1
|
Andrews AJ, Eriksen EF, Star B, Præbel K, Di Natale A, Malca E, Onar V, Aniceti V, Carenti G, Piquès G, Nielsen SV, Persson P, Piattoni F, Fontani F, Atmore LM, Kersten O, Tinti F, Cilli E, Cariani A. Ancient DNA suggests a historical demographic decline and genetic erosion in the Atlantic bluefin tuna. Proc Natl Acad Sci U S A 2025; 122:e2409302122. [PMID: 40392844 DOI: 10.1073/pnas.2409302122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 04/08/2025] [Indexed: 05/22/2025] Open
Abstract
Overexploitation has depleted fish stocks during the past century; nonetheless, its genomic consequences remain poorly understood for most species. Characterizing the spatiotemporal patterns of these consequences may provide baseline estimates of past diversity and productivity to aid management targets, help predict future dynamics, and facilitate the identification of evolutionary factors limiting fish population recovery. Here, we evaluate human impacts on the evolution of the iconic Atlantic bluefin tuna (Thunnus thynnus), one of the longest and most intensely exploited marine fishes, with a tremendous cultural and economic importance. We sequenced whole genomes from modern (n = 49) and ancient (n = 41) specimens dating up to 5,000 y ago, uncovering several findings. First, we identify temporally stable patterns of population admixture, as bluefin tuna caught off Norway and in the eastern Mediterranean share a greater degree of ancestry with Gulf of Mexico bluefin tuna than western and central Mediterranean bluefin tuna. This suggests that Atlantic spawning areas are important mixing grounds for the genetic diversity of Mediterranean bluefin tuna. We model effective population size to show that Mediterranean bluefin tuna began to undergo a demographic decline by the year 1900 to an extent not observed across the previous millennia. Coinciding with this, we found that heterozygosity and nucleotide diversity were significantly lower in modern (2013 to 2020) than ancient (pre-1941) Mediterranean bluefin tuna, suggesting that bluefin tuna underwent a genetic bottleneck. With this work, we show how ancient DNA provides unique perspectives on ecological complexity with the potential to inform the management and conservation of fishes.
Collapse
Affiliation(s)
- Adam Jon Andrews
- Section for Marine Biology, Norwegian Institute of Water Research, Oslo 0579, Norway
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna 48123, Italy
| | - Emma Falkeid Eriksen
- Centre for Ecology and Evolutionary Synthesis, University of Oslo, Oslo 0371, Norway
| | - Bastiaan Star
- Centre for Ecology and Evolutionary Synthesis, University of Oslo, Oslo 0371, Norway
| | - Kim Præbel
- Norges fiskerihøgskole, University of Tromsø Arctic University of Norway, Tromsø 9037, Norway
| | | | - Estrella Malca
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL 33146
- National Oceanic and Atmospheric Administration Fisheries, Populations and Ecosystems Monitoring Division, Miami, FL 33149
| | - Vedat Onar
- Faculty of Veterinary Medicine, Muğla Sıtkı Kocman University, Milas 48100, Türkiye
| | - Veronica Aniceti
- Consejo Superior de Investigaciones Científicas, Institució Milà, Barcelona 08001, Spain
| | | | - Gäel Piquès
- Archéologie des Sociétés Méditerranéennes, CNRS, Université Paul Valéry, Montpellier 34199, France
| | | | - Per Persson
- Museum of Cultural History, University of Oslo, Oslo 0164, Norway
| | - Federica Piattoni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna 48123, Italy
| | - Francesco Fontani
- Department of Cultural Heritage, University of Bologna, Ravenna 48121, Italy
| | - Lane M Atmore
- Centre for Ecology and Evolutionary Synthesis, University of Oslo, Oslo 0371, Norway
- Department of Anthropology, University of British Columbia, Vancouver 6303, Canada
| | - Oliver Kersten
- Centre for Ecology and Evolutionary Synthesis, University of Oslo, Oslo 0371, Norway
| | - Fausto Tinti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna 48123, Italy
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Ravenna 48121, Italy
| | - Alessia Cariani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna 48123, Italy
| |
Collapse
|
2
|
Asti V, Summer A, Ablondi M, Sartori C, Giontella A, Pilastro V, Mecocci S, Cappelli K, Mancin E, Oian A, Mantovani R, Capomaccio S, Sabbioni A. Selection signatures and inbreeding: exploring genetic diversity in five native horse breeds. BMC Vet Res 2025; 21:346. [PMID: 40380299 PMCID: PMC12082900 DOI: 10.1186/s12917-025-04794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/28/2025] [Indexed: 05/19/2025] Open
Abstract
Horses have undergone extensive natural and artificial selection, shaping the diversity of breeds observed today. Native Italian breeds present unique traits influenced by natural selection, such as adaptation to harsh climates, or hoof strength, but face challenges due to population declines and the reduction of their original breeding purpose. This study focuses on five local Italian breeds: Bardigiano, Haflinger, Maremmano, Murgese, and Italian Heavy Draught Horse, to understand how selection has shaped their populations. A total of 1620 individuals were genotyped with a medium-density SNP chip and remapped to EquCab3. After quality control, where data were filtered based on missing genotypes per SNP (> 0.10) and missing SNPs per sample (> 0.10), 1498 horses and 54,825 SNPs remained for analysis. Population structure and runs of homozygosity (ROH) were identified, and genomic inbreeding coefficients were calculated based on ROH coverage of autosomal SNPs. ROH islands shared by ≥ 70% of horses were identified as selection signatures, and candidate genes within these regions were annotated. The inbreeding coefficient (FROH) ranged from 0.15 to 0.23, with Bardigiano and Haflinger showing the highest values probably due to selective breeding, while Maremmano, Murgese, and Italian Heavy Draught Horse displayed lower FROH, reflecting a broader diversity. ROH islands were identified on 12 chromosomes, with 23 islands distributed among breeds. Cold-blooded breeds (Bardigiano, Haflinger, and Italian Heavy Draught Horse) showed the majority, particularly on Equine Chromosome 3 (ECA3). These islands overlapped with 83 quantitative trait loci (QTLs) and 76 genes associated with morphology and health. Health-related traits such as osteochondrosis and hoof health were linked to ROH patterns, particularly in Bardigiano and Haflinger, highlighting selection for disease resistance. Signature of selections were found in the proximity of MC1R and ASIP genes likely due to their role for coat color; especially in the Haflinger and Italian Heavy Draught Horse the genotype frequency of the BIEC2_816499 SNP which is in the vicinity of the causative mutation for chestnut coat color is due to linkage disequilibrium between the two. In conclusion, this study offered valuable insights that breeders could utilize to make sound decisions. This issue would ensure the maintenance of breed genetic diversity, and the preservation and improvement of the breed's distinct traits and health standards.
Collapse
Affiliation(s)
- Vittoria Asti
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Andrea Summer
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Michela Ablondi
- Department of Veterinary Science, University of Parma, Parma, Italy.
| | - Cristina Sartori
- Department of Agronomy, Natural Resources, Animals, and Environment, University of Padua, Food, Padua, Italy
| | - Andrea Giontella
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Sport Horse Research Centre (CRCS), University of Perugia, Perugia, Italy
| | - Valeria Pilastro
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Sport Horse Research Centre (CRCS), University of Perugia, Perugia, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Sport Horse Research Centre (CRCS), University of Perugia, Perugia, Italy
| | - Enrico Mancin
- Department of Agronomy, Natural Resources, Animals, and Environment, University of Padua, Food, Padua, Italy
| | - Angelica Oian
- Department of Agronomy, Natural Resources, Animals, and Environment, University of Padua, Food, Padua, Italy
| | - Roberto Mantovani
- Department of Agronomy, Natural Resources, Animals, and Environment, University of Padua, Food, Padua, Italy
| | - Stefano Capomaccio
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Sport Horse Research Centre (CRCS), University of Perugia, Perugia, Italy
| | - Alberto Sabbioni
- Department of Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|
3
|
Spetter MJ, Utsumi SA, Armstrong EM, Rodríguez Almeida FA, Ross PJ, Macon L, Jara E, Cox A, Perea AR, Funk M, Redd M, Cibils AF, Spiegal SA, Estell RE. Genetic Diversity, Admixture, and Selection Signatures in a Rarámuri Criollo Cattle Population Introduced to the Southwestern United States. Int J Mol Sci 2025; 26:4649. [PMID: 40429794 PMCID: PMC12112442 DOI: 10.3390/ijms26104649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/03/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Rarámuri Criollo (RC) cattle have been raised by the isolated Tarahumara communities of Chihuahua, Mexico, for nearly 500 years, mostly under natural selection and minimal management. RC cattle were introduced to the United States Department of Agriculture-Agricultural Research Service Jornada Experimental Range (RCJER) in 2005 to begin evaluations of beef production performance and their adaptation to the harsh ecological and climatic conditions of the Northern Chihuahuan Desert. While this research unveiled crucial information on their phenotypic plasticity and adaptation, the genetic diversity and structure of the RCJER population remains poorly understood. This study analyzed the genetic diversity, population structure, ancestral composition, and selection signatures of the RCJER herd using a ~64 K SNP array. The RCJER herd exhibits moderate genetic diversity and low population stratification with no evident clustering, suggesting a shared genetic background among different subfamilies. Admixture analysis revealed the RCJER herd represents a distinctive genetic pool within the Criollo cattle breeds, with significant Iberian ancestry. Selection signatures identified candidate genes and quantitative trait loci (QTL) for traits associated with milk composition, growth, meat and carcass, reproduction, metabolic homeostasis, health, and coat color. The RCJER population represents a distinctive genetic resource adapted to harsh environmental conditions while maintaining productive and reproductive attributes. These findings are crucial to ensuring the long-term genetic conservation of the RCJER and their strategic expansion into locally adapted beef production systems in the USA.
Collapse
Affiliation(s)
- Maximiliano J. Spetter
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (S.A.U.); (A.C.); (A.R.P.); (M.F.)
| | - Santiago A. Utsumi
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (S.A.U.); (A.C.); (A.R.P.); (M.F.)
| | - Eileen M. Armstrong
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de la República, Montevideo 10129, Uruguay; (E.M.A.); (E.J.)
| | | | - Pablo J. Ross
- Inguran LLC Dba STgenetics, Navasota, TX 77868, USA;
| | - Lara Macon
- USDA Agricultural Research Service Jornada Experimental Range, Las Cruces, NM 88003, USA; (L.M.); (S.A.S.)
| | - Eugenio Jara
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de la República, Montevideo 10129, Uruguay; (E.M.A.); (E.J.)
| | - Andrew Cox
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (S.A.U.); (A.C.); (A.R.P.); (M.F.)
| | - Andrés R. Perea
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (S.A.U.); (A.C.); (A.R.P.); (M.F.)
| | - Micah Funk
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (S.A.U.); (A.C.); (A.R.P.); (M.F.)
| | - Matthew Redd
- Dugout Ranch/Canyonlands Research Center, The Nature Conservancy, Monticello, UT 84535, USA;
| | - Andrés F. Cibils
- USDA Southern Plains Climate Hub, Oklahoma and Central Plains Agricultural Research Center, El Reno, OK 73036, USA;
| | - Sheri A. Spiegal
- USDA Agricultural Research Service Jornada Experimental Range, Las Cruces, NM 88003, USA; (L.M.); (S.A.S.)
| | - Richard E. Estell
- USDA Agricultural Research Service Jornada Experimental Range, Las Cruces, NM 88003, USA; (L.M.); (S.A.S.)
| |
Collapse
|
4
|
Hernández CL, Sánchez-Martínez LJ, Ceballos FC, Dugoujon JM, Pereira L, Calderón R. A genomic tale of inbreeding in western Mediterranean human populations. Hum Genet 2025:10.1007/s00439-025-02747-9. [PMID: 40347250 DOI: 10.1007/s00439-025-02747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/19/2025] [Indexed: 05/12/2025]
Abstract
Consanguineous marriages are common in many worldwide human populations, and the biological consequences for offspring can be relevant at the biomedical level. The current genomic revolution displayed through genome-wide studies is challenging the paradigm in the analysis of consanguinity. Here, we analyzed genomic inbreeding patterns in human populations located at the western edge of the Mediterranean region (Iberia and Morocco). Runs of Homozygosity (ROH) (autozygosity fragments) were identified in 139 autochthonous individuals originating from southern Iberia and Morocco via microarray data. All individuals analyzed carried at least one ROH in their genomes. The genomic inbreeding coefficient (FROH) and the presence of ROH islands (ROHi) revealed interesting patterns in the target populations as well as in the rest of the Mediterranean basin. Moroccan Berbers presented signals of recent inbreeding, relying on high coverage of long ROH (> 5 Mb) and FROH. The location and structure of ROHi among people in the western Mediterranean could be interpreted as a signature of common genetic links across the Strait of Gibraltar. We found a significant enrichment of some relevant biological functions in the estimated ROHi hotspots associated with the immune system and chemosensation. Genomic inbreeding approaches allow us to understand past population histories and can be used as a proxy to scan the genome in search of selection signals.
Collapse
Affiliation(s)
- Candela L Hernández
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain.
| | - Luis J Sánchez-Martínez
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Jean M Dugoujon
- CNRS UMR 5288 Laboratoire d'Anthropologie Moléculaire et d'Imagerie de Synthèse (AMIS), Université Paul Sabatier Toulouse III, Toulouse, France
| | - Luisa Pereira
- i3S, Instituto de Investigação e Inovaçãao em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup, Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Rosario Calderón
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Wei Y, Zhang T, Li Z, Hua Q, Yin L, Lei M, Zhao S, Gu S, Zhang X, He H, Lu X. Evolutionary divergence on the Qinghai-Tibet Plateau: How life-history traits shape the diversity of plateau zokor and pika populations. J Genet Genomics 2025:S1673-8527(25)00128-6. [PMID: 40334979 DOI: 10.1016/j.jgg.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Understanding how species diverge and adapt is fundamental to unraveling biodiversity. While environmental impacts on species evolution are well-documented, the roles of intrinsic life-history traits remain underexplored. The Qinghai-Tibet Plateau, with its harsh conditions and unique biodiversity, offers a natural laboratory for such investigations. Here, we examined two sympatric small mammals-the solitary, low-dispersal plateau zokor (Eospalax baileyi) and the social, high-dispersal plateau pika (Ochotona curzoniae)-to elucidate how life-history traits shape population structures and adaptive strategies. Through whole-genome sequencing and cardiac-blood phenotype analyses, we reveal striking differences in their evolutionary trajectories. Despite enduring similar environmental pressures, plateau zokor populations exhibit pronounced genetic subdivisions, high inbreeding, and distinct local adaptations. In contrast, plateau pika populations display genetic panmixia, widespread diversity, and adaptive uniformity. Demographic inference highlights plateau zokors experienced severe population bottlenecks and restricted gene flow during glacial periods, underscoring the impact of dispersal capacity on evolutionary outcomes. Our findings demonstrate that intrinsic biological traits, particularly dispersal ability, fundamentally influence genetic architecture, population connectivity, and local adaptation. This study not only provides empirical evidence of how life-history traits shape evolutionary dynamics but offers a framework for integrating intrinsic and extrinsic factors in understanding biodiversity formation.
Collapse
Affiliation(s)
- Yunyang Wei
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Zhang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Zifeng Li
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinyang Hua
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liduo Yin
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Menglong Lei
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilei Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Shanshan Gu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Zhang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao He
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuemei Lu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
6
|
Ping X, Chen Y, Wang H, Jin Z, Duan Q, Ren Z, Dong X. Whole-genome sequencing reveals patterns of runs of homozygosity underlying genetic diversity and selection in domestic rabbits. BMC Genomics 2025; 26:425. [PMID: 40301718 PMCID: PMC12042440 DOI: 10.1186/s12864-025-11616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Runs of homozygosity (ROH) are continuous segments of homozygous genotypes inherited from both parental lineages. These segments arise due to the transmission of identical haplotypes. The genome-wide patterns and hotspot regions of ROH provide valuable insights into genetic diversity, demographic history, and selection trends. In this study, we analyzed whole-genome resequencing data from 117 rabbits to identify ROH patterns and inbreeding level across eleven rabbit breeds, including seven Chinese indigenous breeds and four exotic breeds, and to uncover selective signatures based on ROH islands. RESULTS We detected a total of 31,429 ROHs across the autosomes of all breeds, with the number of ROHs (NROH) per breed ranging from 1316 to 7476. The mean sum of ROHs length (SROH) per individual was 493.84 Mb, covering approximately 22.79% of the rabbit autosomal genome. The majority of the detected ROHs ranged from 1 to 2 Mb in length, with an average ROH length (LROH) of 1.84 Mb. ROHs longer than 6 Mb constituted only 0.83% of the detected ROHs. The average inbreeding coefficient derived from ROHs (FROH) was 0.23, with FROH values ranging from 0.14 to 0.38 across breeds. Among Chinese indigenous breeds, the Jiuyishan rabbit exhibited the highest values of NROH, SROH, LROH, and FROH, whereas the Fujian Yellow rabbit had the lowest FROH values. In exotic rabbit breeds, the Japanese White rabbit displayed the highest values for NROH, SROH, LROH, and FROH, while the Flemish Giant rabbit had the lowest values for these metrics. Additionally, we identified 17 ROH islands in Chinese indigenous breeds and 22 ROH islands in exotic rabbit breeds, encompassing 124 and 186 genes, respectively. In Chinese indigenous breeds, we identified prominent genes associated with reproduction, including CFAP206, RNF133, CPNE4, ASTE1, and ATP2C1, as well as genes related to adaptation, namely CADPS2, FEZF1, and EPHA7. In contrast, the exotic breeds exhibited a prevalence of genes associated with fat deposition, such as ELOVL3 and NPM3, as well as growth and body weight related genes, including FAM184B, NSMCE2, and TWNK. CONCLUSIONS This study enhances our understanding of genetic diversity and selection pressures in domestic rabbits, offering valuable implications for breeding management and conservation strategies.
Collapse
Affiliation(s)
- Xinxin Ping
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yuan Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hui Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhuoya Jin
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Qianting Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhanjun Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xianggui Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
7
|
Sanchez-Molano E, Mukiibi R, Riggio V, Ogwang J, Kawule L, Benda K, Beine P, de Clare Bronsvoort BM, Prendergast J, Doeschl-Wilson AB, Muwonge A. Genomic and health characteristics of crossbred dairy cattle in central Uganda. Front Genet 2025; 16:1567910. [PMID: 40342961 PMCID: PMC12058653 DOI: 10.3389/fgene.2025.1567910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/04/2025] [Indexed: 05/11/2025] Open
Abstract
Introduction In Africa, dairy cattle contribute significantly to the economy; however, a substantial proportion of these animals are low-yielding indigenous breeds. To increase dairy productivity, crossbreeding with exotic breeds such as European Holstein and Jersey is becoming increasingly common. Uncontrolled crossbreeding practices, however, pose a risk to the genetic integrity of local breeds, as highly productive but potentially maladapted animals may replace indigenous populations. This study aimed to characterise the genetic structure of crossbred dairy cattle in Uganda. Methods We used admixture analysis, while also assessing genomic diversity and inbreeding levels. Additionally, we evaluated the utility of farmer-generated phenotypic databases by integrating them with genomic data to explore the impact of exotic breed crossbreeding on disease frequency. Results and discussion Findings from this study show a strong influence of exotic breeds (e.g., Holstein) in Ugandan crossbred cattle, leading to lower inbreeding and observed homozygosity than those observed for indigenous breeds. Exploratory analyses of available disease records provided evidence of a strong survivor bias, likely linked to higher mortality rates from diseases such as East Coast fever. These results show the importance of investigating the genetic composition of farm animals, in order to develop informed and sustainable breeding strategies in African dairy cattle systems.
Collapse
Affiliation(s)
- Enrique Sanchez-Molano
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Robert Mukiibi
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Valentina Riggio
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Joel Ogwang
- National Animal Genetic Resources Centre and Data Bank, Entebbe, Uganda
| | | | - Katali Benda
- National Animal Genetic Resources Centre and Data Bank, Entebbe, Uganda
| | - Peter Beine
- National Animal Genetic Resources Centre and Data Bank, Entebbe, Uganda
| | | | - James Prendergast
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Andrea B. Doeschl-Wilson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Adrian Muwonge
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|
8
|
Bakoev S, Kolosova M, Romanets T, Bakoev F, Kolosov A, Romanets E, Korobeinikova A, Bakoeva I, Akhmedli V, Getmantseva L. Visualization of Runs of Homozygosity and Classification Using Convolutional Neural Networks. BIOLOGY 2025; 14:426. [PMID: 40282291 PMCID: PMC12025119 DOI: 10.3390/biology14040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Runs of homozygosity (ROH) are key elements of the genetic structure of populations, reflecting inbreeding levels, selection history, and potential associations with phenotypic traits. This study proposes a novel approach to ROH analysis through visualization and classification using convolutional neural networks (CNNs). Genetic data from Large White (n = 568) and Duroc (n = 600) pigs were used to construct ROH maps, where each homozygous segment was classified by length and visualized as a color-coded image. The analysis was conducted in two stages: (1) classification of animals by breed based on ROH maps and (2) identification of the presence or absence of a phenotypic trait (limb defects). Genotyping was performed using the GeneSeek® GGP SNP80x1_XT chip (Illumina Inc., San Diego, CA, USA), and ROH segments were identified using the software tool PLINK v1.9. To visualize individual maps, we utilized a modified function from the HandyCNV package. The results showed that the CNN model achieved 100% accuracy, sensitivity, and specificity in classifying pig breeds based on ROH maps. When analyzing the binary trait (presence or absence of limb defects), the model demonstrated an accuracy of 78.57%. Despite the moderate accuracy in predicting the phenotypic trait, the high negative predictive value (84.62%) indicates the model's reliability in identifying healthy animals. This method can be applied not only in animal breeding research but also in medicine to study the association between ROH and hereditary diseases. Future plans include expanding the method to other types of genetic data and developing mechanisms to improve the interpretability of deep learning models.
Collapse
Affiliation(s)
- Siroj Bakoev
- Faculty of Biotechnology, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (T.R.); (F.B.); (E.R.); (A.K.)
- Academy of Biology and Biotechnology Named After D. I. Ivanovsky, Southern Federal University, Rostov-on-Don 344006, Russia
- All Russian Research Institute of Animal Breeding, Lesnye Polyany 141212, Russia; (A.K.); (V.A.)
| | - Maria Kolosova
- Faculty of Biotechnology, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (T.R.); (F.B.); (E.R.); (A.K.)
| | - Timofey Romanets
- Faculty of Biotechnology, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (T.R.); (F.B.); (E.R.); (A.K.)
| | - Faridun Bakoev
- Faculty of Biotechnology, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (T.R.); (F.B.); (E.R.); (A.K.)
| | - Anatoly Kolosov
- All Russian Research Institute of Animal Breeding, Lesnye Polyany 141212, Russia; (A.K.); (V.A.)
| | - Elena Romanets
- Faculty of Biotechnology, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (T.R.); (F.B.); (E.R.); (A.K.)
| | - Anna Korobeinikova
- Faculty of Biotechnology, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (T.R.); (F.B.); (E.R.); (A.K.)
| | - Ilona Bakoeva
- Faculty of Biocybernetics and Systems Biology, Russian State Agrarian University—Moscow Agricultural Academy Named After K. A. Timiryazev, Moscow 127434, Russia;
| | - Vagif Akhmedli
- All Russian Research Institute of Animal Breeding, Lesnye Polyany 141212, Russia; (A.K.); (V.A.)
- Faculty of Physics, Mathematics and Natural Sciences, RUDN University: Peoples’ Friendship University of Russia, Moscow 117198, Russia
| | - Lyubov Getmantseva
- All Russian Research Institute of Animal Breeding, Lesnye Polyany 141212, Russia; (A.K.); (V.A.)
| |
Collapse
|
9
|
Bahbahani H, Mohammad Z, Alfoudari A, Al Abri M. Genomic insights into racing camels: inbreeding levels and positive selection linked to athletic traits. Animal 2025; 19:101467. [PMID: 40073590 DOI: 10.1016/j.animal.2025.101467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Racing dromedary camels are widely distributed across the Arabian Peninsula, predominantly concentrating in its northern and southeastern regions. Phenotypically, they are differentiated from other dromedary types, characterised by their smaller body size, longer limbs, reduced hump size, and thinner chest girth. In this study, the whole genome sequences of 34 racing camels were analysed to assess their genetic relationship with non-racing populations, estimate levels of inbreeding, calculate Wier and Cockerham's fixation index (Fst), assess effective population size (Ne), and identify candidate regions with signatures of positive selection. Both racing and non-racing camels exhibited comparable levels of genomic inbreeding (FROH = 0.21), with no significant genetic differentiation detected between them. The estimated Fst value between the two camel groups also revealed minimal genetic differentiation. A declining trend was observed in Ne estimations of both groups over the past 5 000 years, with slightly lower recent Ne in racing camels compared to their non-racing counterparts. Signatures of positive selection in the genomes of racing camels were identified through the application of two haplotype-based statistics, namely the integrated haplotype homozygosity score (iHS) and extended haplotype homozygosity between-populations (Rsb), along with runs of homozygosity (ROH) analysis. A total of 33 regions under selection were detected via iHS, 19 via Rsb, and 24 through ROH. Candidate regions under selection were found to overlap with genes involved in diverse biological pathways potentially linked to athletic performance, e.g., musculoskeletal development, lipid metabolism, stress response, bone integrity, as well as endurance and power. These findings provide a foundation for further exploration of the racing dromedary genome, with the goal of defining variants and haplotypes that might be associated with athletic traits. Such insights could assist the development of genetically informed breeding programmes aimed at developing specialised racing dromedary lines, contributing to the broader understanding and preservation of animal athletic performance and selection in domesticated species worldwide.
Collapse
Affiliation(s)
- H Bahbahani
- Department of Biological Sciences, Faculty of Science, Kuwait University, Sh. Sabah Al-Salem campus, Kuwait.
| | - Z Mohammad
- Department of Biological Sciences, Faculty of Science, Kuwait University, Sh. Sabah Al-Salem campus, Kuwait
| | - A Alfoudari
- Department of Biological Sciences, Faculty of Science, Kuwait University, Sh. Sabah Al-Salem campus, Kuwait
| | - M Al Abri
- Department of Animal and Veterinary Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
10
|
Jensen EL, Marchisio C, Ochoa A, Gray R, Parra V, Miller JM, Çilingir FG, Caccone A. Synteny Enabled Upgrade of the Galapagos Giant Tortoise Genome Improves Inferences of Runs of Homozygosity. Ecol Evol 2025; 15:e71358. [PMID: 40290375 PMCID: PMC12032190 DOI: 10.1002/ece3.71358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/26/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
The utility and importance of whole-genome sequences are recognized across various fields, including evolution and conservation. However, for some taxa, like extinct species, using methods to generate contiguous genomes that rely on high-quality DNA is impossible. In such cases, an alternative may be to employ synteny-based methods using a genome from a closely related taxon to generate more complete genomes. Here we update the reference genome for the Pinta Island Galapagos giant tortoise (Chelonoidis abingdonii) without conducting additional sequencing through rescaffolding against the most closely related chromosome-level genome assembly, the Aldabra giant tortoise (Aldabrachelys gigantea). This effort resulted in a much more contiguous genome, CheloAbing_2.0, with an N50 that is two orders of magnitude longer and large reductions in L50 and the number of gaps. We then examined the impact of the CheloAbing_2.0 genome on estimates of runs of homozygosity (ROH) using genome resequencing data from 37 individual Galapagos giant tortoises from the 13 extant lineages to test the mechanisms by which a fragmented assembly may over- or underestimate the number and extent of ROH. The use of CheloAbing_2.0 resulted in individual estimates of inbreeding, including ROH proportion (FROH), number (NROH), and cumulative length (SROH), that were statistically different from those derived from the earlier genome assembly. This improved genome will serve as a resource for future efforts focusing on the ecology, evolution, and conservation of this species group. More broadly, our results highlight that synteny-based scaffolding is promising for generating contiguous genomes without needing additional data types.
Collapse
Affiliation(s)
- Evelyn L. Jensen
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastleUpon TyneUK
| | - Chiara Marchisio
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastleUpon TyneUK
- Faculty of Health and Life SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - Alexander Ochoa
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticutUSA
| | - Rachel Gray
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastleUpon TyneUK
| | - Vanessa Parra
- Biology DepartmentUniversity of KentuckyLexingtonKentuckyUSA
| | - Joshua M. Miller
- Department of Biological SciencesMacEwan UniversityEdmontonCanada
| | - F. Gözde Çilingir
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Swiss Federal Institute for Research WSLBirmensdorfSwitzerland
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
11
|
Belanger JM, Gershony LC, Bell JS, Hytönen MK, Lohi H, Lindblad-Toh K, Tengvall K, Sell E, Famula TR, Oberbauer AM. Measures of Homozygosity and Relationship to Genetic Diversity in the Bearded Collie Breed. Genes (Basel) 2025; 16:378. [PMID: 40282338 PMCID: PMC12026756 DOI: 10.3390/genes16040378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Genetic diversity in closed populations, such as pedigree dogs, is of concern for maintaining the health and vitality of the population in the face of evolving challenges. Measures of genetic diversity rely upon estimates of homozygosity without consideration of whether the homozygosity is desirable or undesirable or if heterozygosity has a functional impact. Pedigree coefficients of inbreeding have been the classical approach yet they are inadequate unless based upon the entire population. Methods: Homozygosity measures based upon pedigree analyses (n = 11,898), SNP array data (n = 244), and whole genome sequencing (n = 23) were compared in the Bearded Collie, as well as a comparison of SNP array data to a pedigree cohort (n = 5042) and a mixed-breed cohort (n = 1171). Results: Molecular measures based upon DNA are more informative on an individual's homozygosity levels than pedigree analyses, although SNP coefficients of inbreeding overestimate the level of inbreeding based on the nature of SNP array methodology. Whole genome sequence (WGS) analyses revealed that the heterozygosity observed is generally in variants having neutral or low impact, which would indicate that the variability may not contribute substantially to functional diversity in the population. The majority of high-impact variants were observed in the shortest runs of homozygosity (ROH) reflecting ancestral breeding and domestication practices. As expected, mixed-breed dogs displayed higher measures of genomic diversity than either Bearded Collies or other pedigree dogs as a whole using the current paradigm algorithm models to calculate homozygosity. Conclusions: Using typical DNA-based measures reflect only a single individual and not the population thereby failing to account for regions of homozygosity that reflect ancestral breeding, domestication history, breed-defining regions, or regions positively selected for health traits. Incorporating measures of genetic diversity into dog breeding schemes is meritorious. However, until measures of diversity can distinguish between breed-defining homozygosity and homozygosity associated with positive health alleles, the measures to use as selection tools need refinement before their widespread implementation.
Collapse
Affiliation(s)
- Janelle M. Belanger
- Department of Animal Science, University of California, Davis, CA 95616, USA; (J.M.B.); (L.C.G.); (T.R.F.)
| | - Liza C. Gershony
- Department of Animal Science, University of California, Davis, CA 95616, USA; (J.M.B.); (L.C.G.); (T.R.F.)
| | - Jerold S. Bell
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA;
| | - Marjo K. Hytönen
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (M.K.H.); (H.L.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (M.K.H.); (H.L.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Uppsala University, 752 37 Uppsala, Sweden; (K.L.-T.); (K.T.)
- SciLifeLab, Uppsala University, 752 37 Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Katarina Tengvall
- Department of Medical Biochemistry and Microbiology, Uppsala University, 752 37 Uppsala, Sweden; (K.L.-T.); (K.T.)
- SciLifeLab, Uppsala University, 752 37 Uppsala, Sweden
| | - Elsa Sell
- Bearded Collie Foundation for Health (BeaCon), Milner, GA 30257, USA;
| | - Thomas R. Famula
- Department of Animal Science, University of California, Davis, CA 95616, USA; (J.M.B.); (L.C.G.); (T.R.F.)
| | - Anita M. Oberbauer
- Department of Animal Science, University of California, Davis, CA 95616, USA; (J.M.B.); (L.C.G.); (T.R.F.)
| |
Collapse
|
12
|
Yang B, Zhang H, Feng X, Yu Z, Cao J, Niu Y, Wan P, Liu G, Zhao X. Genetic Diversity Estimation and Genome-Wide Selective Sweep Analysis of the Bazhou Yak. Animals (Basel) 2025; 15:849. [PMID: 40150378 PMCID: PMC11939585 DOI: 10.3390/ani15060849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/01/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
The Bazhou yak, a major native meat yak breed in Xinjiang, China, is renowned for its fast growth rate, strong adaptability, and particularly high intramuscular fat (IMF) content. However, limited knowledge regarding its phylogenetic history and genomic composition has hindered its long-term conservation and utilization. This study evaluated the genetic diversity, population phylogenetics, and genome-wide selective sweep analysis (GWSA) of 100 newly obtained Bazhou yaks through genome resequencing, as well as 340 public yak genomes from nine other populations on the Qinghai-Tibet Plateau. The results revealed moderate diversity, lower genomic inbreeding levels, and rapid linkage disequilibrium (LD) decay in Bazhou yaks. Principal component analysis (PCA) and phylogenetic analysis showed a clear separation of Bazhou yaks from other yak populations, indicating the Bazhou yak as an independent genetic population. Furthermore, less genetic differentiation was found between the Bazhou yak and the Huanhu yak, while ADMIXTURE analysis revealed a common ancestral lineage between Bazhou yaks and Huanhu yaks, indicating an important genetic contribution of the Qinghai yak population to Bazhou yaks. The GWSA identified a total of 833 selected genes in Bazhou yaks using the top 5% interaction windows of both parameters (FST, Pi ratio, and XP-EHH). A significant number of these genes are related to fat synthesis and deposition, such as MTOR, APOA1, and GPAT4. In summary, this study sheds light on the phylogenetic status and distinctive genomic features of Bazhou yaks, which facilitates our understanding of the genetic basis of the IMF phenotype in Bazhou yaks.
Collapse
Affiliation(s)
- Baigao Yang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Hang Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Xiaoyi Feng
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Zhou Yu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Jianhua Cao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Yifan Niu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
| | - Gang Liu
- National Animal Husbandry Service, Beijing 100193, China
| | - Xueming Zhao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
| |
Collapse
|
13
|
Sievers J, Distl O. Genomic Patterns of Homozygosity and Genetic Diversity in the Rhenish German Draught Horse. Genes (Basel) 2025; 16:327. [PMID: 40149478 PMCID: PMC11942601 DOI: 10.3390/genes16030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES The Rhenish German draught horse is an endangered German horse breed, originally used as working horse in agriculture. Therefore, the objective of this study was to evaluate the breed's genetic diversity using pedigree and genomic data in order to analyze classical and ancestral pedigree-based inbreeding, runs of homozygosity, ROH islands, and consensus ROH. METHODS We studied the genome-wide genotype data of 675 Rhenish German draught horses and collated pedigree-based inbreeding coefficients for these horses. The final dataset contained 64,737 autosomal SNPs. RESULTS The average number of ROH per individual was 43.17 ± 9.459 with an average ROH length of 5.087 Mb ± 1.03 Mb. The average genomic inbreeding coefficient FROH was 0.099 ± 0.03, the pedigree-based classical inbreeding coefficient FPED 0.016 ± 0.021, and ancestral inbreeding coefficients ranged from 0.03 (Fa_Kal) to 0.51 (Ahc). Most ROH (55.85%) were classified into the length category of 2-4 Mb, and the minority (0.43%) into the length category of >32 Mb. The effective population size (Ne) decreased in the last seven generations (~65 years) from 189.43 to 58.55. Consensus ROH shared by 45% of the horses were located on equine chromosomes 3 and 7, while ROH islands exceeding the 99th percentile threshold were identified on chromosomes 2, 3, 5, 7, 9, 10, and 11. These ROH islands contained genes associated with morphological development (HOXB cluster), fertility (AURKC, NLRP5, and DLX3), muscle growth, and skin physiology (ZNF gene cluster). CONCLUSIONS This study highlights how important it is to monitor genetic diversity in endangered populations with genomic data. The results of this study will help to develop breeding strategies to ensure the conservation of the German Rhenish draught horse population and show whether favorable alleles from the overrepresented candidate genes within ROH were transmitted to the next generation.
Collapse
Affiliation(s)
| | - Ottmar Distl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| |
Collapse
|
14
|
Ma R, Liu J, Ma X, Yang J. Genome-Wide Runs of Homozygosity Reveal Inbreeding Levels and Trait-Associated Candidate Genes in Diverse Sheep Breeds. Genes (Basel) 2025; 16:316. [PMID: 40149467 PMCID: PMC11942120 DOI: 10.3390/genes16030316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Quantifying and controlling the inbreeding level in livestock populations is crucial for the long-term sustainability of animal husbandry. However, the extent of inbreeding has not been fully understood in sheep populations on a global scale. METHODS Here, we analyzed high-depth genomes of 210 sheep from 20 worldwide breeds to identify the pattern and distribution of genome-wide runs of homozygosity (ROH) and detect candidate selected genes in ROH islands for agronomic and phenotypic traits. RESULTS Leveraging whole-genome sequencing data, we found a large number of short ROH (e.g., <1.0 Mb) in all breeds and observed the overall higher values of ROH statistics and inbreeding coefficient in European breeds than in Asian breeds and Dorper sheep. We identified some well-known candidate genes (e.g., CAMK4, HOXA gene family, ALOX12, FGF11, and MTOR) and 40 novel genes (e.g., KLHL1, FGFRL1, WDR62, GDF6, KHDRBS2, and PAX1) that are functionally associated with fecundity, body size, and wool-related traits in sheep. Based on the candidate genes, we revealed different genetic bases for the fecundity traits of European and Asian sheep. CONCLUSIONS This study improves the resolution of ROH detection and provides new insights into genomic inbreeding and trait architecture in sheep as well as useful markers for future breeding practice.
Collapse
Affiliation(s)
| | | | | | - Ji Yang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (R.M.); (J.L.); (X.M.)
| |
Collapse
|
15
|
Scott BA, Haile-Mariam M, Tiezzi F, van den Berg I, Maltecca C, Pryce JE. Optimizing genetic diversity in Australian Holsteins and Jerseys: A comparative analysis of whole-genome and regional inbreeding depression effects. J Dairy Sci 2025; 108:2658-2668. [PMID: 39662810 DOI: 10.3168/jds.2024-25341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Homozygosity, which can arise from several genetic mechanisms including inbreeding, is frequently observed in the offspring of related parents. This inbreeding can lead to a reduced performance, owing to a phenomenon known as inbreeding depression. This study assessed inbreeding depression using whole-genome and regional approaches in first-lactation Australian Holsteins and Jerseys, involving ∼33,000 Holstein and 7,000 Jersey cows born between 2000 and 2017. These cows had phenotypic records (milk production, fertility, and survival), pedigree records, and genomic data available. We analyzed genome-wide inbreeding depression through a mixed animal model examining 4 measures of inbreeding: pedigree data, runs of homozygosity (ROH) of at least 1 Mb, ROH greater than 8 Mb, and ROH exceeding 16 Mb, which indicates more recent inbreeding. Additionally, unique ROH haplotypes, identified using a sliding-window approach, were incorporated as fixed effects in the model to estimate their effect on the traits of interest. Results indicated that a 1% increase in pedigree inbreeding led to reduced performance across all traits, with estimates of inbreeding depression ranging from 0.11% to 0.45% of the phenotypic mean. In Holsteins, genome-wide estimates (FROH) were significant and reasonably aligned with pedigree estimates, whereas more recent inbreeding (FROH >16 Mb) had between 2.6 and 3.3 times greater effect on inbreeding depression across all traits compared with smaller FROH (≥1 Mb). In Jerseys, more recent inbreeding had a 2.2 to 2.3 times greater reduction in the performance of milk and protein yields for a 1% increase in genomic inbreeding. For both fitness traits in Jerseys, the effects of inbreeding on fertility and survival were not significant. The most negative effects of ROH were also noted in specific traits: Jersey and Holstein cows with unfavorable ROH took significantly longer to recalve and showed marked reductions in production traits. Moreover, increased homozygosity in certain genomic regions, such as BTA25 in Jerseys, markedly reduced performance, highlighting the importance of genomic location in assessing the effects of homozygosity. These data inform next-generation mating programs, emphasizing avoiding inbreeding in genomic regions most susceptible to inbreeding depression, to enhance animal performance.
Collapse
Affiliation(s)
- B A Scott
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - M Haile-Mariam
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia.
| | - F Tiezzi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy
| | - I van den Berg
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - C Maltecca
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy; Department of Animal Science, North Carolina State University, Raleigh, NC 27695
| | - J E Pryce
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
16
|
Bell DA, Carim KJ, Kovach R, Eby LA, Barfoot C, Painter S, Lodmell A, Amish SJ, Smith S, Rosenthal L, Larkin B, Ramsey P, Whiteley AR. Genomic Insights Into Inbreeding and Adaptive Divergence of Trout Populations to Inform Genetic Rescue. Evol Appl 2025; 18:e70090. [PMID: 40115660 PMCID: PMC11923392 DOI: 10.1111/eva.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
Genetic rescue, specifically translocation to facilitate gene flow among populations and reduce the effects of inbreeding, is an increasingly used approach in conservation. However, this approach comes with trade-offs, wherein gene flow may reduce fitness when populations have adaptive differentiation (i.e., outbreeding depression). A better understanding of the interaction between isolation, inbreeding, and adaptive divergence in key traits, such as life history traits, will help to inform genetic rescue efforts. Stream-dwelling salmonids, such as the westslope cutthroat trout (Oncorhynchus lewisi; WCT), are well-suited for examining these trade-offs because they are increasingly isolated by habitat degradation, exhibit substantial variation in life history traits among populations, and include many species of conservation concern. However, few genomic studies have examined the potential trade-offs in inbreeding versus outbreeding depression in salmonids. We used > 150,000 SNPs to examine genomic variation and inbreeding coefficients in 565 individuals across 25 WCT populations that differed in their isolation status and demographic histories. Analyses of runs of homozygosity revealed that several isolated WCT populations had "flatlined" having extremely low genetic variation and high inbreeding coefficients. Additionally, we conducted genome scans to identify potential outlier loci that could explain life history differences among 10 isolated populations. Genome scans identified one candidate genomic region that influenced maximum length and age-1 to age-2 growth. However, the limited number of candidate loci suggests that the life history traits examined may be driven by many genes of small effect or phenotypic plasticity. Although adaptive differentiation should be considered, the high inbreeding coefficients in several populations suggest that genetic rescue may benefit the most genetically depauperate WCT populations.
Collapse
Affiliation(s)
- Donovan A Bell
- Wildlife Biology Program University of Montana Missoula Montana USA
- Montana Fish Wildlife and Parks Missoula Montana USA
| | - Kellie J Carim
- U.S.D.A. Forest Service, Rocky Mountain Research Station Aldo Leopold Wilderness Research Institute Missoula Montana USA
| | - Ryan Kovach
- Montana Fish Wildlife and Parks Missoula Montana USA
| | - Lisa A Eby
- Wildlife Biology Program University of Montana Missoula Montana USA
| | - Craig Barfoot
- Confederated Salish and Kootenai Tribes Pablo Montana USA
| | - Sally Painter
- University of Montana Conservation Genomics lab Missoula Montana USA
| | - Angela Lodmell
- University of Montana Conservation Genomics lab Missoula Montana USA
| | - Stephen J Amish
- University of Montana Conservation Genomics lab Missoula Montana USA
| | - Seth Smith
- Washington Department of Fish and Wildlife Seattle Washington USA
| | - Leo Rosenthal
- Montana Fish Wildlife and Parks Missoula Montana USA
| | | | | | | |
Collapse
|
17
|
Nayak SS, Panigrahi M, Dutt T. Genome-wide insights into selection signatures for transcription factor binding sites in cattle ROH regions. Mamm Genome 2025:10.1007/s00335-025-10113-3. [PMID: 39984753 DOI: 10.1007/s00335-025-10113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
Runs of Homozygosity (ROH) regions are characterized by homozygous genotypes inherited from a common ancestor, often arising from positive selection for adaptive traits. These homozygous regions may arise due to inbreeding, selective breeding, or demographic events like population bottlenecks. Transcription factor binding sites (TFBS) are short, specific DNA sequences where transcription factors bind to regulate the expression of nearby genes. These sites are essential for controlling biological processes such as development, metabolism, and immune response. TFBS act as key regulatory elements, and their variations can influence gene activity, contributing to phenotypic differences and adaptation. ROH often encompass regulatory elements, including TFBS, suggesting a functional connection between these genomic features. This study investigates TFBS within ROH regions in 297 animals of six cattle breeds: Gir (48), Tharparkar (72), Vrindavani (72), Frieswal (14), Holstein Friesian (63), and Jersey (28). Utilizing genotyped data of these animals, we identified genomic regions enriched with ROH. We focused on the central 10 kb regions of 50 ROH regions common across all breeds. Within these regions, 450 motifs were examined, identifying 168 transcription factors potentially binding to these regions. The results emphasize the role of TFBS in gene regulation and adaptive processes. By linking ROH patterns to regulatory elements, this study enhances our understanding of the genetic architecture underlying phenotypic traits and their adaptation to environmental pressures. These findings provide insights into the molecular mechanisms influencing genetic variation in cattle populations.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India.
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| |
Collapse
|
18
|
Ojeda-Marín C, Gutiérrez JP, Formoso-Rafferty N, Cervantes I. Performance of homozygosity by descent in two mice lines divergently selected for birth weight environmental variability. Sci Rep 2025; 15:5511. [PMID: 39953099 PMCID: PMC11829033 DOI: 10.1038/s41598-025-89254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
Inbreeding can have negative effects, such as increasing the expression of deleterious alleles or reducing fitness. A method based on Hidden Markov Models (HMM) was developed to determine the probability of an individual genome in a homozygous-by-descent state (HBD). As a result of an experiment of divergent selection for birth weight environmental variability two lines were created: high variability line (H-Line) and low variability line (L-Line). The L-Line demonstrated a better performance in traits related with robustness than the H-Line. From a selection period of 20 generations, a total of 655 individuals from the H-Line and 675 individuals from the L-Line were genotyped with a high-density SNP array. We used a predefined multiclass HMM with a total of 9 age related HBD classes and 1 non HBD class. The sum of the probabilities of each HBD class was defined as the total HBD inbreeding (FHBD). In addition, FHBD was divided into age related groups as recent and ancient. Moreover, recent pedigree inbreeding (FPEDR) was defined using different generation thresholds (4 to 14). The evolution of FHBD across generations was similar in both selected lines. However, the distribution in each age-related class was different between lines in more recent generations. The H-Line presented twice as much FHBD by ancestors from 8 generations ago than the L-Line. Moreover, the correlations between recent FHBD and FPEDR obtained with different generation thresholds were greater in the H-Line when very recent FHBD was calculated from classes related with ancestors from 1 to 8 generations ago. However, in the L-Line, considering more than 4 generations ago to define very recent inbreeding did not affect the correlations with FPEDR. The HBD was the first methodology that could detect differences in the inbreeding pattern between the selected lines that could be related with the divergent selection, despite being under the identical mating policy and similar intensity of selection.
Collapse
Affiliation(s)
| | | | - Nora Formoso-Rafferty
- Dpto. Producción Agraria, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| | - Isabel Cervantes
- Dpto. Producción Animal, Facultad de Veterinaria, UCM, Madrid, Spain
| |
Collapse
|
19
|
Ojeda-Marín C, Cervantes I, Formoso-Rafferty N, Gutiérrez JP, Rodríguez-Ramilo ST. Inbreeding depression for litter size in two mice lines under divergent selection for environmental birth weight variability using genomic data. J Anim Sci 2025; 103:skaf023. [PMID: 39921654 PMCID: PMC11914883 DOI: 10.1093/jas/skaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/07/2025] [Indexed: 02/10/2025] Open
Abstract
Inbreeding depression (ID) is usually observed as reduced survival and fertility and may have a variable impact in different populations. The aim of this study was to estimate ID from genomic and pedigree data in the litter size (LS) of the high variability (H-Line) and the low variability (L-Line) mice lines divergently selected for environmental birth weight variability. Of these, the L-Line performed better on traits related to robustness. A total of 1587 females from 26 selection generations were genotyped with a high-density SNP array. LS data of 732 L-Line and 648 of H-Line animals were used. The following were calculated: pedigree inbreeding coefficient (FPED), genomic inbreeding derived from different genomic matrices (FNEJ, FL&H,FVR1, FVR2, and FYAN), from runs of homozygosity (FROH) and from homozygosity by descent probabilities (FHBD). FROH were calculated in the 19 autosomes (CHR). FROH and FHBD were divided into nine lengths and age classes, respectively. All the inbreeding coefficients were standardized by the mean inbreeding coefficient of the 1st generation. Regression coefficients (m) obtained from genomic data were between -3.71 with FVR2 and -5.09 with FHBD in the H-Line, and that estimated from FPED was -5.67. In the L-Line the m obtained from genomic data were between -3.52 with FVR2 and -4.55 with FHBD, and that obtained with FPED was -4.08. Significant ID effects were detected in CHR13 in the H-Line and CHR1 and CHR9 in the L-Line. The m negative trended to be lower as the ROH length increased. The age of the homozygosity by descent segment performed differently in each line, for example FHBD raised 128 generations ago produced a significant positive effect only in the L-Line. The effect of global inbreeding coefficients on the LS was negative in both lines with a higher impact in the H-Line than in the L-Line, suggesting the L-Line having higher robustness. CHR 1, 9, and 13 were candidates for future gene search. In general, more recent FROH and FHBD presented negative effects on LS while older FROH and FHBD presented positive effects on LS in both selected lines.
Collapse
Affiliation(s)
- Candela Ojeda-Marín
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel Cervantes
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Nora Formoso-Rafferty
- Departamento de Producción Agraria, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Juan Pablo Gutiérrez
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
20
|
Tian Y, Lin Y, Ma Y, Li J, Sahu SK, Fan J, Lin C, Li Z, Shi M, He F, Bai L, Fu Y, Deng Z, Guo H, Li H, Li Q, Xu Y, Lan T, Hou Z, Xia Y, Yang S. Population Genomics Reveals Elevated Inbreeding and Accumulation of Deleterious Mutations in White Raccoon Dogs. BIOLOGY 2025; 14:30. [PMID: 39857261 PMCID: PMC11760849 DOI: 10.3390/biology14010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025]
Abstract
The formation of animal breeds usually begins with a small subsample from their ancestral population. Deleterious mutations accumulate in the population under genetic drift, inbreeding, and artificial selection during the development and maintenance of traits desired by humans. White raccoon dogs are among the most popular breeds of farmed raccoon dogs, but white raccoon dogs are more susceptible to disease and have a lower reproductive ability. However, the accumulation of deleterious mutations in this white breed is largely unknown. By analyzing and comparing whole-genome sequencing data from 20 white raccoon dogs and 38 normal raccoon dogs, we detected an increased occurrence of loss-of-function (LoF) mutations in white raccoon dogs compared with normal raccoon dogs. With the finding of a significantly higher dosage of homozygous missense mutations in the white raccoon dog genome, we detected a greater fitness cost in white raccoon dogs. Although a much higher FROH level for ROH fragments longer than 1 Mb has been reported in white raccoon dogs, we did not detect a genetic signal of genetic purging in white raccoon dogs. This study provides valuable genomic resources and new insights into the accumulation of mutation loads in farmed raccoon dogs.
Collapse
Affiliation(s)
- Yinping Tian
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| | - Yu Lin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| | - Yue Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| | - Jiayi Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| | - Sunil Kumar Sahu
- BGI Research, Wuhan 430074, China;
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China;
| | - Jiale Fan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| | - Chen Lin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| | - Zhiang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (Z.L.); (Q.L.)
| | - Minhui Shi
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China;
| | - Fengping He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China;
| | - Lianduo Bai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| | - Yuan Fu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| | - Zhangwen Deng
- Guangxi Zhuang Autonomous Region Forest Inventory and Planning Institute, Nanning 530011, China;
| | - Huabing Guo
- Forest Inventory and Planning Institute of Jilin Province, Changchun 130022, China;
| | - Haimeng Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
- Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Harbin 150040, China
| | - Qiye Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (Z.L.); (Q.L.)
| | - Yanchun Xu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
| | - Tianming Lan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
- Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Harbin 150040, China
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| | - Yanling Xia
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| | - Shuhui Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.T.); (Y.L.); (Y.M.); (J.L.); (J.F.); (C.L.); (L.B.); (Y.F.); (H.L.); (Y.X.); (T.L.); (Z.H.)
| |
Collapse
|
21
|
Hytönen MK, Rönkkö J, Hundi S, Jokinen TS, Suonto E, Teräväinen E, Donner J, La Rovere R, Bultynck G, Ylikallio E, Tyynismaa H, Lohi H. IP3 receptor depletion in a spontaneous canine model of Charcot-Marie-Tooth disease 1J with amelogenesis imperfecta. PLoS Genet 2025; 21:e1011328. [PMID: 39804930 PMCID: PMC11761660 DOI: 10.1371/journal.pgen.1011328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 01/24/2025] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3R) mediate Ca2+ release from intracellular stores, contributing to complex regulation of numerous physiological responses. The involvement of the three IP3R genes (ITPR1, ITPR2 and ITPR3) in inherited human diseases has started to shed light on the essential roles of each receptor in different human tissues and cell types. Variants in the ITPR3 gene, which encodes IP3R3, have recently been found to cause demyelinating sensorimotor Charcot-Marie-Tooth neuropathy type 1J (CMT1J). In addition to peripheral neuropathy, immunodeficiency and tooth abnormalities are occasionally present. Here, we report the identification of a homozygous nonsense variant in the ITPR3 gene in Lancashire Heeler dogs, presenting with a severe developmental enamel defect and reduced nerve conduction velocity. We studied the primary skin fibroblasts of the affected dogs and observed that the nonsense variant in ITPR3 led to a complete absence of full-length IP3R3 protein. Unexpectedly, the protein levels of IP3R1 and IP3R2 were also markedly decreased, suggesting co-regulation. Functional Ca2+ measurements revealed reduced IP3R-mediated Ca2+ flux upon stimulation of G-protein-coupled-receptors in the affected dog fibroblasts. These findings highlight the first spontaneous mammalian phenotype caused by a nonsense variant in ITPR3, leading to the loss of IP3R3. The human and canine IP3R3 proteins are highly similar, and our study suggests that the tissue involvement resulting from the receptor's dysfunction is also conserved. In summary, IP3R3 is critical for enamel formation and peripheral nerve maintenance.
Collapse
Affiliation(s)
- Marjo K. Hytönen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Julius Rönkkö
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sruthi Hundi
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Tarja S. Jokinen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Emilia Suonto
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | | | - Jonas Donner
- Wisdom Panel, Mars Petcare Science and Diagnostics, Helsinki, Finland
| | - Rita La Rovere
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-I bus 802, KU Leuven, Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-I bus 802, KU Leuven, Leuven, Belgium
| | - Emil Ylikallio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Henna Tyynismaa
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|
22
|
Tsartsianidou V, Otapasidis A, Papakostas S, Karaiskou N, Vouraki S, Triantafyllidis A. Genome-Wide Patterns of Homozygosity and Heterozygosity and Candidate Genes in Greek Insular and Mainland Native Goats. Genes (Basel) 2024; 16:27. [PMID: 39858574 PMCID: PMC11765163 DOI: 10.3390/genes16010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Runs of homozygosity (ROHs) and heterozygosity (ROHets) serve for the identification of genomic regions as candidates of selection, local adaptation, and population history. METHODS The present study aimed to comprehensively explore the ROH and ROHet patterns and hotspots in Greek native dairy goats, Eghoria and Skopelos, genotyped with the Illumina Goat SNP50 BeadChip. SNP and functional enrichment analyses were conducted to further characterize hotspots and the candidate genes located within these genomic regions. Genetic relationships between and within breeds and inbreeding coefficients were also evaluated. RESULTS Clear genetic differentiation and diversified management practices were depicted between the two native populations. The ROH and ROHet average genome coverage for Skopelos (65.35 and 35 Mb) and Eghoria (47.64 and 43 Mb) indicated differences in mainland and insular goats, with Skopelos showing more long ROH fragments, reflecting its geographic isolation and small population size. An ROH hotspot (CHR12: 43.59-44.61 Mb) detected in the Skopelos population has been also reported across European goats and co-localizes with a selection signal detected in the Egyptian Barki goats and sheep adapted to hot-arid conditions. A novel ROH hotspot (CHR18: 60.12-61.81 Mb), shared among the Greek breeds, harbors candidate genes enriched in biosynthesis, metabolism, and immune response. Two well-conserved ROHet islands were detected in Greek goats on chromosomes 1 and 18, with genes participating in development and embryogenesis. The Eghoria population showed the highest number of ROHet islands, potentially reflecting its adaptability to diverse environments. CONCLUSIONS These findings offer new insights into the environmental adaptation and artificial selection in Greek goats and could be utilized in future breeding strategies for sustainable goat farming.
Collapse
Affiliation(s)
- Valentina Tsartsianidou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.O.); (N.K.); (A.T.)
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| | - Antonis Otapasidis
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.O.); (N.K.); (A.T.)
| | - Spiros Papakostas
- Department of Science and Technology, International Hellenic University, 57001 Thessaloniki, Greece;
| | - Nikoleta Karaiskou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.O.); (N.K.); (A.T.)
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| | - Sotiria Vouraki
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Laboratory of Animal Production, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece
| | - Alexandros Triantafyllidis
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.O.); (N.K.); (A.T.)
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| |
Collapse
|
23
|
Maxman G, van Marle-Köster E, Lashmar SF, Visser C. Selection signatures associated with adaptation in South African Drakensberger, Nguni, and Tuli beef breeds. Trop Anim Health Prod 2024; 57:13. [PMID: 39729174 PMCID: PMC11680604 DOI: 10.1007/s11250-024-04265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
In the present study 1,709 cattle, including 1,118 Drakensberger (DRB), 377 Nguni (NGI), and 214 Tuli (TUL), were genotyped using the GeneSeek® Genomic Profiler™ 150 K bovine SNP panel. A genomic data set of 122,632 quality-filtered single nucleotide polymorphisms (SNPs) were used to identify selection signatures within breeds based on conserved runs of homozygosity (ROH) and heterozygosity (ROHet) estimated with the detectRUNS R package. The mean number of ROH per animal varied across breeds ranging from 36.09 ± 12.82 (NGI) to 51.82 ± 21.01 (DRB), and the mean ROH length per breed ranged between 2.31 Mb (NGI) and 3.90 Mb (DRB). The smallest length categories i.e., ROH < 4 Mb were most frequent, indicating historic inbreeding effects for all breeds. The ROH based inbreeding coefficients (FROH) ranged between 0.033 ± 0.024 (NGI) and 0.081 ± 0.046 (DRB). Genes mapped to candidate regions were associated with immunity (ADAMTS12, LY96, WDPCP) and adaptation (FKBP4, CBFA2T3, TUBB3) in cattle and genes previously only reported for immunity in mice and human (EXOC3L1, MYO1G). The present study contributes to the understanding of the genetic mechanisms of adaptation, providing information for potential molecular application in genetic evaluation and selection programs.
Collapse
Affiliation(s)
- Gomo Maxman
- Department of Animal Science, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
| | - Este van Marle-Köster
- Department of Animal Science, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Carina Visser
- Department of Animal Science, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
24
|
Azcona F, Molina A, Demyda-Peyrás S. Genomic-Inbreeding Landscape and Selection Signatures in the Polo Argentino Horse Breed. Int J Mol Sci 2024; 26:26. [PMID: 39795883 PMCID: PMC11720259 DOI: 10.3390/ijms26010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Analyzing genetic variability and inbreeding trends is essential for effective breed management in animal populations. To this, the characterization of runs of homozygosity (ROH) provides a good genomic approach to study the phenomena. The Polo Argentino (PA) breed, globally recognized as the best adapted to playing polo, is known for its strong influence of Thoroughbreds, intense selective breeding, and extensive use of reproductive biotechnologies. This study investigates the PA's genomic variability, by characterizing the ROH landscape and identifying ROH islands (ROHi) as potential genomic footprints for the breed. PA horses (n = 506) were genotyped using EquineGGP™ array v5 (70 k). We calculated the inbreeding coefficient based on ROH (FROH-ancestral and recent) using a chromosomal approach. Finally, we identified genomic regions with increased ROH frequency (ROHi) and their associated genes. An average of 79.5 ROH per horse was detected, with a mean length of 4.6 Mb. The average FROH was 0.151, but most of them (54%) corresponded to ancestral inbreeding (ROH < 5.5 Mb). However, 4 ROHi were identified in ECA 1, 3, 7 and 17, containing 67 genes, some of which were related to behavior, neurodevelopment, and metabolic functions. This genomic analysis determined, for the first time, the length and location of homozygosity segments in the PA breed and identified ROHi associated with potential genomic regions and genes for positive selection in the breed.
Collapse
Affiliation(s)
- Florencia Azcona
- Cátedra de Medicina Equina, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 s/n, La Plata 1900, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, La Plata 1900, Argentina
| | - Antonio Molina
- Departamento de Genética, Universidad de Córdoba, CN IV KM 396 Edificio Gregor Mendel, 14007 Córdoba, Spain;
| | - Sebastián Demyda-Peyrás
- Departamento de Genética, Universidad de Córdoba, CN IV KM 396 Edificio Gregor Mendel, 14007 Córdoba, Spain;
| |
Collapse
|
25
|
Hoffman JI, Vendrami DLJ, Hench K, Chen RS, Stoffel MA, Kardos M, Amos W, Kalinowski J, Rickert D, Köhrer K, Wachtmeister T, Goebel ME, Bonin CA, Gulland FMD, Dasmahapatra KK. Genomic and fitness consequences of a near-extinction event in the northern elephant seal. Nat Ecol Evol 2024; 8:2309-2324. [PMID: 39333394 PMCID: PMC11618080 DOI: 10.1038/s41559-024-02533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/07/2024] [Indexed: 09/29/2024]
Abstract
Understanding the genetic and fitness consequences of anthropogenic bottlenecks is crucial for biodiversity conservation. However, studies of bottlenecked populations combining genomic approaches with fitness data are rare. Theory predicts that severe bottlenecks deplete genetic diversity, exacerbate inbreeding depression and decrease population viability. However, actual outcomes are complex and depend on how a species' unique demography affects its genetic load. We used population genetic and veterinary pathology data, demographic modelling, whole-genome resequencing and forward genetic simulations to investigate the genomic and fitness consequences of a near-extinction event in the northern elephant seal. We found no evidence of inbreeding depression within the contemporary population for key fitness components, including body mass, blubber thickness and susceptibility to parasites and disease. However, we detected a genomic signature of a recent extreme bottleneck (effective population size = 6; 95% confidence interval = 5.0-7.5) that will have purged much of the genetic load, potentially leading to the lack of observed inbreeding depression in our study. Our results further suggest that deleterious genetic variation strongly impacted the post-bottleneck population dynamics of the northern elephant seal. Our study provides comprehensive empirical insights into the intricate dynamics underlying species-specific responses to anthropogenic bottlenecks.
Collapse
Affiliation(s)
- Joseph I Hoffman
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
- Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany.
- Department of Animal Behaviour, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
- British Antarctic Survey, Cambridge, UK.
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Bielefeld, Germany.
| | - David L J Vendrami
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Department of Animal Behaviour, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Bielefeld, Germany
| | - Kosmas Hench
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Department of Animal Behaviour, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Rebecca S Chen
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Department of Animal Behaviour, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Martin A Stoffel
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Alan Turing Institute, British Library, London, UK
| | - Marty Kardos
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - William Amos
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Jörn Kalinowski
- Department of Microbial Genomics and Biotechnology, CeBiTec, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Daniel Rickert
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches Forschungszentrum, and West German Genome Center, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches Forschungszentrum, and West German Genome Center, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches Forschungszentrum, and West German Genome Center, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Mike E Goebel
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Carolina A Bonin
- Department of Marine and Environmental Sciences, Hampton University, Hampton, VA, USA
| | - Frances M D Gulland
- Karen C. Drayer Wildlife Health Center, University of California, Davis, Davis, CA, USA
| | | |
Collapse
|
26
|
Mackintosh A, Vila R, Martin SH, Setter D, Lohse K. Do chromosome rearrangements fix by genetic drift or natural selection? Insights from Brenthis butterflies. Mol Ecol 2024; 33:e17146. [PMID: 37807966 PMCID: PMC11628658 DOI: 10.1111/mec.17146] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
Large-scale chromosome rearrangements, such as fissions and fusions, are a common feature of eukaryote evolution. They can have considerable influence on the evolution of populations, yet it remains unclear exactly how rearrangements become established and eventually fix. Rearrangements could fix by genetic drift if they are weakly deleterious or neutral, or they may instead be favoured by positive natural selection. Here, we compare genome assemblies of three closely related Brenthis butterfly species and characterize a complex history of fission and fusion rearrangements. An inferred demographic history of these species suggests that rearrangements became fixed in populations with large long-term effective size (N e), consistent with rearrangements being selectively neutral or only very weakly underdominant. Using a recently developed analytic framework for characterizing hard selective sweeps, we find that chromosome fusions are not enriched for evidence of past sweeps compared to other regions of the genome. Nonetheless, we do infer a strong and recent selective sweep around one chromosome fusion in the B. daphne genome. Our results suggest that rearrangements in these species likely have weak absolute fitness effects and fix by genetic drift. However, one putative selective sweep raises the possibility that natural selection may sometimes play a role in the fixation of chromosome fusions.
Collapse
Affiliation(s)
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| | - Simon H. Martin
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| | - Derek Setter
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| | - Konrad Lohse
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| |
Collapse
|
27
|
Zhang H, Maillo A, Khan SA, Martínez-de-Morentin X, Lehmann R, Gomez-Cabrero D, Tegnér J. Reviewability and supportability: New complementary principles to empower research software practices. Comput Struct Biotechnol J 2024; 23:3989-3998. [PMID: 39582890 PMCID: PMC11584522 DOI: 10.1016/j.csbj.2024.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024] Open
Abstract
In today's scientific landscape, research software has evolved from being a supportive tool to becoming a fundamental driver of discovery, particularly in life sciences. Beyond its roots in software engineering, research software now plays a crucial role in facilitating efficient data analysis and enabling the exploration of complex natural phenomena. The advancements in simulations and modeling through research software have significantly accelerated the pace of scientific research while reducing associated costs. This growing reliance underscores the importance of software in ensuring reproducibility - a cornerstone of scientific rigor and trustworthiness. Although verifying reproducibility presents challenges, well-developed and openly accessible research software enhances transparency and aids in the early detection of errors. Although verifying reproducibility can be challenging, well-developed and accessible research software improves transparency and facilitates error detection. This mini-review examines the characteristics of research software and summarizes the key events that have shaped its development, alongside changes in requirements and guidelines. Moreover, we propose two additional principles - reviewability and supportability - complementing the widely accepted FAIR principles (Findability, Accessibility, Interoperability, and Reusability). These new principles aim to improve the efficiency and effectiveness of software evaluation during the peer review process. Through this review, we aim to assist scientists, especially those without extensive software development expertise, in understanding best practices for developing research software and the underlying motivations driving these practices.
Collapse
Affiliation(s)
- Haoling Zhang
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, 4700 Thuwal, Jeddah, 23955, Mecca, Saudi Arabia
| | - Alberto Maillo
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, 4700 Thuwal, Jeddah, 23955, Mecca, Saudi Arabia
| | - Sumeer Ahmad Khan
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, 4700 Thuwal, Jeddah, 23955, Mecca, Saudi Arabia
- SDAIA-KAUST Center of Excellence in Data Science and Artificial Intelligence, 4700 Thuwal, Jeddah, 23952, Saudi Arabia
| | - Xabier Martínez-de-Morentin
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, 4700 Thuwal, Jeddah, 23955, Mecca, Saudi Arabia
| | - Robert Lehmann
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, 4700 Thuwal, Jeddah, 23955, Mecca, Saudi Arabia
| | - David Gomez-Cabrero
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, 4700 Thuwal, Jeddah, 23955, Mecca, Saudi Arabia
- Unit of Translational Bioinformatics, Navarrabiomed - Fundacion Miguel Servet, Universidad Pública de Navarra (UPNA), C. de Irunlarrea, 3, Pamplona, 31008, Spain
| | - Jesper Tegnér
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, 4700 Thuwal, Jeddah, 23955, Mecca, Saudi Arabia
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, 4700 Thuwal, Jeddah, 23955, Mecca, Saudi Arabia
- Unit of Computational Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:05, Stockholm, SE-17176, Sweden
- Science for Life Laboratory, Tomtebodavagen 23A, Solna, SE-17165, Sweden
| |
Collapse
|
28
|
Mahar K, Gurao A, Kumar A, Pratap Singh L, Chitkara M, Gowane GR, Ahlawat S, Niranjan SK, Pundir RK, Kataria RS, Dige MS. Genomic inbreeding analysis reveals resilience and genetic diversity in Indian yak populations. Gene 2024; 928:148787. [PMID: 39053660 DOI: 10.1016/j.gene.2024.148787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The yak (Bos grunniens), renowned for its adaptability to extreme cold and hypoxic conditions, stands as a remarkable domestic animal crucial for sustaining livelihoods in harsh climates. We conducted a comprehensive analysis of the whole genome sequence data from three distinct Indian yak populations: Arunachali yak (n = 10), Himachali yak (n = 10), and Ladakhi yak (n = 10). The genomic data for Indian yaks were meticulously generated by our laboratory and compared with their Chinese counterpart, the Jinchuan yak (n = 8), for a more nuanced understanding. Our investigation revealed a total of 37,437 runs of homozygosity (ROH) segments in 34 animals representing four distinct yak populations. The Jinchuan yak population exhibited the highest proportion, constituting 80.8 % of total ROHs, predominantly as small segments (<0.1 Mb), accounting for 63 % of the overall ROHs. Further analysis uncovered a significantly higher degree of inbreeding in Chinese yaks compared to their Indian counterparts. The Indian yak populations, in contrast, demonstrated relatively lower and consistent levels of inbreeding. Moreover, we identified ROH hotspots that covered at least 60 % of individuals in our study, indicating their pivotal role in environmental adaptation. A total of five hotspot regions were detected, housing genes such as ENSBGRG00000015023 (WNT2), YIPF4, SPAST, TLN2, and DSG4. These genes are associated with traits including hair follicle initiation, nutrient stress response, microtubule assembly, development of cardiac muscle, hair follicle, and coat color. This observation strongly suggests that there is substantial selection acting on these genes, emphasizing their important role in environmental adaptation among yak populations.
Collapse
Affiliation(s)
- Karan Mahar
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Ankita Gurao
- Division of Animal Genetic Resources, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - Amod Kumar
- Division of Animal Genetics, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - Lalit Pratap Singh
- Division of Animal Biotechnology, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Meenakshi Chitkara
- Division of Animal Biotechnology, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Gopal R Gowane
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Sonika Ahlawat
- Division of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - S K Niranjan
- Division of Animal Genetics, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - R K Pundir
- Division of Animal Genetic Resources, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - R S Kataria
- Division of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - M S Dige
- Division of Animal Genetic Resources, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India.
| |
Collapse
|
29
|
Nilson SM, Burke JM, Becker GM, Murdoch BM, Petersen JL, Lewis RM. Genomic Diversity of U.S. Katahdin Hair Sheep. J Anim Breed Genet 2024. [PMID: 39602081 DOI: 10.1111/jbg.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
In the late 1950s, Katahdin hair sheep were developed as a composite breed of medium size and moderate prolificacy, with potential to express resistance to gastrointestinal nematodes. With increasing popularity and the recent adoption of genomic prediction in their genetic evaluation, there is a risk of decreasing variation with selection based on genomically enhanced estimated breeding values. While Katahdin pedigrees are readily available for monitoring diversity, they may not capture the entirety of genetic relationships. We aimed to characterise the genomic population structure and diversity present in the breed, and how these impact the size of a reference population necessary to achieve accurate genomic predictions. Genotypes of Katahdin sheep from 81 member flocks in the National Sheep Improvement Program (NSIP) were used. After quality control, there were 9704 animals and 31,984 autosomal single nucleotide polymorphisms analysed. Population structure was minimal as a single ancestral population explained 99.9% of the genetic variation among animals. The current Ne was estimated to be 150, and despite differences in trait heritabilities, the effect of Ne on the accuracy of genomic predictions suggested the breed should aim for a reference population size of 15,000 individuals. The average degree of inbreeding estimated from runs of homozygosity (ROH) was 16.6% ± 4.7. Four genomic regions of interest, previously associated with production traits, contained ROH shared among > 50% of the breed. Based on four additional methods, average genomic inbreeding coefficients ranged from 0.011 to 0.012. The current population structure and diversity of the breed reflects genetic connectedness across flocks due to the sharing of animals. Shared regions of ROH should be further explored for incorporation of functional effects into genomic predictions to increase selection gains. Negative impacts on genetic diversity due to genomic selection are not of immediate concern for Katahdin sheep engaged in NSIP.
Collapse
Affiliation(s)
- Sara M Nilson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Joan M Burke
- USDA, ARS, Dale Bumpers Small Farms Research Center, Booneville, Arkansas, USA
| | - Gabrielle M Becker
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, Idaho, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, Idaho, USA
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Ronald M Lewis
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
30
|
Chai Y, Li S, Wu H, Meng Y, Fu Y, Li H, Wu G, Jiang J, Chen T, Jiao Y, Chen Q, Du L, Li L, Man C, Chen S, Gao H, Zhang W, Wang F. The genome landscape of the Xinglong buffalo. BMC Genomics 2024; 25:1054. [PMID: 39511485 PMCID: PMC11542305 DOI: 10.1186/s12864-024-10941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Xinglong buffalo, as an indigenous breed in Hainan province of China, possesses characteristics such as high humidity tolerance, disease resistance and high reproductive capacity. Combined with whole genome sequencing technology, comprehensive investigation can be undertaken to elucidate the genomic characteristics, functions and genetic variation of Xinglong buffalo population. RESULTS Xinglong buffalo has the highest genetic diversity, lowest runs of homozygosity average length, and fasted decay of linkage disequilibrium in our study population. Phylogenetic tree results revealed that Xinglong buffalo was gathered together with Fuzhong buffalo firstly. The population genetic structure analysis indicates that at K = 3, the Xinglong buffalo for the first time showed a distinct ancestral origin from other water buffalo. Furthermore, compared to different populations, candidate genes displaying significantly distinct patterns of single nucleotide polymorphisms (SNPs) (e.g., RYR2, COX15, PCDH9, DTWD2, FCRL5) distribution have been identified in the Xinglong buffalo. CONCLUSIONS Based on the whole genome sequencing data, this study identified a substantial number of SNPs and assessed the genetic diversity and selection signatures within the Xinglong buffalo population. These results contribute to understanding the genomic characteristics of Xinglong buffalo and their genetic evolutionary status. However, the practical significance of these signatures for genetic enhancement still requires confirmation through additional samples and further experimental validation.
Collapse
Affiliation(s)
- Yuan Chai
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- College of Agronomy, Animal Husbandry and Bioengineering, Xing An Vocational and Technical College, Wulanhote, 137400, People's Republic of China
| | - Shiyuan Li
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Hui Wu
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Yong Meng
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Yujing Fu
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Hong Li
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Guansheng Wu
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Junming Jiang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Taoyu Chen
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Yuqing Jiao
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Qiaoling Chen
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Li Du
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Lianbin Li
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Churiga Man
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Si Chen
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Hongyan Gao
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China.
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China.
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.
| | - Fengyang Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China.
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China.
| |
Collapse
|
31
|
Zhu X, Wang J, Chen H, Kang M. Lineage Differentiation and Genomic Vulnerability in a Relict Tree From Subtropical Forests. Evol Appl 2024; 17:e70033. [PMID: 39494192 PMCID: PMC11530410 DOI: 10.1111/eva.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
The subtropical forests of East Asia are renowned for their high plant diversity, particularly the abundance of ancient relict species. However, both the evolutionary history of these relict species and their capacity for resilience in the face of impending climatic changes remain unclear. Using whole-genome resequencing data, we investigated the lineage differentiation and demographic history of the relict and endangered tree, Bretschneidera sinensis (Akaniaceae). We employed a combination of population genomic and landscape genomic approaches to evaluate variation in mutation load and genomic offset, aiming to predict how different populations may respond to climate change. Our analysis revealed a profound genomic divergence between the East and West lineages, likely as the result of recurrent bottlenecks due to climatic fluctuations during the glacial period. Furthermore, we identified several genes potentially linked to growth characteristics and hypoxia response that had been subjected to positive selection during the lineage differentiation. Our assessment of genomic vulnerability uncovered a significantly higher mutation load and genomic offset in the edge populations of B. sinensis compared to their core counterparts. This implies that the edge populations are likely to experience the most significant impact from the predicted climate conditions. Overall, our research sheds light on the historical lineage differentiation and contemporary genomic vulnerability of B. sinensis. Broadening our understanding of the speciation history and future resilience of relict and endangered species such as B. sinensis, is crucial in developing effective conservation strategies in anticipation of future climatic changes.
Collapse
Affiliation(s)
- Xian‐Liang Zhu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jing Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- South China National Botanical GardenGuangzhouChina
| | - Hong‐Feng Chen
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- South China National Botanical GardenGuangzhouChina
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Ming Kang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- South China National Botanical GardenGuangzhouChina
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| |
Collapse
|
32
|
Bailey E, Finno CJ, Cullen JN, Kalbfleisch T, Petersen JL. Analyses of whole-genome sequences from 185 North American Thoroughbred horses, spanning 5 generations. Sci Rep 2024; 14:22930. [PMID: 39358442 PMCID: PMC11447028 DOI: 10.1038/s41598-024-73645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Whole genome sequences (WGS) of 185 North American Thoroughbred horses were compared to quantify the number and frequency of variants, diversity of mitotypes, and autosomal runs of homozygosity (ROH). Of the samples, 82 horses were born between 1965 and 1986 (Group 1); the remaining 103, selected to maximize pedigree diversity, were born between 2000 and 2020 (Group 2). Over 14.3 million autosomal variants were identified with 4.5-5.0 million found per horse. Mitochondrial sequences associated the North American Thoroughbreds with 9 of 17 clades previously identified among diverse breeds. Individual coefficients of inbreeding, estimated from ROH, averaged 0.266 (Group 1) and 0.283 (Group 2). When SNP arrays were simulated using subsets of WGS markers, the arrays over-estimated lengths of ROH. WGS-based estimates of inbreeding were highly correlated (r > 0.98) with SNP array-based estimates, but only moderately correlated (r = 0.40) with inbreeding based on 5-generation pedigrees. On average, Group 1 horses had more heterozygous variants (P < 0.001), more total variants (P < 0.001), and lower individual inbreeding (FROH; P < 0.001) than horses in Group 2. However, the distribution of numbers of variants, allele frequency, and extent of ROH overlapped among all horses such that it was not possible to identify the group of origin of any single horse using these measures. Consequently, the Thoroughbred population would be better monitored by investigating changes in specific variants, rather than relying on broad measures of diversity. The WGS for these 185 horses is publicly available for comparison to other populations and as a foundation for modeling changes in population structure, breeding practices, or the appearance of deleterious variants.
Collapse
Affiliation(s)
- Ernie Bailey
- University of Kentucky, Maxwell H. Gluck Equine Research Center, Lexington, KY, 40546, USA
| | - Carrie J Finno
- University of California-Davis, Population Health and Reproduction, Davis, CA, 95616, USA
| | - Jonah N Cullen
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Ted Kalbfleisch
- University of Kentucky, Maxwell H. Gluck Equine Research Center, Lexington, KY, 40546, USA.
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, 68583-0908, USA.
| |
Collapse
|
33
|
Zhang Z, Zhao W, Wang Z, Pan Y, Wang Q, Zhang Z. Integration of ssGWAS and ROH analyses for uncovering genetic variants associated with reproduction traits in Large White pigs. Anim Genet 2024; 55:714-724. [PMID: 39129705 DOI: 10.1111/age.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 05/26/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024]
Abstract
The low heritability of reproduction traits such as total number born (TNB), number born alive (NBA) and adjusted litter weight until 21 days at weaning (ALW) poses a challenge for genetic improvement. In this study, we aimed to identify genetic variants that influence these traits and evaluate the accuracy of genomic selection (GS) using these variants as genomic features. We performed single-step genome-wide association studies (ssGWAS) on 17 823 Large White (LW) pigs, of which 2770 were genotyped by 50K single nucleotide polymorphism (SNP) chips. Additionally, we analyzed runs of homozygosity (ROH) in the population and tested their effects on the traits. The genomic feature best linear unbiased prediction (GFBLUP) was then carried out in an independent population of 350 LW pigs using identified trait-related SNP subsets as genomic features. As a result, our findings identified five, one and four SNP windows that explaining more than 1% of genetic variance for ALW, TNB, and NBA, respectively and discovered 358 hotspots and nine ROH islands. The ROH SSC1:21814570-27186456 and SSC11:7220366-14276394 were found to be significantly associated with ALW and NBA, respectively. We assessed the genomic estimated breeding value accuracy through 20 replicates of five-fold cross-validation. Our findings demonstrate that GFBLUP, incorporating SNPs located in effective ROH (p-value < 0.05) as genomic features, might enhance GS accuracy for ALW compared with GBLUP. Additionally, using SNPs explaining more than 0.1% of the genetic variance in ssGWAS for NBA as genomic features might improve the GS accuracy, too. However, it is important to note that the incorporation of inappropriate genomic features can significantly reduce GS accuracy. In conclusion, our findings provide valuable insights into the genetic mechanisms of reproductive traits in pigs and suggest that the ssGWAS and ROH have the potential to enhance the accuracy of GS for reproductive traits in LW pigs.
Collapse
Affiliation(s)
- Zhenyang Zhang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Wei Zhao
- SciGene Biotechnology Co. Ltd, Hefei, China
| | - Zhen Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuchun Pan
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Qishan Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Zhe Zhang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Meyermans R, Gorssen W, Aerts N, Hooyberghs K, Chakkingal Bhaskaran B, Chapard L, Buys N, Janssens S. Genomic characterisation and diversity assessment of eight endangered Belgian sheep breeds. Animal 2024; 18:101315. [PMID: 39276394 DOI: 10.1016/j.animal.2024.101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 09/17/2024] Open
Abstract
Assessing the genetic diversity of local breeds is essential for conserving these unique breeds, which may possess unique traits. This study provides the genomic characterisation of eight indigenous sheep breeds in Belgium based on pedigree and single nucleotide polymorphism (SNP) analysis. A total of 687 sheep were genotyped and were subjected to a rigorous quality control, resulting in a set of 45 978 autosomal SNPs. Pedigree analysis showed breed-average inbreeding estimates between 3.3% and 11.3%. The genomic analysis included an assessment of runs of homozygosity (ROH) to examine the genomic inbreeding coefficient, with breed-average inbreeding coefficients estimated between 4.1% and 8.5%. Runs of homozygosity islands were identified in six of the eight breeds studied, with some exhibiting an incidence of up to 58%. Interestingly, several ROH islands overlapped with other breeds included in this study, as well as with international sheep breeds. Pedigree-based effective population sizes were estimated below 100 for all breeds, whereas genomic-based effective population sizes were below 24, indicating that these eight local sheep breeds are endangered. Principal component analysis, admixture analyses, and Fst computations were used to study the population structure and genetic differences. A neighbour-joining tree using 95 international sheep breeds positioned the eight local breeds in the group of milksheep, Texel sheep and the Scandinavian breeds. Additionally, the investigation of paternal oY1 genotypes revealed diverse lineage origins within the Belgian sheep population. This study refines and deepens our knowledge about the local sheep breeds in Belgium, thereby improving their management and conservation. Moreover, as these breeds are linked to other international breeds, these insights are significant for the global scientific community.
Collapse
Affiliation(s)
- R Meyermans
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30 - 2472, 3001 Leuven, Belgium.
| | - W Gorssen
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30 - 2472, 3001 Leuven, Belgium
| | - N Aerts
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30 - 2472, 3001 Leuven, Belgium
| | - K Hooyberghs
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30 - 2472, 3001 Leuven, Belgium
| | - B Chakkingal Bhaskaran
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30 - 2472, 3001 Leuven, Belgium
| | - L Chapard
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30 - 2472, 3001 Leuven, Belgium
| | - N Buys
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30 - 2472, 3001 Leuven, Belgium
| | - S Janssens
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30 - 2472, 3001 Leuven, Belgium
| |
Collapse
|
35
|
Silva GAA, Harder AM, Kirksey KB, Mathur S, Willoughby JR. Detectability of runs of homozygosity is influenced by analysis parameters and population-specific demographic history. PLoS Comput Biol 2024; 20:e1012566. [PMID: 39480880 PMCID: PMC11556709 DOI: 10.1371/journal.pcbi.1012566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/12/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Wild populations are increasingly threatened by human-mediated climate change and land use changes. As populations decline, the probability of inbreeding increases, along with the potential for negative effects on individual fitness. Detecting and characterizing runs of homozygosity (ROHs) is a popular strategy for assessing the extent of individual inbreeding present in a population and can also shed light on the genetic mechanisms contributing to inbreeding depression. Here, we analyze simulated and empirical datasets to demonstrate the downstream effects of program selection and long-term demographic history on ROH inference, leading to context-dependent biases in the results. Through a sensitivity analysis we evaluate how various parameter values impact ROH-calling results, highlighting its utility as a tool for parameter exploration. Our results indicate that ROH inferences are sensitive to factors such as sequencing depth and ROH length distribution, with bias direction and magnitude varying with demographic history and the programs used. Estimation biases are particularly pronounced at lower sequencing depths, potentially leading to either underestimation or overestimation of inbreeding. These results are particularly important for the management of endangered species, as underestimating inbreeding signals in the genome can substantially undermine conservation initiatives. We also found that small true ROHs can be incorrectly lumped together and called as longer ROHs, leading to erroneous inference of recent inbreeding. To address these challenges, we suggest using a combination of ROH detection tools and ROH length-specific inferences, along with sensitivity analysis, to generate robust and context-appropriate population inferences regarding inbreeding history. We outline these recommendations for ROH estimation at multiple levels of sequencing effort, which are typical of conservation genomics studies.
Collapse
Affiliation(s)
- Gabriel A. A. Silva
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| | - Avril M. Harder
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| | - Kenneth B. Kirksey
- Walker College of Business, Appalachian State University, Boone, North Carolina, United States of America
| | - Samarth Mathur
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Janna R. Willoughby
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
36
|
Kim J, Macharia JK, Kim M, Heo JM, Yu M, Choo HJ, Lee JH. Runs of homozygosity analysis for selection signatures in the Yellow Korean native chicken. Anim Biosci 2024; 37:1683-1691. [PMID: 38754845 PMCID: PMC11366514 DOI: 10.5713/ab.24.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE Yellow Korean native chicken (KNC-Y) is one of the five pure Korean indigenous chicken breeds that were restored through a government project in 1992. KNC-Y is recognized for its superior egg production performance compared to other KNC lines. In this study, we performed runs of homozygosity (ROH) analysis to discover selection signatures associated with egg production traits in the KNC-Y population. METHODS A total of 675 DNA samples from KNC-Y were genotyped to generate single nucleotide polymorphism (SNP) data using custom 60K Affymetrix SNP chips. ROH analysis was performed using PLINK software, with predefined parameters set for the analysis. The threshold of ROH island was defined as the top 1% frequency of SNPs withing the ROH among the population. RESULTS In the KNC-Y population, a total of 29,958 runs of homozygosity (ROH) fragments were identified. The average total length of ROH was 120.84 Mb, with each ROH fragment having an average length of 2.71 Mb. The calculated ROH-based inbreeding coefficient (FROH) was 0.13. Furthermore, we revealed the presence of ROH islands on chromosomes 1, 2, 4, 5, 7, 8, and 11. Within the identified regions, a total of 111 genes were annotated, and among them were genes related to economic traits, including PRMT3, ANO5, HDAC4, LSS, PLA2G4A, and PTGS2. Most of the overlapping quantitative trait locus regions with ROH islands were found to be associated with production traits. CONCLUSION This study conducted a comprehensive analysis of ROH in the KNC-Y population. Notably, among the findings, the PTGS2 gene is believed to play a crucial role in influencing the laying performance of KNC-Y.
Collapse
Affiliation(s)
- Jaewon Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
| | - John Kariuki Macharia
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
| | - Minjun Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
| | - Jung Min Heo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
| | - Myunghwan Yu
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
| | - Hyo Jun Choo
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342,
Korea
| | - Jun Heon Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
37
|
Srikanth K, Jaafar MA, Neupane M, Ben Zaabza H, McKay SD, Wolfe CW, Metzger JS, Huson HJ, Van Tassell CP, Blackburn HD. Assessment of genetic diversity, inbreeding and collection completeness of Jersey bulls in the US National Animal Germplasm Program. J Dairy Sci 2024:S0022-0302(24)01152-4. [PMID: 39343205 DOI: 10.3168/jds.2024-25032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
Genomic selection and extensive use of a few elite bulls through artificial insemination are leading to reduced genetic diversity in Jersey cattle. Conservation of genetic diversity through gene banks can protect a breed's genetic diversity and genetic gain, ensuring continued genetic advancement in the future. The availability of genomic information in the US National Animal Germplasm Program (NAGP) facilitates characterization of Jersey bulls in the germplasm collection. Therefore, in this study, we compared the genetic diversity and inbreeding between Jersey bulls in the NAGP and the national cooperator database (NCD). The NCD is maintained and curated by the Council on Dairy Cattle Breeding (CDCB). We found the genetic diversity to be marginally higher in NAGP (Ho = 0.34 ± 0.17) relative to the NCD population (Ho = 0.33 ± 0.16). The average pedigree and genomic inbreeding (FPED, FGRM, FROH > 2Mb) were similar between the groups, with estimates of 7.6% with FPED, 11.07% with FGRM and 20.13% with FROH > 2Mb. An increasing trend in inbreeding was detected, and a significantly higher level of inbreeding was estimated among the older bulls in the NAGP collection, suggesting an overrepresentation of the genetics from elite bulls. Results from principal component analyses (PCA) provided evidence that the NAGP collection is representative of the genetic variation found in the NCD population and a broad majority of the loci segregating (98.2%) in the NCD population were also segregating in the NAGP. Ward's clustering was used to assess collection completeness of Jerseys in the NAGP by comparison with top 1000 sires of bulls, top 1000 sires of cow, and bulls with high Lifetime Net Merit (NM$). All the clusters were represented in the NAGP suggesting that most of the genetic diversity in the US Jersey population is represented in the NAGP and confirmed the PCA results. The decade of birth was the major driver grouping bulls into clusters, suggesting the importance of selection over time. Selection signature analysis between the historic bulls in the NAGP with the newer bulls, born in the decade after implementation of genomic selection, identified selection for milk production, fat and protein yield, fertility, health, and reproductive traits. Cluster analysis revealed that the NAGP has captured allele frequency changes over time associated with selection, validating the strategy of repeated sampling and suggests that the continuation of a repeated sampling policy is essential for the germplasm collection to maintain its future utility. While NAGP should continue to collect bulls that have large influence on the population due to selection, care should be taken to include the entire breadth of bulls, including low merit bulls.
Collapse
Affiliation(s)
- K Srikanth
- Department of Animal Science, Cornell University, Ithaca, NY, 14853
| | - M A Jaafar
- Department of Animal Science, Cornell University, Ithaca, NY, 14853
| | - M Neupane
- Animal Genomics and Improvement, ARS, USDA, Beltsville, MD 20705
| | - H Ben Zaabza
- Department of Animal Science, Michigan State, East Lansing, MI, 48824
| | - S D McKay
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211
| | - C W Wolfe
- American Jersey Cattle Association, Reynoldsburg, OH 43068
| | - J S Metzger
- American Jersey Cattle Association, Reynoldsburg, OH 43068
| | - H J Huson
- Department of Animal Science, Cornell University, Ithaca, NY, 14853
| | - C P Van Tassell
- Animal Genomics and Improvement, ARS, USDA, Beltsville, MD 20705
| | - H D Blackburn
- National Animal Germplasm Program, USDA, Fort Collins, CO 80521.
| |
Collapse
|
38
|
Wirth A, Duda J, Emmerling R, Götz KU, Birkenmaier F, Distl O. Analyzing Runs of Homozygosity Reveals Patterns of Selection in German Brown Cattle. Genes (Basel) 2024; 15:1051. [PMID: 39202411 PMCID: PMC11354284 DOI: 10.3390/genes15081051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
An increasing trend in ancestral and classical inbreeding coefficients as well as inbreeding depression for longevity were found in the German Brown population. In addition, the proportion of US Brown Swiss genes is steadily increasing in German Browns. Therefore, the aim of the present study was to analyze the presence and genomic localization of runs of homozygosity (ROH) in order to evaluate their associations with the proportion of US Brown Swiss genes and survival rates of cows to higher lactations. Genotype data were sampled in 2364 German Browns from 258 herds. The final data set included 49,693 autosomal SNPs. We identified on average 35.996 ± 7.498 ROH per individual with a mean length of 8.323 ± 1.181 Mb. The genomic inbreeding coefficient FROH was 0.122 ± 0.032 and it decreased to 0.074, 0.031 and 0.006, when genomic homozygous segments > 8 Mb (FROH>8), >16 Mb (FROH>16) and >32 Mb (FROH>32) were considered. New inbreeding showed the highest correlation with FROH>32, whereas ancestral inbreeding coefficients had the lowest correlations with FROH>32. The correlation between the classical inbreeding coefficient and FROH was 0.572. We found significantly lower FROH, FROH>4, FROH>8 and FIS for US Brown Swiss proportions <60% compared to >80%. Cows surviving to the 2nd, 4th, 6th, 8th, and 10th lactation had lower genomic inbreeding for FROH and up to FROH>32, which was due to a lower number of ROH and a shorter average length of ROH. The strongest ROH island and consensus ROH shared by 50% of the animals was found on BTA 6 at 85-88 Mb. The genes located in this genomic region were associated with longevity (NPFFR2 and ADAMTS3), udder health and morphology (SLC4A4, NPFFR2, GC and RASSF6), milk production, milk protein percentage, coagulation properties of milk and milking speed (CSN3). On BTA 2, a ROH island was detected only in animals with <60% US Brown Swiss genes. Genes within this region are predominantly important for dual-purpose cattle breeds including Original Browns. For cows reaching more than 9 lactations, an exclusive ROH island was identified on BTA 7 with genes assumed to be associated with longevity. The analysis indicated that genomic homozygous regions important for Original Browns are still present and also ROH containing genes affecting longevity may have been identified. The breeding of German Browns should prevent any further increase in genomic inbreeding and run a breeding program with balanced weights on production, robustness and longevity.
Collapse
Affiliation(s)
- Anna Wirth
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| | - Jürgen Duda
- Landeskuratorium der Erzeugerringe für Tierische Veredelung in Bayern e.V. (LKV), 80687 München, Germany;
| | - Reiner Emmerling
- Bavarian State Research Center for Agriculture, Institute of Animal Breeding, 85586 Poing-Grub, Germany; (R.E.); (K.-U.G.)
| | - Kay-Uwe Götz
- Bavarian State Research Center for Agriculture, Institute of Animal Breeding, 85586 Poing-Grub, Germany; (R.E.); (K.-U.G.)
| | - Franz Birkenmaier
- Amt für Ernährung, Landwirtschaft und Forsten, 87439 Kempten, Germany;
| | - Ottmar Distl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| |
Collapse
|
39
|
Sigurðardóttir H, Ablondi M, Kristjansson T, Lindgren G, Eriksson S. Genetic diversity and signatures of selection in Icelandic horses and Exmoor ponies. BMC Genomics 2024; 25:772. [PMID: 39118059 PMCID: PMC11308356 DOI: 10.1186/s12864-024-10682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The Icelandic horse and Exmoor pony are ancient, native breeds, adapted to harsh environmental conditions and they have both undergone severe historic bottlenecks. However, in modern days, the selection pressures on these breeds differ substantially. The aim of this study was to assess genetic diversity in both breeds through expected (HE) and observed heterozygosity (HO) and effective population size (Ne). Furthermore, we aimed to identify runs of homozygosity (ROH) to estimate and compare genomic inbreeding and signatures of selection in the breeds. RESULTS HO was estimated at 0.34 and 0.33 in the Icelandic horse and Exmoor pony, respectively, aligning closely with HE of 0.34 for both breeds. Based on genomic data, the Ne for the last generation was calculated to be 125 individuals for Icelandic horses and 42 for Exmoor ponies. Genomic inbreeding coefficient (FROH) ranged from 0.08 to 0.20 for the Icelandic horse and 0.12 to 0.27 for the Exmoor pony, with the majority of inbreeding attributed to short ROHs in both breeds. Several ROH islands associated with performance were identified in the Icelandic horse, featuring target genes such as DMRT3, DOCK8, EDNRB, SLAIN1, and NEURL1. Shared ROH islands between both breeds were linked to metabolic processes (FOXO1), body size, and the immune system (CYRIB), while private ROH islands in Exmoor ponies were associated with coat colours (ASIP, TBX3, OCA2), immune system (LYG1, LYG2), and fertility (TEX14, SPO11, ADAM20). CONCLUSIONS Evaluations of genetic diversity and inbreeding reveal insights into the evolutionary trajectories of both breeds, highlighting the consequences of population bottlenecks. While the genetic diversity in the Icelandic horse is acceptable, a critically low genetic diversity was estimated for the Exmoor pony, which requires further validation. Identified signatures of selection highlight the differences in the use of the two breeds as well as their adaptive trait similarities. The results provide insight into genomic regions under selection pressure in a gaited performance horse breed and various adaptive traits in small-sized native horse breeds. This understanding contributes to preserving genetic diversity and population health in these equine populations.
Collapse
Affiliation(s)
- Heiðrún Sigurðardóttir
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, Uppsala, 75007, Sweden.
- Faculty of Agricultural Sciences, Agricultural University of Iceland, Hvanneyri, Borgarbyggð, 311, Iceland.
| | - Michela Ablondi
- Department of Veterinary Science, University of Parma, Parma, 43126, Italy
| | - Thorvaldur Kristjansson
- Faculty of Agricultural Sciences, Agricultural University of Iceland, Hvanneyri, Borgarbyggð, 311, Iceland
| | - Gabriella Lindgren
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, Uppsala, 75007, Sweden
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Leuven, 3001, Belgium
| | - Susanne Eriksson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, Uppsala, 75007, Sweden
| |
Collapse
|
40
|
Kwon D, Ahn J, Kim H, Kim H, Kim J, Wy S, Ko Y, Kim J. Convergent dwarfism consequences of minipigs under independent artificial selections. BMC Genomics 2024; 25:761. [PMID: 39107730 PMCID: PMC11301983 DOI: 10.1186/s12864-024-10677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Currently, diverse minipigs have acquired a common dwarfism phenotype through independent artificial selections. Characterizing the population and genetic diversity in minipigs is important to unveil genetic mechanisms regulating their body sizes and effects of independent artificial selections on those genetic mechanisms. However, full understanding for the genetic mechanisms and phenotypic consequences in minipigs still lag behind. RESULTS Here, using whole genome sequencing data of 41 pig breeds, including eight minipigs, we identified a large genomic diversity in a minipig population compared to other pig populations in terms of population structure, demographic signatures, and selective signatures. Selective signatures reveal diverse biological mechanisms related to body size in minipigs. We also found evidence for neural development mechanism as a minipig-specific body size regulator. Interestingly, selection signatures within those mechanisms containing neural development are also highly different among minipig breeds. Despite those large genetic variances, PLAG1, CHM, and ESR1 are candidate key genes regulating body size which experience different differentiation directions in different pig populations. CONCLUSIONS These findings present large variances of genetic structures, demographic signatures, and selective signatures in the minipig population. They also highlight how different artificial selections with large genomic diversity have shaped the convergent dwarfism.
Collapse
Affiliation(s)
- Daehong Kwon
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jiyeong Ahn
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyeonji Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Heesun Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Junyoung Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Suyeon Wy
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Younhee Ko
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Gyeonggi-Do, 17035, Republic of Korea
| | - Jaebum Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
41
|
Tenhunen S, Thomasen JR, Sørensen LP, Berg P, Kargo M. Genomic analysis of inbreeding and coancestry in Nordic Jersey and Holstein dairy cattle populations. J Dairy Sci 2024; 107:5897-5912. [PMID: 38608951 DOI: 10.3168/jds.2023-24553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/01/2024] [Indexed: 04/14/2024]
Abstract
In recent years, genomic selection (GS) has accelerated genetic gain in dairy cattle breeds worldwide. Despite the evident genetic progress, several dairy populations have also encountered challenges such as heightened inbreeding rates and reduced effective population sizes. The challenge has been to find a balance between achieving substantial genetic gain while managing genetic diversity within the population, thereby mitigating the negative effects of inbreeding depression. This study aims to elucidate the impact of GS on pedigree and genomic rates of inbreeding (ΔF) and coancestry (ΔC) in Nordic Jersey (NJ) and Holstein (NH) cattle populations. Furthermore, key genetic metrics, including the generation interval (L), effective population size (Ne), and future effective population size (FNe) were assessed between 2 time periods, before and after GS, and across distinct animal cohorts in both breeds: females, bulls, and approved semen-producing bulls (AI-sires). Analysis of ΔF and ΔC revealed distinct trends across the studied periods and animal groups. Notably, there was a consistent increase in yearly ΔF for most animal groups in both breeds. An exception was observed in NH AI-sires, which demonstrated a slight decrease in yearly ΔF. Moreover, NJ displayed minimal changes in yearly ΔC between the periods, whereas NH exhibited elevated ΔC values across all animal groups. Particularly striking was the substantial increase in yearly ΔC within the NH female population, surging from 0.02% to 0.39% between the periods. Implementation of GS resulted in a reduction of the generation interval across all animal cohorts in both NJ and NH breeds. However, the extent of reduction was more pronounced in males compared with females. This reduction in generation interval influenced generational changes in ΔF and ΔC. Bulls and AI-sires of both breeds exhibited reduced generational ΔF between periods, in contrast to females that demonstrated an opposing pattern. Between the periods, NJ maintained a relatively stable Ne (29.4 before and 30.3 after GS), whereas NH experienced a notable decline from 54.3 to 42.8. Female groups in both breeds displayed a negative Ne trend, whereas males demonstrated either neutral or positive Ne developments. Regarding FNe, NJ exhibited positive FNe development with an increase from 40.7 to 57.2. The opposite was observed in NH, where FNe decreased from 198.8 to 42.7. In summary, it was evident that the genomic methods could detect differences between the populations and changes in ΔF and ΔC more efficiently than pedigree methods. Implementation of GS yielded positive outcomes within the NJ population regarding the rate of coancestry but the opposite was observed with NH. Moreover, analysis of ΔC data hints at the potential to decrease future ΔF through informed mating strategies. Conversely, NH faces more pressing concerns, even though ΔF remains comparatively modest in contrast to what has been observed in other Holstein populations. These findings underscore the necessity of genomic control of inbreeding and coancestry with strategic changes in the Nordic breeding schemes for dairy to ensure long-term sustainability in the forthcoming years.
Collapse
Affiliation(s)
- S Tenhunen
- Aarhus University, Center for Quantitative Genetics and Genomics, 8000 Aarhus, Denmark; VikingGenetics, 8960 Randers SØ, Denmark.
| | | | | | - P Berg
- Norwegian University of Life Sciences, NMBU, 1433 Ås, Norway
| | - M Kargo
- Aarhus University, Center for Quantitative Genetics and Genomics, 8000 Aarhus, Denmark; VikingGenetics, 8960 Randers SØ, Denmark
| |
Collapse
|
42
|
Macharia JK, Kim J, Kim M, Cho E, Munyaneza JP, Lee JH. Characterisation of runs of homozygosity and inbreeding coefficients in the red-brown Korean native chickens. Anim Biosci 2024; 37:1355-1366. [PMID: 38665087 PMCID: PMC11222857 DOI: 10.5713/ab.23.0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE The analysis of runs of homozygosity (ROH) has been applied to assess the level of inbreeding and identify selection signatures in various livestock species. The objectives of this study were to characterize the ROH pattern, estimate the rate of inbreeding, and identify signatures of selection in the red-brown Korean native chickens. METHODS The Illumina 60K single nucleotide polymorphism chip data of 651 chickens was used in the analysis. Runs of homozygosity were analysed using the PLINK v1.9 software. Inbreeding coefficients were estimated using the GCTA software and their correlations were examined. Genomic regions with high levels of ROH were explored to identify selection signatures. RESULTS A total of 32,176 ROH segments were detected in this study. The majority of the ROH segments were shorter than 4 Mb. The average ROH inbreeding coefficients (FROH) varied with the length of ROH segments. The means of inbreeding coefficients calculated from different methods were also variable. The correlations between different inbreeding coefficients were positive and highly variable (r = 0.18-1). Five ROH islands harbouring important quantitative trait loci were identified. CONCLUSION This study assessed the level of inbreeding and patterns of homozygosity in Red-brown native Korean chickens. The results of this study suggest that the level of recent inbreeding is low which indicates substantial progress in the conservation of red-brown Korean native chickens. Additionally, Candidate genomic regions associated with important production traits were detected in homozygous regions.
Collapse
Affiliation(s)
- John Kariuki Macharia
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
| | - Jaewon Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
| | - Minjun Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
| | - Eunjin Cho
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134,
Korea
| | - Jean Pierre Munyaneza
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
| | - Jun Heon Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
43
|
Becker GM, Thorne JW, Burke JM, Lewis RM, Notter DR, Morgan JLM, Schauer CS, Stewart WC, Redden RR, Murdoch BM. Genetic diversity of United States Rambouillet, Katahdin and Dorper sheep. Genet Sel Evol 2024; 56:56. [PMID: 39080565 PMCID: PMC11290166 DOI: 10.1186/s12711-024-00905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 04/23/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Managing genetic diversity is critically important for maintaining species fitness. Excessive homozygosity caused by the loss of genetic diversity can have detrimental effects on the reproduction and production performance of a breed. Analysis of genetic diversity can facilitate the identification of signatures of selection which may contribute to the specific characteristics regarding the health, production and physical appearance of a breed or population. In this study, breeds with well-characterized traits such as fine wool production (Rambouillet, N = 745), parasite resistance (Katahdin, N = 581) and environmental hardiness (Dorper, N = 265) were evaluated for inbreeding, effective population size (Ne), runs of homozygosity (ROH) and Wright's fixation index (FST) outlier approach to identify differential signatures of selection at 36,113 autosomal single nucleotide polymorphisms (SNPs). RESULTS Katahdin sheep had the largest current Ne at the most recent generation estimated with both the GONe and NeEstimator software. The most highly conserved ROH Island was identified in Rambouillet with a signature of selection on chromosome 6 containing 202 SNPs called in an ROH in 50 to 94% of the individuals. This region contained the DCAF16, LCORL and NCAPG genes that have been previously reported to be under selection and have biological roles related to milk production and growth traits. The outlier regions identified through the FST comparisons of Katahdin with Rambouillet and Dorper contained genes with known roles in milk production and mastitis resistance or susceptibility, and the FST comparisons of Rambouillet with Katahdin and Dorper identified genes related to wool growth, suggesting these traits have been under natural or artificial selection pressure in these populations. Genes involved in the cytokine-cytokine receptor interaction pathways were identified in all FST breed comparisons, which indicates the presence of allelic diversity between these breeds in genomic regions controlling cytokine signaling mechanisms. CONCLUSIONS In this paper, we describe signatures of selection within diverse and economically important U.S. sheep breeds. The genes contained within these signatures are proposed for further study to understand their relevance to biological traits and improve understanding of breed diversity.
Collapse
Affiliation(s)
- Gabrielle M Becker
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
| | - Jacob W Thorne
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
- Texas A&M AgriLife Extension, Texas A&M University, San Angelo, TX, USA
| | - Joan M Burke
- USDA, ARS, Dale Bumpers Small Farms Research Center, Booneville, AR, USA
| | - Ronald M Lewis
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - David R Notter
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Christopher S Schauer
- Hettinger Research Extension Center, North Dakota State University, Hettinger, ND, USA
| | - Whit C Stewart
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - R R Redden
- Texas A&M AgriLife Extension, Texas A&M University, San Angelo, TX, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
44
|
Akinsola OM, Musa AA, Muansangi L, Singh SP, Mukherjee S, Mukherjee A. Genomic insights into adaptation and inbreeding among Sub-Saharan African cattle from pastoral and agropastoral systems. Front Genet 2024; 15:1430291. [PMID: 39119582 PMCID: PMC11306176 DOI: 10.3389/fgene.2024.1430291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Background In Sub-Saharan Africa (SSA), cattle are crucial for socioeconomic stability yet face numerous environmental stressors such as diseases, parasites, and extreme heat within pastoral and agropastoral systems. Despite their significance, gaps remain in understanding how genetic diversity and inbreeding influence traits essential for disease resistance and environmental adaptability. This study examines the genomic adaptations that enable SSA cattle to thrive under these conditions and assesses the impact of inbreeding on such adaptive traits. Methods We analyzed genomic data from 113 cattle across four breeds-Kuri, N'dama, Zebu-Fulani, and Zebu-Bororo-employing Runs of Homozygosity (ROH) and Integrated Haplotype Score (iHS) analyses to identify historical and recent genetic selections. Strict quality controls using PLINK software ensured accurate genomic pattern identification related to adaptation and inbreeding. Results ROH analysis revealed islands with genes such as RSAD2, CMPK2, and NOTCH1, which are involved in immune response and cellular stress management, highlighting regions of historical selection that have likely provided adaptive advantages in overcoming environmental and pathogenic stresses. In contrast, iHS analysis identified genes under recent selection like HIPK1, involved in stress response regulation, and EPHA5, which plays a crucial role in neural development and synaptic functions, potentially equipping these breeds with novel adaptations to ongoing and emergent environmental challenges. Conclusion This research confirms that selective pressures inherent in pastoral and agropastoral systems profoundly influence the genetic structure of SSA cattle. By delineating the genetic bases of key adaptive traits, our study offers crucial insights for targeted breeding programs to enhance cattle resilience and productivity. These findings provide a valuable framework for future genetic improvements and conservation strategies, crucial for sustainable livestock management and economic stability in SSA.
Collapse
Affiliation(s)
- Oludayo M. Akinsola
- Department of Theriogenology and Production, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria
| | | | - Lal Muansangi
- Animal Genetics and Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | - Sanchit P. Singh
- Animal Genetics and Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | - Sabyasachi Mukherjee
- Animal Genetics and Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | - Anupama Mukherjee
- Animal Genetics and Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| |
Collapse
|
45
|
Kusza S, Badaoui B, Wanjala G. Insights into the genomic homogeneity of Moroccan indigenous sheep breeds though the lens of runs of homozygosity. Sci Rep 2024; 14:16515. [PMID: 39019985 PMCID: PMC11255268 DOI: 10.1038/s41598-024-67558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
Numerous studies have indicated that Morocco's indigenous sheep breeds are genetically homogenous, posing a risk to their survival in the challenging harsh climate conditions where they predominantly inhabit. To understand the genetic behind genetic homogeneity through the lens of runs of homozygosity (ROH), we analyzed the whole genome sequences of five indigenous sheep breeds (Beni Guil, Ouled Djellal, D'man, Sardi, Timahdite and Admixed).The results from principal component, admixture, Fst, and neighbour joining tree analyses consistently showed a homogenous genetic structure. This structure was characterized by an average length of 1.83 Mb for runs of homozygosity (ROH) segments, with a limited number of long ROH segments (24-48 Mb and > 48 Mb). The most common ROH segments were those ranging from 1-6 Mb. The most significant regions of homozygosity (ROH Islands) were mostly observed in two chromosomes, namely Chr1 and Chr5. Specifically, ROH Islands were exclusively discovered in the Ouled Djellal breed on Chr1, whereas Chr5 exhibited ROH Islands in all breeds. The analysis of ROH Island and iHS technique was employed to detect signatures of selection on Chr1 and Chr5. The results indicate that Chr5 had a high level of homogeneity, with the same genes being discovered across all breeds. In contrast, Chr1 displays some genetic variances between breeds. Genes identified on Chr5 included SLC39A1, IL23A, CAST, IL5, IL13, and IL4 which are responsible for immune response while genes identified on Chr1 include SOD1, SLAMF9, RTP4, CLDN1, and PRKAA2. ROH segment profile and effective population sizes patterns suggests that the genetic uniformity of studied breeds is the outcome of events that transpired between 250 and 300 generations ago. This research not only contributes to the understanding of ROH distribution across breeds but helps design and implement native sheep breeding and conservation strategies in Morocco. Future research, incorporating a broader sample size and utilizing the pangenome for reference, is recommended to further elucidate these breeds' genomic landscapes and adaptive mechanisms.
Collapse
Affiliation(s)
- Szilvia Kusza
- Faculty of Agricultural and Food Sciences and Environmental Management, Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
| | - Bouabid Badaoui
- Faculty of Sciences, Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Mohammed V University in Rabat, Rabat, Morocco
- African Sustainable Agriculture Research Institute (ASARI),, Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - George Wanjala
- Faculty of Agricultural and Food Sciences and Environmental Management, Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
- Doctoral School of Animal Science, University of Debrecen, Böszörményi út 138., 4032, Debrecen, Hungary
- Institute of Animal Sciences and Wildlife Management, University of Szeged, Andrássy út 15., 6800, Hódmezővásárhely, Hungary
| |
Collapse
|
46
|
Sarviaho K, Uimari P, Martikainen K. Signatures of positive selection after the introduction of genomic selection in the Finnish Ayrshire population. J Dairy Sci 2024; 107:4822-4832. [PMID: 38490540 DOI: 10.3168/jds.2024-24105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
The Finnish Ayrshire (FAY) belongs to the Nordic Red breeds and is characterized by high milk yield, high milk components, good fertility, and functional conformation. The FAY breeding program is based on genomic selection. Despite the benefits of selection on breeding values, autozygosity in the genome may increase due to selection, and increased autozygosity may cause inbreeding depression in selected traits. However, there is lack of studies concerning selection signatures in the FAY after genomic selection introduction. The aim of this study was to identify signatures of selection in FAY after the introduction of genomic selection. Genomic data included 45,834 SNPs. The genotyped animals were divided into 2 groups: animals born before genomic selection introduction (6,108 cows) and animals born after genomic selection introduction (47,361 cows). We identified the selection signatures using 3 complementary methods: 2 based on identification of selection signatures from runs of homozygosity (ROH) islands and one based on the decay of site-specific extended haplotype between populations at SNP sites (Rsb). In total, we identified 34 ROH islands on chromosomes 1, 3, 6, 8, 12-15, 17, 19, 22, and 26 in FAY animals born before genomic selection (between 1980 and 2011) and 30 ROH islands on chromosomes 1-3, 13-17, 22, and 25-26 in FAY animals born after genomic selection introduction (between 2015 and 2020). We additionally detected 22 ΔROH islands on chromosomes 2-3, 11, 13, 14, 16, 18, 20, and 25-26. Finally, a total of 31 Rsb regions on chromosomes 2, 3, 14, 18, 20, and 25 were identified. Based on the results, genomic selection has favored certain alleles and haplotypes on genomic regions related to traits relevant in the FAY breeding program: milk production, fertility, growth, beef production traits, and feed efficiency. Several genes related to these traits (e.g., PLA2G4A, MECR, CHUK, COX15, RICTOR, SHISA9, and SEMA4G) overlapped or partially overlapped the observed selection signature regions. The association of genotypes within these regions and their effects on traits relevant in the FAY breeding program should be studied and genetic regions undergoing selection monitored in the FAY population.
Collapse
Affiliation(s)
- Katri Sarviaho
- Department of Agricultural Sciences, University of Helsinki, Helsinki 00014, Finland.
| | - Pekka Uimari
- Department of Agricultural Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Katja Martikainen
- Department of Agricultural Sciences, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
47
|
Laseca N, Ziadi C, Perdomo-Gonzalez DI, Valera M, Demyda-Peyras S, Molina A. Reproductive traits in Pura Raza Española mares manifest inbreeding depression from low levels of homozygosity. J Anim Breed Genet 2024; 141:453-464. [PMID: 38299872 DOI: 10.1111/jbg.12856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
Inbreeding depression is a genetic phenomenon associated with the loss of fitness and mean phenotypic performance due to mating between relatives. Historically, inbreeding coefficients have been estimated from pedigree information. However, the onset of genomic selection programs provides large datasets of individuals genotyped using SNP arrays, enabling more precise assessment of an individual's genomic-level inbreeding using genomic data. One of the traits most sensitive to issues stemming from increased inbreeding is reproduction. This is particularly important in equine, in which fertility is only moderate compared to other livestock species. To explore this further, we evaluated the effect of inbreeding on five reproductive traits (age at first foaling (AFF), average interval between foalings (AIF), total number of foalings (NF), productive life (PL) and reproductive efficiency (RE)) in Pura Raza Español mares using genomic data. Residual predicted phenotypes were obtained by purging these traits through the REML (wgResidual) and ssGREML (gResidual) approaches in reproductive data of 29,847 PRE mares using the BLUPF90+ program. Next, we used pedigree-based (Fped) and ROH-based genomic (FROH) inbreeding coefficients derived from 1018 animals genotyped with 61,271 SNPs to estimate the inbreeding depression (linear regression). Our results indicated significant levels of inbreeding depression for all reproductive traits, with the exception of the AIF trait when Fped was used. However, all traits were negatively affected by the increase in genomic inbreeding, and FROH was found to capture more inbreeding depression than Fped. Likewise, REML models (ssGREML) using genomic data for estimated predicted residual phenotypes resulted in higher variance explained by the model compared with the models not using genomics (REML). Finally, a segmented regression analysis was conducted to evaluate the effect of inbreeding depression, revealing that the levels of genealogical and genomic homozygosity do not manifest uniformly in reproductive traits. In contrast, the levels of inbreeding depression ranged from low to high as homozygosity increased. This analysis also showed that reproductive traits are very sensitive to inbreeding depression, even with relatively low levels of homozygosity.
Collapse
Affiliation(s)
- Nora Laseca
- Department of Genetics, University of Cordoba, Córdoba, Spain
| | - Chiraz Ziadi
- Department of Genetics, University of Cordoba, Córdoba, Spain
| | | | - Mercedes Valera
- Department of Agronomy, ETSIA, University of Seville, Seville, Spain
| | | | - Antonio Molina
- Department of Genetics, University of Cordoba, Córdoba, Spain
| |
Collapse
|
48
|
Hogg CJ, Edwards RJ, Farquharson KA, Silver LW, Brandies P, Peel E, Escalona M, Jaya FR, Thavornkanlapachai R, Batley K, Bradford TM, Chang JK, Chen Z, Deshpande N, Dziminski M, Ewart KM, Griffith OW, Marin Gual L, Moon KL, Travouillon KJ, Waters P, Whittington CM, Wilkins MR, Helgen KM, Lo N, Ho SYW, Ruiz Herrera A, Paltridge R, Marshall Graves JA, Renfree M, Shapiro B, Ottewell K, Belov K. Extant and extinct bilby genomes combined with Indigenous knowledge improve conservation of a unique Australian marsupial. Nat Ecol Evol 2024; 8:1311-1326. [PMID: 38945974 PMCID: PMC11239497 DOI: 10.1038/s41559-024-02436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/03/2024] [Indexed: 07/02/2024]
Abstract
Ninu (greater bilby, Macrotis lagotis) are desert-dwelling, culturally and ecologically important marsupials. In collaboration with Indigenous rangers and conservation managers, we generated the Ninu chromosome-level genome assembly (3.66 Gbp) and genome sequences for the extinct Yallara (lesser bilby, Macrotis leucura). We developed and tested a scat single-nucleotide polymorphism panel to inform current and future conservation actions, undertake ecological assessments and improve our understanding of Ninu genetic diversity in managed and wild populations. We also assessed the beneficial impact of translocations in the metapopulation (N = 363 Ninu). Resequenced genomes (temperate Ninu, 6; semi-arid Ninu, 6; and Yallara, 4) revealed two major population crashes during global cooling events for both species and differences in Ninu genes involved in anatomical and metabolic pathways. Despite their 45-year captive history, Ninu have fewer long runs of homozygosity than other larger mammals, which may be attributable to their boom-bust life history. Here we investigated the unique Ninu biology using 12 tissue transcriptomes revealing expression of all 115 conserved eutherian chorioallantoic placentation genes in the uterus, an XY1Y2 sex chromosome system and olfactory receptor gene expansions. Together, we demonstrate the holistic value of genomics in improving key conservation actions, understanding unique biological traits and developing tools for Indigenous rangers to monitor remote wild populations.
Collapse
Affiliation(s)
- Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia.
| | - Richard J Edwards
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Katherine A Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Luke W Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Parice Brandies
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Merly Escalona
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Frederick R Jaya
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Rujiporn Thavornkanlapachai
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Kimberley Batley
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Tessa M Bradford
- Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - J King Chang
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | | | - Nandan Deshpande
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Ramaciotti Centre for Genomics and School of Biotechnology and Biomolecular Science, UNSW, Sydney, New South Wales, Australia
| | - Martin Dziminski
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Kyle M Ewart
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Oliver W Griffith
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Laia Marin Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Katherine L Moon
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Kenny J Travouillon
- Collections and Research, Western Australian Museum, Welshpool, Western Australia, Australia
| | - Paul Waters
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Camilla M Whittington
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Ramaciotti Centre for Genomics and School of Biotechnology and Biomolecular Science, UNSW, Sydney, New South Wales, Australia
| | - Kristofer M Helgen
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Aurora Ruiz Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Rachel Paltridge
- Indigenous Desert Alliance, Alice Springs, Northern Territory, Australia
| | | | - Marilyn Renfree
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Kym Ottewell
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
49
|
Cars BS, Kessler C, Hoffman EA, Côté SD, Koelsch D, Shafer ABA. Island demographics and trait associations in white-tailed deer. Heredity (Edinb) 2024; 133:1-10. [PMID: 38802598 PMCID: PMC11222433 DOI: 10.1038/s41437-024-00685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
When a population is isolated and composed of few individuals, genetic drift is the paramount evolutionary force and results in the loss of genetic diversity. Inbreeding might also occur, resulting in genomic regions that are identical by descent, manifesting as runs of homozygosity (ROHs) and the expression of recessive traits. Likewise, the genes underlying traits of interest can be revealed by comparing fixed SNPs and divergent haplotypes between affected and unaffected individuals. Populations of white-tailed deer (Odocoileus virginianus) on islands of Saint Pierre and Miquelon (SPM, France) have high incidences of leucism and malocclusions, both considered genetic defects; on the Florida Keys islands (USA) deer exhibit smaller body sizes, a polygenic trait. Here we aimed to reconstruct island demography and identify the genes associated with these traits in a pseudo case-control design. The two island populations showed reduced levels of genomic diversity and a build-up of deleterious mutations compared to mainland deer; there was also significant genome-wide divergence in Key deer. Key deer showed higher inbreeding levels, but not longer ROHs, consistent with long-term isolation. We identified multiple trait-related genes in ROHs including LAMTOR2 which has links to pigmentation changes, and NPVF which is linked to craniofacial abnormalities. Our mixed approach of linking ROHs, fixed SNPs and haplotypes matched a high number (~50) of a-priori body size candidate genes in Key deer. This suite of biomarkers and candidate genes should prove useful for population monitoring, noting all three phenotypes show patterns consistent with a complex trait and non-Mendelian inheritance.
Collapse
Affiliation(s)
- Brooklyn S Cars
- Environmental and Life Sciences Graduate Program, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada
- Department of Forensics, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada
| | - Camille Kessler
- Environmental and Life Sciences Graduate Program, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada
| | - Eric A Hoffman
- Department of Biology, University of Central Florida, 4000, Central Florida Blvd, Orlando, FL, USA
| | - Steeve D Côté
- Département de Biologie and Centre d'Études Nordiques, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Daniel Koelsch
- Fédération des chasseurs de Saint-Pierre et Miquelon, Saint-Pierre et Miquelon, France
- Direction des Territoires de l'Alimentation et de la Mer, service Biodiversité, Saint-Pierre et Miquelon, France
| | - Aaron B A Shafer
- Environmental and Life Sciences Graduate Program, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada.
- Department of Forensics, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada.
| |
Collapse
|
50
|
Lawson JM, Shilton CA, Lindsay-McGee V, Psifidi A, Wathes DC, Raudsepp T, de Mestre AM. Does inbreeding contribute to pregnancy loss in Thoroughbred horses? Equine Vet J 2024; 56:711-718. [PMID: 38221707 DOI: 10.1111/evj.14057] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Excessive inbreeding increases the probability of uncovering homozygous recessive genotypes and has been associated with an increased risk of retained placenta and lower semen quality. No genomic analysis has investigated the association between inbreeding levels and pregnancy loss. OBJECTIVES To compare genetic inbreeding coefficients (F) of naturally occurring Thoroughbred Early Pregnancy Loss (EPLs), Mid and Late term Pregnancy Loss (MLPL) and Controls. The F value was hypothesised to be higher in cases of pregnancy loss (EPLs and MLPLs) than Controls. STUDY DESIGN Observational case-control study. METHODS Allantochorion and fetal DNA from EPL (n = 37, gestation age 14-65 days), MLPL (n = 94, gestational age 70 days-24 h post parturition) and Controls (n = 58) were genotyped on the Axiom Equine 670K SNP Genotyping Array. Inbreeding coefficients using Runs of Homozygosity (FROH) were calculated using PLINK software. ROHs were split into size categories to investigate the recency of inbreeding. RESULTS MLPLs had significantly higher median number of ROH (188 interquartile range [IQR], 180.8-197.3), length of ROH (3.10, IQR 2.93-3.33), and total number of ROH (590.8, IQR 537.3-632.3), and FROH (0.26, IQR 0.24-0.28) when compared with the Controls and the EPLs (p < 0.05). There was no significant difference in any of the inbreeding indices between the EPLs and Controls. The MLPLs had a significantly higher proportion of long (>10 Mb) ROH (2.5%, IQR 1.6-3.6) than the Controls (1.7%, IQR 0.6-2.5), p = 0.001. No unique ROHs were found in the EPL or MLPL populations. MAIN LIMITATIONS SNP-array data does not allow analysis of every base in the sequence. CONCLUSIONS This first study of the effect of genomic inbreeding levels on pregnancy loss showed that inbreeding is a contributor to MLPL, but not EPL in the UK Thoroughbred population. Mating choices remain critical, because inbreeding may predispose to MLPL by increasing the risk of homozygosity for specific lethal allele(s).
Collapse
Affiliation(s)
- Jessica M Lawson
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, Hatfield, UK
| | - Charlotte A Shilton
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Victoria Lindsay-McGee
- Department of Clinical Science and Services, The Royal Veterinary College, University of London, London, UK
| | - Androniki Psifidi
- Department of Clinical Science and Services, The Royal Veterinary College, University of London, London, UK
| | - D Claire Wathes
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, Hatfield, UK
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Amanda M de Mestre
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| |
Collapse
|