bridge led to the development of North American species, whereas westward migration of the ancestors of C. songarica drove the formation of European species. C. cuneata may represent the earliest lineage of Chinese Crataegus. The uplift of the Qinghai-Tibet Plateau (QTP) and the Asian monsoon system may have led the ancestors of C. cuneata in south-western China to migrate toward the northeast, giving rise to other Chinese Crataegus species. This study offers crucial insights into the origins of Crataegus and proposes an evolutionary model for the genus.
Collapse
Affiliation(s)
- Jiaxin Meng
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China;
| | - Yan Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China;
| | - Han Song
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China;
| | - Wenxuan Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China;
| | - Ningguang Dong
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China;
| |
Collapse
|
2
|
Yong Y, Hu S, Zhong M, Wen Y, Zhou Y, Ma R, Jiang X, Zhang Q. Horizontal gene transfer from chloroplast to mitochondria of seagrasses in the yellow-Bohai seas. Genomics 2024; 116:110940. [PMID: 39303860 DOI: 10.1016/j.ygeno.2024.110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Seagrasses are ideal for studying plant adaptation to marine environments. In this study, the mitochondrial (mt) and chloroplast (cp) genomes of Ruppia sinensis were sequenced. The results showed an extensive gene loss in seagrasses, including a complete loss of cp-rpl19 genes in Zosteraceae, most cp-ndh genes in Hydrocharitaceae, and mt-rpl and mt-rps genes in all seagrasses, except for the mt-rpl16 gene in Phyllospadix iwatensis. Notably, most ribosomal protein genes were lost in the mt and cp genomes. The deleted cp genes were not transferred to the mt genomes through horizontal gene transfer. Additionally, a significant DNA transfer between seagrass organelles was found, with the mt genomes of Zostera containing numerous sequences from the cp genome. Rearrangement analyses revealed an unreported inversion of the cp genome in R. sinensis. Moreover, four positively selected genes (atp8, nad5, atp4, and ccmFn) and five variable regions (matR, atp4, atp8, rps7, and ccmFn) were identified.
Collapse
Affiliation(s)
- Yushun Yong
- Ocean School, Yantai University, Yantai 264005, PR China
| | - Shunxin Hu
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, PR China
| | - Mingyu Zhong
- Ocean School, Yantai University, Yantai 264005, PR China
| | - Yun Wen
- Ocean School, Yantai University, Yantai 264005, PR China
| | - Yue Zhou
- Ocean School, Yantai University, Yantai 264005, PR China
| | - Ruixue Ma
- Ocean School, Yantai University, Yantai 264005, PR China
| | - Xiangyang Jiang
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, PR China
| | | |
Collapse
|
3
|
Liu X, Luo J, Chen H, Li T, Qu T, Tang M, Fu Z. Comparative analysis of complete chloroplast genomes of Synotis species (Asteraceae, Senecioneae) for identification and phylogenetic analysis. BMC Genomics 2024; 25:769. [PMID: 39112930 PMCID: PMC11308156 DOI: 10.1186/s12864-024-10663-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The Synotis (C. B. Clarke) C. Jeffrey & Y. L. Chen is an ecologically important genus of the tribe Senecioneae, family Asteraceae. Because most species of the genus bear similar morphology, traditional morphological identification methods are very difficult to discriminate them. Therefore, it is essential to develop a reliable and effective identification method for Synotis species. In this study, the complete chloroplast (cp.) genomes of four Synotis species, S. cavaleriei (H.Lév.) C. Jeffrey & Y.L. Chen, S. duclouxii (Dunn) C. Jeffrey & Y.L. Chen, S. nagensium (C.B. Clarke) C. Jeffrey & Y.L. Chen and S. erythropappa (Bureau & Franch.) C. Jeffrey & Y. L. Chen had been sequenced using next-generation sequencing technology and reported here. RESULTS These four cp. genomes exhibited a typical quadripartite structure and contained the large single-copy regions (LSC, 83,288 to 83,399 bp), the small single-copy regions (SSC, 18,262 to 18,287 bp), and the inverted repeat regions (IR, 24,837 to 24,842 bp). Each of the four cp. genomes encoded 134 genes, including 87 protein-coding genes, 37 tRNA genes, 8 rRNA genes, and 2 pseudogenes (ycf1 and rps19). The highly variable regions (trnC-GCA-petN, ccsA-psaC, trnE-UUC-rpoB, ycf1, ccsA and petN) may be used as potential molecular barcodes. The complete cp. genomes sequence of Synotis could be used as the potentially effective super-barcode to accurately identify Synotis species. Phylogenetic analysis demonstrated that the four Synotis species were clustered into a monophyletic group, and they were closed to the Senecio, Crassocephalum and Dendrosenecio in tribe Senecioneae. CONCLUSIONS This study will be useful for further species identification, evolution, genetic diversity and phylogenetic studies within this genus Synotis and the tribe Senecioneae.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, 610066, China
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Junjia Luo
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Hui Chen
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Tingyu Li
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Tianmeng Qu
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Ming Tang
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Zhixi Fu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, 610066, China.
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China.
- Sustainable Development Research Center of Resources and Environment of Western Sichuan, Sichuan Normal University, Chengdu, 610101, China.
| |
Collapse
|
4
|
Feng Z, Zheng Y, Jiang Y, Pei J, Huang L. Phylogenetic relationships, selective pressure and molecular markers development of six species in subfamily Polygonoideae based on complete chloroplast genomes. Sci Rep 2024; 14:9783. [PMID: 38684694 PMCID: PMC11059183 DOI: 10.1038/s41598-024-58934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
The subfamily Polygonoideae encompasses a diverse array of medicinal and horticultural plants that hold significant economic value. However, due to the lack of a robust taxonomy based on phylogenetic relationships, the classification within this family is perplexing, and there is also a scarcity of reports on the chloroplast genomes of many plants falling under this classification. In this study, we conducted a comprehensive analysis by sequencing and characterizing the complete chloroplast genomes of six Polygonoideae plants, namely Pteroxygonum denticulatum, Pleuropterus multiflorus, Pleuropterus ciliinervis, Fallopia aubertii, Fallopia dentatoalata, and Fallopia convolvulus. Our findings revealed that these six plants possess chloroplast genomes with a typical quadripartite structure, averaging 162,931 bp in length. Comparative chloroplast analysis, codon usage analysis, and repetitive sequence analysis demonstrated a high level of conservation within the chloroplast genomes of these plants. Furthermore, phylogenetic analysis unveiled a distinct clade occupied by P. denticulatum, while P. ciliinrvis displayed a closer relationship to the three plants belonging to the Fallopia genus. Selective pressure analysis based on maximum likelihood trees showed that a total of 14 protein-coding genes exhibited positive selection, with psbB and ycf1 having the highest number of positive amino acid sites. Additionally, we identified four molecular markers, namely petN-psbM, psal-ycf4, ycf3-trnS-GGA, and trnL-UAG-ccsA, which exhibit high variability and can be utilized for the identification of these six plants.
Collapse
Affiliation(s)
- Zhan Feng
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yan Zheng
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Yuan Jiang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
5
|
Liu L, Li H, Li J, Li X, Hu N, Wang H, Zhou W. Chloroplast genome analyses of Caragana arborescens and Caragana opulens. BMC Genom Data 2024; 25:16. [PMID: 38336648 PMCID: PMC10854190 DOI: 10.1186/s12863-024-01202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Numerous species within the genus Caragana have high ecological and medicinal value. However, species identification based on morphological characteristics is quite complicated in the genus. To address this issue, we analyzed complete plastid genome data for the genus. RESULTS We obtained chloroplast genomes of two species, Caragana arborescens and Caragana opulens, using Illumina sequencing technology, with lengths of 129,473 bp and 132,815 bp, respectively. The absence of inverted repeat sequences in the two species indicated that they could be assigned to the inverted repeat-lacking clade (IRLC). The genomes included 111 distinct genes (4 rRNA genes, 31 tRNA genes, and 76 protein-coding genes). In addition, 16 genes containing introns were identified in the two genomes, the majority of which contained a single intron. Repeat analyses revealed 129 and 229 repeats in C. arborescens and C. opulens, respectively. C. arborescens and C. opulens genomes contained 277 and 265 simple sequence repeats, respectively. The two Caragana species exhibited similar codon usage patterns. rpl20-clpP, rps19-rpl2, and rpl23-ycf2 showed the highest nucleotide diversity (pi). In an analysis of sequence divergence, certain intergenic regions (matK-rbcL, psbM-petN, atpA-psbI, petA-psbL, psbE-petL, and rps7-rps12) were highly variable. A phylogenetic analysis showed that C. arborescens and C. opulens were related and clustered together with four other Caragana species. The genera Astragalus and Caragana were relatively closely related. CONCLUSIONS The present study provides valuable information about the chloroplast genomes of C. arborescens and C. opulens and lays a foundation for future phylogenetic research and molecular marker development.
Collapse
Affiliation(s)
- LiE Liu
- School of Ecological and Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Hongyan Li
- School of Ecological and Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Jiaxin Li
- School of Ecological and Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Xinjuan Li
- School of Ecological and Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Na Hu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Wu Zhou
- School of Ecological and Environmental Engineering, Qinghai University, Xining, 810016, China.
| |
Collapse
|
6
|
Xie J, Miao Y, Zhang X, Zhang G, Guo B, Luo G, Huang L. Comparative complete chloroplast genome of Geum japonicum: evolution and phylogenetic analysis. JOURNAL OF PLANT RESEARCH 2024; 137:37-48. [PMID: 37917204 DOI: 10.1007/s10265-023-01502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
Geum japonicum (Rosaceae) has been widely used in China as a traditional herbal medicine due to its high economic and medicinal value. However, the appearance of Geum species is relatively similar, making identification difficult by conventional phenotypic methods, and the studies of genomics and species evolution are lacking. To better distinguish the medicinal varieties and fill this gap, we carried out relevant research on the chloroplast genome of G. japonicum. Results show a typical quadripartite structure of the chloroplast genome of G. japonicum with a length of 156,042 bp. There are totally 131 unique genes in the genome, including 87 protein-coding genes, 36 tRNA genes, and 8 rRNA genes, and there were also 87 SSRs identified and mostly mononucleotide Adenine-Thymine. We next compared the plastid genomes among four Geum species and obtained 14 hypervariable regions, including ndhF, psbE, trnG-UCC, ccsA, trnQ-UUG, rps16, psbK, trnL-UAA, ycf1, ndhD, atpA, petN, rps14, and trnK-UUU. Phylogenetic analysis revealed that G. japonicum is most closely related to Geum aleppicum, and possibly has some evolutionary relatedness with an ancient relic plant Taihangia rupestris. This research enriched the genome resources and provided fundamental insights for evolutionary studies and the phylogeny of Geum.
Collapse
Affiliation(s)
- Junbo Xie
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330000, China
| | - Yujing Miao
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Xinke Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Guoshuai Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Baolin Guo
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Guangming Luo
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
7
|
Li Z, Huang Z, Wan X, Yu J, Dong H, Zhang J, Zhang C, Wang S. Complete chloroplast genome sequence of Rhododendronmariesii and comparative genomics of related species in the family Ericaeae. COMPARATIVE CYTOGENETICS 2023; 17:163-180. [PMID: 37650109 PMCID: PMC10464601 DOI: 10.3897/compcytogen.17.101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023]
Abstract
Rhododendronmariesii Hemsley et Wilson, 1907, a typical member of the family Ericaeae, possesses valuable medicinal and horticultural properties. In this research, the complete chloroplast (cp) genome of R.mariesii was sequenced and assembled, which proved to be a typical quadripartite structure with the length of 203,480 bp. In particular, the lengths of the large single copy region (LSC), small single copy region (SSC), and inverted repeat regions (IR) were 113,715 bp, 7,953 bp, and 40,918 bp, respectively. Among the 151 unique genes, 98 were protein-coding genes, 8 were tRNA genes, and 45 were rRNA genes. The structural characteristics of the R.mariesiicp genome was similar to other angiosperms. Leucine was the most representative amino acid, while cysteine was the lowest representative. Totally, 30 codons showed obvious codon usage bias, and most were A/U-ending codons. Six highly variable regions were observed, such as trnK-pafI and atpE-rpoB, which could serve as potential markers for future barcoding and phylogenetic research of R.mariesii species. Coding regions were more conserved than non-coding regions. Expansion and contraction in the IR region might be the main length variation in R.mariesii and related Ericaeae species. Maximum-likelihood (ML) phylogenetic analysis revealed that R.mariesii was relatively closed to the R.simsii Planchon, 1853 and R.pulchrum Sweet,1831. This research will supply rich genetic resource for R.mariesii and related species of the Ericaeae.
Collapse
Affiliation(s)
- Zhiliang Li
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei Province, ChinaHuanggang Normal UniversityHuanggangChina
| | - Zhiwei Huang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei Province, ChinaHuanggang Normal UniversityHuanggangChina
| | - Xuchun Wan
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei Province, ChinaHuanggang Normal UniversityHuanggangChina
| | - Jiaojun Yu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei Province, ChinaHuanggang Normal UniversityHuanggangChina
| | - Hongjin Dong
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei Province, ChinaHuanggang Normal UniversityHuanggangChina
| | - Jialiang Zhang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei Province, ChinaHuanggang Normal UniversityHuanggangChina
| | - Chunyu Zhang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei Province, ChinaHuanggang Normal UniversityHuanggangChina
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, ChinaHuazhong Agricultural UniversityWuhanChina
| | - Shuzhen Wang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei Province, ChinaHuanggang Normal UniversityHuanggangChina
| |
Collapse
|
8
|
Complete Plastome of Physalis angulata var. villosa, Gene Organization, Comparative Genomics and Phylogenetic Relationships among Solanaceae. Genes (Basel) 2022; 13:genes13122291. [PMID: 36553558 PMCID: PMC9778145 DOI: 10.3390/genes13122291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Physalis angulata var. villosa, rich in withanolides, has been used as a traditional Chinese medicine for many years. To date, few extensive molecular studies of this plant have been conducted. In the present study, the plastome of P. angulata var. villosa was sequenced, characterized and compared with that of other Physalis species, and a phylogenetic analysis was conducted in the family Solanaceae. The plastome of P. angulata var. villosa was 156,898 bp in length with a GC content of 37.52%, and exhibited a quadripartite structure typical of land plants, consisting of a large single-copy (LSC, 87,108 bp) region, a small single-copy (SSC, 18,462 bp) region and a pair of inverted repeats (IR: IRA and IRB, 25,664 bp each). The plastome contained 131 genes, of which 114 were unique and 17 were duplicated in IR regions. The genome consisted of 85 protein-coding genes, eight rRNA genes and 38 tRNA genes. A total of 38 long, repeat sequences of three types were identified in the plastome, of which forward repeats had the highest frequency. Simple sequence repeats (SSRs) analysis revealed a total of 57 SSRs, of which the T mononucleotide constituted the majority, with most of SSRs being located in the intergenic spacer regions. Comparative genomic analysis among nine Physalis species revealed that the single-copy regions were less conserved than the pair of inverted repeats, with most of the variation being found in the intergenic spacer regions rather than in the coding regions. Phylogenetic analysis indicated a close relationship between Physalis and Withania. In addition, Iochroma, Dunalia, Saracha and Eriolarynx were paraphyletic, and clustered together in the phylogenetic tree. Our study published the first sequence and assembly of the plastome of P. angulata var. villosa, reported its basic resources for evolutionary studies and provided an important tool for evaluating the phylogenetic relationship within the family Solanaceae.
Collapse
|
9
|
Al Kury LT, Taha Z, Mahmod AI, Talib WH. Xanthium spinosum L. Extracts Inhibit Breast Cancer in Mice by Apoptosis Induction and Immune System Modulation. Pharmaceuticals (Basel) 2022; 15:ph15121504. [PMID: 36558955 PMCID: PMC9784301 DOI: 10.3390/ph15121504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Plants have been considered for many years as an important source of medicine to treat different diseases. Xanthium spinosum L. (Asteraceae, Compositae) is known for its diuretic, anti-inflammatory, and sedative effects. It is also used in the treatment of several ailments, such as cancer. In order to evaluate the anticancer and immunomodulatory activities, crude ethanol extract was prepared from the aerial part of X. spinosum and then fractionated using solvents with different polarities. As well, the chemical composition of X. spinosum extract and fractions were identified using LC-MS analysis. The antitumor effect of X. spinosum was assessed in both in vitro and in vivo models. Apoptosis induction was measured in vitro using a caspase-3 activity kit. Lymphocyte proliferation and phagocytosis and pinocytosis induction were used to quantify the effect of the plant extract and fractions on acquired and innate immunity, respectively. The effect of X. spinosum extract, and fractions on the levels of cytokines (IFN-γ, IL-2, IL-4, and IL-10) in murine lymphocytes was determined using a mouse-uncoated TH1/TH2 ELISA kit. Results showed that ethanol extract had the highest antiproliferative activity (IC₅₀ = 2.5 mg mL-1) against EMT6/P cell lines, while the aqueous and chloroform fractions had the highest apoptotic activity with 2.2 and 1.7 folds, respectively. On the other hand, the n-hexane fraction was the most effective in stimulating lymphocyte proliferation, whereas ethanol extract, aq. Methanol and aqueous fractions exhibited the highest phagocytic activity. As well, X. spinosum extract and fractions were able to modulate the expression of IL-2, IL-4, and IFN-γ. A remarkable decrease in tumor size was accomplished following the treatment of tumor-bearing mice with X. spinosum extract and fractions. Both aq. Methanol and chloroform fractions showed the highest percentage change in tumor size with -58 and -55%, respectively. As well, tumor-bearing mice treated with chloroform fraction demonstrated a high curable percentage with a value of 57.1%. Anyway, X. spinosum extract and fractions exhibited no toxic impact on the liver or kidney functions of the mice-treated groups. These findings may confirm that X. spinosum has favorable anticancer and immunomodulatory effects. However, additional studies are required to fully understand the mechanisms of action of this plant and the signaling pathways involved in its effects. Moreover, more testing is needed to have better insight into the apoptotic pathway and to know the exact concentration of active compounds.
Collapse
Affiliation(s)
- Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
- Correspondence: (L.T.A.K.); (W.H.T.)
| | - Zainab Taha
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931-166, Jordan
| | - Wamidh H. Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931-166, Jordan
- Correspondence: (L.T.A.K.); (W.H.T.)
| |
Collapse
|
10
|
Xie H, Zhang L, Zhang C, Chang H, Xi Z, Xu X. Comparative analysis of the complete chloroplast genomes of six threatened subgenus Gynopodium (Magnolia) species. BMC Genomics 2022; 23:716. [PMID: 36261795 PMCID: PMC9583488 DOI: 10.1186/s12864-022-08934-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The subgenus Gynopodium belonging to genus Magnolia have high ornamental, economic, and ecological value. Subgenus Gynopodium contains eight species, but six of these species are threatened. No studies to date have characterized the characteristics of the chloroplast genomes (CPGs) within subgenus Gynopodium species. In this study, we compared the structure of CPGs, identified the mutational hotspots and resolved the phylogenetic relationship of subgenus Gynopodium. RESULTS The CPGs of six subgenus Gynopodium species ranged in size from 160,027 bp to 160,114 bp. A total of 131 genes were identified, including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. We detected neither major expansions or contractions in the inverted repeat region, nor rearrangements or insertions in the CPGs of six subgenus Gynopodium species. A total of 300 large repeat sequences (forward, reverse, and palindrome repeats), 847 simple sequence repeats, and five highly variable regions were identified. One gene (ycf1) and four intergenic regions (psbA-trnH-GUG, petA-psbJ, rpl32-trnL-UAG, and ccsA-ndhD) were identified as mutational hotspots by their high nucleotide diversity (Pi) values (≥ 0.004), which were useful for species discrimination. Maximum likelihood and Bayesian inference trees were concordant and indicated that Magnoliaceae consisted of two genera Liriodendron and Magnolia. Six species of subgenus Gynopodium clustered as a monophyletic clade, forming a sister clade with subgenus Yulania (BS = 100%, PP = 1.00). Due to the non-monophyly of subgenus Magnolia, subgenus Gynopodium should be treated as a section of Magnolia. Within section Gynopodium, M. sinica diverged first (posterior probability = 1, bootstrap = 100), followed by M. nitida, M. kachirachirai and M. lotungensis. M. omeiensis was sister to M. yunnanensis (posterior probability = 0.97, bootstrap = 50). CONCLUSION The CPGs and characteristics information provided by our study could be useful in species identification, conservation genetics and resolving phylogenetic relationships of Magnoliaceae species.
Collapse
Affiliation(s)
- Huanhuan Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lei Zhang
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin National Ethnic Affairs Commission of the People's Republic of China, College of Biological Science & Engineering, North Minzu University, Yinchuan, 750021, China
| | - Cheng Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hong Chang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Xiaoting Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
11
|
Shabana, Barkatullah, Nafees M. Pharmacognostic standardization of
Xanthium spinosum
L
. through scanning electron microscopy and analytical techniques. Microsc Res Tech 2022; 85:3736-3754. [DOI: 10.1002/jemt.24224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/20/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Shabana
- Department of Botany Islamia College Peshawar Peshawar Pakistan
| | - Barkatullah
- Department of Botany Islamia College Peshawar Peshawar Pakistan
| | - Muhammad Nafees
- Department of Botany University of Peshawar Peshawar Pakistan
| |
Collapse
|
12
|
Zheng C, Fan J, Caraballo-Ortiz MA, Liu Y, Liu T, Fu G, Zhang Y, Yang P, Su X. The complete chloroplast genome and phylogenetic relationship of Apocynum pictum (Apocynaceae), a Central Asian shrub and second-class national protected species of western China. Gene X 2022; 830:146517. [PMID: 35452705 DOI: 10.1016/j.gene.2022.146517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/21/2022] [Accepted: 04/14/2022] [Indexed: 11/28/2022] Open
Abstract
Apocynum pictum of the dogbane family, Apocynaceae, is a perennial semi-shrub species of ecological, medicinal, and economic value. It is mainly distributed in semi-arid, saline-alkaline, and desert regions of Xinjiang, Qinghai, and Gansu of western China and adjacent regions from Kazakhstan and Mongolia. Here, we reported the complete chloroplast (cp) genome of A. pictum for the first time, and we found that it had a circular structure with an estimated length of 150,749 bp and a GC content of 38.3%. The cp genome was composed of a large single copy (LSC), a single small single copy (SSC), and two inverted repeat (IR) regions, which were 81,888 bp, 17,251 bp and 25,805 bp long, respectively. The cp genome of A. pictum encoded 134 genes and contained 66 simple sequence repeats (SSRs). A comparative analysis with other cp genomes from Apocynaceae indicated that the cp genome of A. pictum was very conserved, except for subtle differences occurring in the protein-coding genes accD, ndhF, rpl22, rpl32, rpoC2, ycf1 and ycf2. A phylogenetic reconstruction showed that A. pictum and A. venetum were sister species, forming a strongly supported clade with Trachelospermum. Interestingly, nucleotide substitution ratios (Ka/Ks) between A. pictum and A. venetum on accD and ndhF were >1.0, suggesting positive selective pressure on these genes. Our result enriches the genomic resources for the diverse dogbane family and provides critical molecular resources to develop future studies on ecological adaptation to desert habitats in Apocynum.
Collapse
Affiliation(s)
- Changyuan Zheng
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Jianping Fan
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Marcos A Caraballo-Ortiz
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Yuping Liu
- School of Life Sciences, Qinghai Normal University, Xining 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining 810008, China.
| | - Tao Liu
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Gui Fu
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Yu Zhang
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Ping Yang
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Xu Su
- School of Life Sciences, Qinghai Normal University, Xining 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining 810008, China; Key Laboratory of Education Ministry of Earth Surface Processes and Ecological Conservation of the Qinghai-Tibet Plateau, Qinghai Normal University, Xining 810008, China.
| |
Collapse
|
13
|
Liu H, Liu W, Ahmad I, Xiao Q, Li X, Zhang D, Fang J, Zhang G, Xu B, Gao Q, Chen S. Complete Chloroplast Genome Sequence of Triosteum sinuatum, Insights into Comparative Chloroplast Genomics, Divergence Time Estimation and Phylogenetic Relationships among Dipsacales. Genes (Basel) 2022; 13:genes13050933. [PMID: 35627318 PMCID: PMC9141360 DOI: 10.3390/genes13050933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
Triosteum himalayanum, Triosteum pinnatifidum (Triosteum L., Caprifoliaceae, Dipsacales) are widely distributed in China while Triosteum sinuatum mainly occurrs in northeast China. Few reports have been determined on the genus Triosteum. In the present research, we sequenced 2 chloroplast genomes of Triosteum and analyzed 18 chloroplast genomes, trying to explore the sequence variations and phylogeny of genus Triosteum in the order Dipsacales. The chloroplast genomes of the genus Triosteum ranged from 154,579 bp to 157,178 bp, consisting of 132 genes (86 protein-coding genes, 38 transfer RNA genes, and 8 ribosomal RNA genes). Comparative analyses and phylogenetic analysis supported the division of Dipsacales into two clades, Adoxaceae and six other families. Among the six families, a clade of Valerianaceae+Dipsacaceae was recovered as a sister to a clade of Morinaceae+Linnaeaceae. A closer relationship of T. himalayanum and T. pinnatifidum among three species was revealed. Our research supported that Loniceraferdinandi and Triosteum was closely related. Zabelia had a closer relationship with Linnaea borealis and Dipelta than Morinaceae. The divergence between T. sinuatum and two other species in Triosteum was dated to 13.4 mya.
Collapse
Affiliation(s)
- HaiRui Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810008, China; (H.L.); (D.Z.)
- College of Eco-Environmental Engineering, Qinghai University, Xining 810008, China; (Q.X.); (X.L.); (J.F.); (G.Z.); (B.X.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China;
| | - WenHui Liu
- Department of Geological Engineering, Qinghai University, Xining 810016, China;
| | - Israr Ahmad
- Department of Botany, Women University of AJK, Bagh 12500, Pakistan;
| | - QingMeng Xiao
- College of Eco-Environmental Engineering, Qinghai University, Xining 810008, China; (Q.X.); (X.L.); (J.F.); (G.Z.); (B.X.)
| | - XuMin Li
- College of Eco-Environmental Engineering, Qinghai University, Xining 810008, China; (Q.X.); (X.L.); (J.F.); (G.Z.); (B.X.)
| | - DeJun Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810008, China; (H.L.); (D.Z.)
- College of Eco-Environmental Engineering, Qinghai University, Xining 810008, China; (Q.X.); (X.L.); (J.F.); (G.Z.); (B.X.)
| | - Jie Fang
- College of Eco-Environmental Engineering, Qinghai University, Xining 810008, China; (Q.X.); (X.L.); (J.F.); (G.Z.); (B.X.)
| | - GuoFan Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining 810008, China; (Q.X.); (X.L.); (J.F.); (G.Z.); (B.X.)
| | - Bin Xu
- College of Eco-Environmental Engineering, Qinghai University, Xining 810008, China; (Q.X.); (X.L.); (J.F.); (G.Z.); (B.X.)
| | - QingBo Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China;
- Correspondence:
| | - ShiLong Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China;
| |
Collapse
|
14
|
Guzmán-Díaz S, Núñez FAA, Veltjen E, Asselman P, Larridon I, Samain MS. Comparison of Magnoliaceae Plastomes: Adding Neotropical Magnolia to the Discussion. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030448. [PMID: 35161429 PMCID: PMC8838774 DOI: 10.3390/plants11030448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 05/13/2023]
Abstract
Chloroplast genomes are considered to be highly conserved. Nevertheless, differences in their sequences are an important source of phylogenetically informative data. Chloroplast genomes are increasingly applied in evolutionary studies of angiosperms, including Magnoliaceae. Recent studies have focused on resolving the previously debated classification of the family using a phylogenomic approach and chloroplast genome data. However, most Neotropical clades and recently described species have not yet been included in molecular studies. We performed sequencing, assembly, and annotation of 15 chloroplast genomes from Neotropical Magnoliaceae species. We compared the newly assembled chloroplast genomes with 22 chloroplast genomes from across the family, including representatives from each genus and section. Family-wide, the chloroplast genomes presented a length of about 160 kb. The gene content in all species was constant, with 145 genes. The intergenic regions showed a higher level of nucleotide diversity than the coding regions. Differences were higher among genera than within genera. The phylogenetic analysis in Magnolia showed two main clades and corroborated that the current infrageneric classification does not represent natural groups. Although chloroplast genomes are highly conserved in Magnoliaceae, the high level of diversity of the intergenic regions still resulted in an important source of phylogenetically informative data, even for closely related taxa.
Collapse
Affiliation(s)
- Salvador Guzmán-Díaz
- Instituto de Ecología, A.C., Red de Diversidad Biológica del Occidente Mexicano, Pátzcuaro 61600, Mexico; (F.A.A.N.); (M.-S.S.)
- Correspondence:
| | - Fabián Augusto Aldaba Núñez
- Instituto de Ecología, A.C., Red de Diversidad Biológica del Occidente Mexicano, Pátzcuaro 61600, Mexico; (F.A.A.N.); (M.-S.S.)
| | - Emily Veltjen
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, 9000 Gent, Belgium; (E.V.); (P.A.); (I.L.)
- Ghent University Botanical Garden, Ghent University, 9000 Gent, Belgium
| | - Pieter Asselman
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, 9000 Gent, Belgium; (E.V.); (P.A.); (I.L.)
| | - Isabel Larridon
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, 9000 Gent, Belgium; (E.V.); (P.A.); (I.L.)
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Marie-Stéphanie Samain
- Instituto de Ecología, A.C., Red de Diversidad Biológica del Occidente Mexicano, Pátzcuaro 61600, Mexico; (F.A.A.N.); (M.-S.S.)
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, 9000 Gent, Belgium; (E.V.); (P.A.); (I.L.)
| |
Collapse
|
15
|
Raman G, Nam GH, Park S. Extensive reorganization of the chloroplast genome of Corydalis platycarpa: A comparative analysis of their organization and evolution with other Corydalis plastomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1043740. [PMID: 37090468 PMCID: PMC10115153 DOI: 10.3389/fpls.2022.1043740] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/07/2022] [Indexed: 05/03/2023]
Abstract
Introduction The chloroplast (cp) is an autonomous plant organelle with an individual genome that encodes essential cellular functions. The genome architecture and gene content of the cp is highly conserved in angiosperms. The plastome of Corydalis belongs to the Papaveraceae family, and the genome is comprised of unusual rearrangements and gene content. Thus far, no extensive comparative studies have been carried out to understand the evolution of Corydalis chloroplast genomes. Methods Therefore, the Corydalis platycarpa cp genome was sequenced, and wide-scale comparative studies were conducted using publicly available twenty Corydalis plastomes. Results Comparative analyses showed that an extensive genome rearrangement and IR expansion occurred, and these events evolved independently in the Corydalis species. By contrast, the plastomes of its closely related subfamily Papaveroideae and other Ranunculales taxa are highly conserved. On the other hand, the synapomorphy characteristics of both accD and the ndh gene loss events happened in the common ancestor of the Corydalis and sub-clade of the Corydalis lineage, respectively. The Corydalis-sub clade species (ndh lost) are distributed predominantly in the Qinghai-Tibetan plateau (QTP) region. The phylogenetic analysis and divergence time estimation were also employed for the Corydalis species. Discussion The divergence time of the ndh gene in the Corydalis sub-clade species (44.31 - 15.71 mya) coincides very well with the uplift of the Qinghai-Tibet Plateau in Oligocene and Miocene periods, and maybe during this period, it has probably triggered the radiation of the Corydalis species. Conclusion To the best of the authors' knowledge, this is the first large-scale comparative study of Corydalis plastomes and their evolution. The present study may provide insights into the plastome architecture and the molecular evolution of Corydalis species.
Collapse
Affiliation(s)
- Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - Gi-Heum Nam
- Plants Resource Division, Biological Resources Research Department, National Institute of Biological Resources, Seo-gu, Incheon, Republic of Korea
- *Correspondence: SeonJoo Park, ; Gi-Heum Nam,
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
- *Correspondence: SeonJoo Park, ; Gi-Heum Nam,
| |
Collapse
|
16
|
Mosoarca G, Vancea C, Popa S, Boran S. Bathurst Burr ( Xanthium spinosum) Powder-A New Natural Effective Adsorbent for Crystal Violet Dye Removal from Synthetic Wastewaters. MATERIALS 2021; 14:ma14195861. [PMID: 34640258 PMCID: PMC8510156 DOI: 10.3390/ma14195861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
A new natural adsorbent material, Bathurst burr powder, was used to remove crystal violet dye from synthetic wastewaters. Particle size distribution and SEM and FTIR analyses were performed to characterize it. The effect of the operational adsorption process parameters (pH, ionic strength, initial dye concentration, adsorbent dose, contact time, temperature) onto the adsorption process was evaluated in a batch system. Equilibrium, kinetic, and thermodynamic studies were performed in order to understand the adsorption process. Taguchi method and ANOVA test were used to optimize the dye adsorption conditions and to establish the percentage contribution of each factor, respectively. The accuracy of the Taguchi prediction method was analyzed by correlating the predicted dye removal efficiency with the experimentally determined one. The particle size distribution analysis showed that 82.15% of the adsorbent particles have an average size below 0.5 mm. The adsorption process followed the Langmuir isotherm and pseudo-second order kinetic model. Maximum adsorption capacity value (164.10 mg·g−1) was higher compared to many similar adsorbents. The process was endothermic, spontaneous, and favorably involving a physisorption mechanism. The Taguchi method showed that the most influential controllable factor was pH (65% contribution in adsorption efficiency) and the data analysis indicates a very good accuracy of the experimental design (R2 = 0.994). The obtained results demonstrated that Bathurst burr powder can be used as a cheap and efficient adsorbent for crystal violet dye removal from aqueous solution.
Collapse
Affiliation(s)
| | - Cosmin Vancea
- Correspondence: (C.V.); (S.P.); Tel.: +40-256404194 (C.V.); +40-256404212 (S.P.)
| | - Simona Popa
- Correspondence: (C.V.); (S.P.); Tel.: +40-256404194 (C.V.); +40-256404212 (S.P.)
| | | |
Collapse
|
17
|
New Insight into the Phylogeny and Taxonomy of Cultivated and Related Species of Crataegus in China, Based on Complete Chloroplast Genome Sequencing. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7090301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hawthorns (Crataegus L.) are one of the most important processing and table fruits in China, due to their medicinal properties and health benefits. However, the interspecific relationships and evolution history of cultivated Crataegus in China remain unclear. Our previously published data showed C. bretschneideri may be derived from the hybridization of C. pinnatifida with C. maximowiczii, and that introgression occurs between C. hupehensis, C. pinnatifida, and C. pinnatifida var. major. In the present study, chloroplast sequences were used to further elucidate the phylogenetic relationships of cultivated Crataegus native to China. The chloroplast genomes of three cultivated species and one related species of Crataegus were sequenced for comparative and phylogenetic analyses. The four chloroplast genomes of Crataegus exhibited typical quadripartite structures and ranged from 159,607 bp (C. bretschneideri) to 159,875 bp (C. maximowiczii) in length. The plastomes of the four species contained 113 genes consisting of 79 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Six hypervariable regions (ndhC-trnV(UAC)-trnM(CAU), ndhA, atpH-atpI, ndhF, trnR(UCU)-atpA, and ndhF-rpl32), 196 repeats, and a total of 386 simple sequence repeats were detected as potential variability makers for species identification and population genetic studies. In the phylogenomic analyses, we also compared the entire chloroplast genomes of three published Crataegus species: C. hupehensis (MW201730.1), C. pinnatifida (MN102356.1), and C. marshallii (MK920293.1). Our phylogenetic analyses grouped the seven Crataegus taxa into two main clusters. One cluster included C. bretschneideri, C. maximowiczii, and C. marshallii, whereas the other included C. hupehensis, C. pinnatifida, and C. pinnatifida var. major. Taken together, our findings indicate that C. maximowiczii is the maternal origin of C. bretschneideri. This work provides further evidence of introgression between C. hupehensis, C. pinnatifida, and C. pinnatifida var. major, and suggests that C. pinnatifida var. major might have been artificially selected and domesticated from hybrid populations, rather than evolved from C. pinnatifida.
Collapse
|
18
|
Raman G, Park KT, Kim JH, Park S. Correction to: Characteristics of the completed chloroplast genome sequence of Xanthium spinosum: comparative analyses, identification of mutational hotspots and phylogenetic implications. BMC Genomics 2021; 22:97. [PMID: 33526005 PMCID: PMC7852136 DOI: 10.1186/s12864-021-07392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea, 38541
| | - Kyu Tae Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea, 38541
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea, 38541.
| |
Collapse
|