1
|
Toga K, Sakamoto T, Kanda M, Tamura K, Okuhara K, Tabunoki H, Bono H. Long-read genome assembly of the Japanese parasitic wasp Copidosoma floridanum (Hymenoptera: Encyrtidae). G3 (BETHESDA, MD.) 2024; 14:jkae127. [PMID: 38860489 PMCID: PMC11304982 DOI: 10.1093/g3journal/jkae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Copidosoma floridanum is a cosmopolitan species and an egg-larval parasitoid of the Plusiine moth. C. floridanum has a unique development mode called polyembryony, in which over two thousand genetically identical embryos are produced from a single egg. Some embryos develop into sterile soldier larvae precociously, and their emergence period and aggressive behavior differ between the US and Japanese C. floridanum strains. Genome sequencing expects to contribute to our understanding of the molecular bases underlying the progression of polyembryony. However, only the genome sequence of the US strain generated by the short-read assembly has been reported. In the present study, we determined the genome sequence of the Japanese strain using Pacific Biosciences high-fidelity reads and generating a highly contiguous assembly (552.7 Mb, N50: 17.9 Mb). Gene prediction and annotation identified 13,886 transcripts derived from 10,786 gene models. We searched the genomic differences between US and Japanese strains. Among gene models predicted in this study, 100 gene loci in the Japanese strain had extremely different gene structures from those in the US strain. This was accomplished through functional annotation (GGSEARCH) and long-read sequencing. Genomic differences between strains were also reflected in amino acid sequences of vasa that play a central role in caste determination in this species. The genome assemblies constructed in this study will facilitate the genomic comparisons between Japanese and US strains, leading to our understanding of detailed genomic regions responsible for the ecological and physiological characteristics of C. floridanum.
Collapse
Affiliation(s)
- Kouhei Toga
- Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
| | - Takuma Sakamoto
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Miyuki Kanda
- Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
- Research and Development Department, PtBio Inc., 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
| | - Keita Tamura
- Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
| | - Keisuke Okuhara
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
- Research and Development Department, PtBio Inc., 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
| | - Hiroko Tabunoki
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hidemasa Bono
- Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-0046, Japan
| |
Collapse
|
2
|
Zhang J, Shan J, Shi W, Feng T, Sheng Y, Xu Z, Dong Z, Huang J, Chen J. Transcriptomic Insights into Host Metabolism and Immunity Changes after Parasitization by Leptopilina myrica. INSECTS 2024; 15:352. [PMID: 38786908 PMCID: PMC11122121 DOI: 10.3390/insects15050352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Parasitoids commonly manipulate their host's metabolism and immunity to facilitate their offspring survival, but the mechanisms remain poorly understood. Here, we deconstructed the manipulation strategy of a newly discovered parasitoid wasp, L. myrica, which parasitizes D. melanogaster. Using RNA-seq, we analyzed transcriptomes of L. myrica-parasitized and non-parasitized Drosophila host larvae. A total of 22.29 Gb and 23.85 Gb of clean reads were obtained from the two samples, respectively, and differential expression analysis identified 445 DEGs. Of them, 304 genes were upregulated and 141 genes were downregulated in parasitized hosts compared with non-parasitized larvae. Based on the functional annotations in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, we found that the genes involved in host nutrition metabolism were significantly upregulated, particularly in carbohydrate, amino acid, and lipid metabolism. We also identified 30 other metabolism-related DEGs, including hexokinase, fatty acid synthase, and UDP-glycosyltransferase (Ugt) genes. We observed that five Bomanin genes (Boms) and six antimicrobial peptides (AMPs) were upregulated. Moreover, a qRT-PCR analysis of 12 randomly selected DEGs confirmed the reproducibility and accuracy of the RNA-seq data. Our results provide a comprehensive transcriptomic analysis of how L. myrica manipulates its host, laying a solid foundation for studies on the regulatory mechanisms employed by parasitoid wasps in their hosts.
Collapse
Affiliation(s)
- Junwei Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jieyu Shan
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Wenqi Shi
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Ting Feng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zixuan Xu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhi Dong
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jiani Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Bono H, Sakamoto T, Kasukawa T, Tabunoki H. Systematic Functional Annotation Workflow for Insects. INSECTS 2022; 13:insects13070586. [PMID: 35886762 PMCID: PMC9319598 DOI: 10.3390/insects13070586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/12/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing has revolutionized entomological study, rendering it possible to analyze the genomes and transcriptomes of non-model insects. However, use of this technology is often limited to obtaining the nucleotide sequences of target or related genes, with many of the acquired sequences remaining unused because other available sequences are not sufficiently annotated. To address this issue, we have developed a functional annotation workflow for transcriptome-sequenced insects to determine transcript descriptions, which represents a significant improvement over the previous method (functional annotation pipeline for insects). The developed workflow attempts to annotate not only the protein sequences obtained from transcriptome analysis but also the ncRNA sequences obtained simultaneously. In addition, the workflow integrates the expression-level information obtained from transcriptome sequencing for application as functional annotation information. Using the workflow, functional annotation was performed on the sequences obtained from transcriptome sequencing of the stick insect (Entoria okinawaensis) and silkworm (Bombyx mori), yielding richer functional annotation information than that obtained in our previous study. The improved workflow allows the more comprehensive exploitation of transcriptome data and is applicable to other insects because the workflow has been openly developed on GitHub.
Collapse
Affiliation(s)
- Hidemasa Bono
- Laboratory of Bio-DX, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City 739-0046, Japan
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City 739-0046, Japan
- Correspondence: ; Tel.: +81-82-424-4013
| | - Takuma Sakamoto
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (T.S.); (H.T.)
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan;
| | - Hiroko Tabunoki
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (T.S.); (H.T.)
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|