1
|
Al-Azaawie AF, Suleiman AA, Mohammed MJ. Unveiling the molecular cross-talk between piwi-interacting RNAs and steroid 5 alpha reductase type 2 in sperm dysfunction. F&S SCIENCE 2025:S2666-335X(25)00028-X. [PMID: 40304644 DOI: 10.1016/j.xfss.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025]
Abstract
OBJECTIVE To investigate the correlation between piwi-interacting RNA (piRNA) expression and steroid 5 alpha reductase type 2 (SRD5A2) mRNA regulation in seminal fluid across various male infertility conditions (asthenozoospermia, oligozoospermia, and azoospermia). DESIGN AND SUBJECTS This study included 88 male participants aged 20-40 years, categorized into infertility and normozoospermic groups. EXPOSURE Seminal fluid analysis and RNA extraction were performed to quantify SRD5A2 mRNA and selected piRNAs (hsa-piR-002528, hsa-piR-017183, hsa-piR-023244, and hsa-piR-023338) using qRT-PCR. MAIN OUTCOME MEASURES Correlation analysis evaluated interactions between piRNA levels and SRD5A2 expression. Statistical significance was determined using analysis of variance and correlation coefficients. RESULTS Seminal Fluid Analysis: significant differences in seminal volume, sperm morphology, count, and motility were observed across infertility subtypes. Steroid 5 alpha reductase type 2 Expression: asthenozoospermia showed up-regulated SRD5A2 mRNA (Log2FC = 0.333), whereas oligozoospermia and azoospermia exhibited down-regulation (Log2FC = -0.470 and -0.688, respectively). Piwi-interacting RNA Expression: hsa-piR-002528 and hsa-piR-017183 were up-regulated in all infertility subtypes, whereas hsa-piR-023244 and hsa-piR-023338 exhibited subtype-specific expression patterns. Correlation Analysis: Steroid 5 alpha reductase type 2 mRNA negatively correlated with hsa-piR-002528 and hsa-piR-023338, suggesting regulatory interactions affecting sperm motility and count. Positive correlations were observed for hsa-piR-023244 in azoospermia, indicating potential roles in supporting spermatogenesis. CONCLUSIONS Altered piRNA profiles and SRD5A2 expression are associated with male infertility subtypes. These findings highlight the regulatory role of piRNAs in spermatogenesis and their potential as biomarkers and therapeutic targets for male infertility.
Collapse
|
2
|
Zong W, Wang Y, Zhang L, Lu W, Li W, Wang F, Cheng J. DNA Methylation Mediates Sperm Quality via piwil1 and piwil2 Regulation in Japanese Flounder ( Paralichthys olivaceus). Int J Mol Sci 2024; 25:5935. [PMID: 38892123 PMCID: PMC11172970 DOI: 10.3390/ijms25115935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
DNA methylation is an important way to regulate gene expression in eukaryotes. In order to reveal the role of DNA methylation in the regulation of germ cell-specific piwi gene expression during spermatogenesis of Japanese flounder (Paralichthys olivaceus), the expression profiles of piwil1 (piwi-like 1) and piwil2 (piwi-like 2) genes in the gonads of female, male, and sex-reversed pseudo-male P. olivaceus were analyzed, and the dynamic of DNA methylation was investigated. As a result, piwil1 and piwil2 genes were highly expressed in the testis of both male and pseudo-male P. olivaceus, with significant variation among male individuals. The DNA methylation levels in the promoter regions of both piwil1 and piwil2 were negatively correlated with their expression levels, which may contribute to the transcriptional regulation of piwi genes during spermatogenesis. There was also sperm quality variation among male P. olivaceus, and the sperm curvilinear velocity was positively correlated with the expression of both piwil1 and piwil2 genes. These results indicated that the DNA methylation in piwil1 and piwil2 promoter regions may affect the initiation of piwi gene transcription, thereby regulating gene expression and further affecting the spermatogenesis process and gamete quality in P. olivaceus.
Collapse
Affiliation(s)
- Wenyu Zong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yapeng Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lingqun Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wei Lu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Weigang Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Fengchi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jie Cheng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
3
|
Han X, Li Y, Zong Y, Li D, Yuan J, Yang H, Ma H, Ni A, Wang Y, Zhao J, Chen J, Ma T, Sun Y. Extracellular vesicle-coupled miRNA profiles of chicken seminal plasma and their potential interaction with recipient cells. Poult Sci 2023; 102:103099. [PMID: 37812871 PMCID: PMC10563059 DOI: 10.1016/j.psj.2023.103099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023] Open
Abstract
The presence of EVs in seminal plasma (SPEVs) suggests their involvement on fertility via transmitting information between the original cells and recipient cells. SPEVs-coupled miRNAs have been shown to affect sperm motility, maturation, and capacitation in mammals, but rarely in poultry species. The present study aims to reveal the profile of SPEVs miRNAs and their potential effect on sperm storage and function in poultry. The SPEVs was successfully isolated from 4 different chicken breeds by ultracentrifugation and verified. Deep sequencing of SPEVs small RNA library of each breed identified 1077 miRNAs in total and 563 shared ones. The top 10 abundant miRNAs (such as miR-10-5p, miR-100-5p, and miR-10a-5p etc.) accounted for around 60% of total SPEVs miRNA reads and are highly conserved across species, predisposing their functional significance. Target genes prediction and functional enrichment analysis indicated that the most abundantly expressed miRNAs may regulate pathways like ubiquitin-mediated proteolysis, endocytosis, mitophagy, glycosphingolipid biosynthesis, fatty acid metabolism, and fatty acid elongation. The high abundant SPEVs-coupled miRNAs were found to target 107 and 64 functionally important mRNAs in the potential recipient cells, sperm and sperm storage tubules (SST) cells, respectively. The pathways that enriched by target mRNAs revealed that the SPEVs-coupled miRNA may rule the fertility by affecting the sperm maturation and regulating the female's immune response and lipid metabolism. In summary, this study presents the distinctive repertoire of SPEVs-coupled miRNAs, and extends our understanding about their potential roles in sperm maturation, capacitation, storage, and fertility, and may help to develop new therapeutic strategies for male infertility and sperm storage.
Collapse
Affiliation(s)
- Xintong Han
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China
| | - Yunlei Li
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunhe Zong
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dongli Li
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, 101206, China
| | - Jingwei Yuan
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hanhan Yang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hui Ma
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Aixin Ni
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuanmei Wang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jinmeng Zhao
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jilan Chen
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tenghe Ma
- College of medicine, Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Yanyan Sun
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
4
|
Sex-Inclined Piwi-Interacting RNAs in Serum Exosomes for Sex Determination in the Greater Amberjack ( Seriola dumerili). Int J Mol Sci 2023; 24:ijms24043438. [PMID: 36834847 PMCID: PMC9962539 DOI: 10.3390/ijms24043438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
The greater amberjack (Seriola dumerili) is a gonochoristic fish with no sexual dimorphism in appearance, making sex identification difficult. Piwi-interacting RNAs (piRNAs) function in transposon silencing and gametogenesis and are involved in various physiological processes, including sex development and differentiation. Exosomal piRNAs can be indicators for the determination of sex and physiological status. In this study, four piRNAs were differentially expressed in both serum exosomes and gonads between male and female greater amberjack. Three piRNAs (piR-dre-32793, piR-dre-5797, and piR-dre-73318) were significantly up-regulated and piR-dre-332 was significantly down-regulated in serum exosomes and gonads of male fish, compared to female fish, consistent with the serum exosomal results. According to the relative expression of four marker piRNAs derived from the serum exosomes of greater amberjack, the highest relative expression of piR-dre-32793, piR-dre-5797, and piR-dre-73318 in seven female fish and that of piR-dre-332 in seven male fish can be used as the standard for sex determination. The method of sex identification can ascertain the sex of greater amberjack by blood collection from the living body, without sacrificing fish. The four piRNAs did not show sex-inclined expression in the hypothalamus, pituitary, heart, liver, intestine, and muscle tissue. A piRNA-target interaction network involving 32 piRNA-mRNA pairs was generated. Sex-related target genes were enriched in sex-related pathways, including oocyte meiosis, transforming growth factor-beta signaling pathway, progesterone-mediated oocyte maturation, and gonadotropin releasing hormone signaling pathway. These results provide a basis for sex determination in greater amberjack and improve our understanding of the mechanisms underlying sex development and differentiation in the species.
Collapse
|
5
|
He X, Wu H, Ye Y, Gong X, Bao B. Transcriptome analysis revealed gene expression feminization of testis after exogenous tetrodotoxin administration in pufferfish Takifugu flavidus. BMC Genomics 2022; 23:553. [PMID: 35922761 PMCID: PMC9347094 DOI: 10.1186/s12864-022-08787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Tetrodotoxin (TTX) is a deadly neurotoxin and usually accumulates in large amounts in the ovaries but is non-toxic or low toxic in the testis of pufferfish. The molecular mechanism underlying sexual dimorphism accumulation of TTX in ovary and testis, and the relationship between TTX accumulation with sex related genes expression remain largely unknown. The present study investigated the effects of exogenous TTX treatment on Takifugu flavidus. The results demonstrated that exogenous TTX administration significantly incresed level of TTX concentration in kidney, cholecyst, skin, liver, heart, muscle, ovary and testis of the treatment group (TG) than that of the control group (CG). Transcriptome sequencing and analysis were performed to study differential expression profiles of mRNA and piRNA after TTX administration of the ovary and testis. The results showed that compared with female control group (FCG) and male control group (MCG), TTX administration resulted in 80 and 23 piRNAs, 126 and 223 genes up and down regulated expression in female TTX-treated group (FTG), meanwhile, 286 and 223 piRNAs, 2 and 443 genes up and down regulated expression in male TTX-treated group (MTG). The female dominant genes cyp19a1, gdf9 and foxl2 were found to be up-regulated in MTG. The cyp19a1, whose corresponding target piRNA uniq_554482 was identified as down-regulated in the MTG, indicating the gene expression feminization in testis after exogenous TTX administration. The KEGG enrichment analysis revealed that differentially expressed genes (DEGs) and piRNAs (DEpiRNAs) in MTG vs MCG group were more enriched in metabolism pathways, indicating that the testis produced more metabolic pathways in response to exogenous TTX, which might be a reason for the sexual dimorphism of TTX distribution in gonads. In addition, TdT-mediated dUTP-biotin nick end labeling staining showed that significant apoptosis was detected in the MTG testis, and the role of the cell apoptotic pathways was further confirmed. Overall, our research revealed that the response of the ovary and testis to TTX administration was largely different, the ovary is more tolerant whereas the testis is more sensitive to TTX. These data will deepen our understanding on the accumulation of TTX sexual dimorphism in Takifugu.
Collapse
Affiliation(s)
- Xue He
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hexing Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaping Ye
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaolin Gong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
6
|
Huang S, Nishiumi S, Asaduzzaman M, Pan Y, Liu G, Yoshitake K, Maeyama K, Kinoshita S, Nagai K, Watabe S, Yoshida T, Asakawa S. Exosome-derived small non-coding RNAs reveal immune response upon grafting transplantation in Pinctada fucata (Mollusca). Open Biol 2022; 12:210317. [PMID: 35506205 PMCID: PMC9065966 DOI: 10.1098/rsob.210317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Exosomes, a subset of small extracellular vesicles, carry various nucleic acids, proteins, lipids, amino acids and metabolites. They function as a mode of intercellular communication and molecular transfer. Exosome cargo molecules, including small non-coding RNAs (sncRNAs), are involved in the immune response in various organisms. However, the role of exosome-derived sncRNAs in immune responses in molluscs remains unclear. Here, we aimed to reveal the sncRNAs involved in the immune response during grafting transplantation by the pearl oyster Pinctada fucata. Exosomes were successfully extracted from the P. fucata haemolymph during graft transplantation. Abundant microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs) were simultaneously discovered in P. fucata exosomes by small RNA sequencing. The expression patterns of the miRNAs and piRNAs at the grafting and initial stages were not substantially different, but varied significantly between the initial and later stages. Target prediction and functional analysis indicate that these miRNAs and piRNAs are related to immune response upon grafting transplantation, whereas piRNAs may also be associated with transposon silencing by targeting with genome transposon elements. This work provides the basis for a functional understanding of exosome-derived sncRNAs and helps to gain further insight into the PIWI/piRNA pathway function outside of germline cells in molluscs.
Collapse
Affiliation(s)
- Songqian Huang
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shinya Nishiumi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Md Asaduzzaman
- Department of Marine Bioresources Science, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Khulshi 4225, Chittagong, Bangladesh
| | - Yida Pan
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Guanting Liu
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kaoru Maeyama
- Mikimoto Pharmaceutical Co., Ltd., Kurose 1425, Ise, Mie 516-8581, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kiyohito Nagai
- Pearl Research Laboratory, K. Mikimoto & Co., Ltd., Osaki Hazako 923, Hamajima, Shima, Mie 517-0403, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0313, Japan
| | - Tetsuhiko Yoshida
- Institute for Advanced Sciences, Toagosei Co., Ltd., Tsukuba, Ibaraki 300-2611, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
7
|
Zhao N, Jia L, Deng Q, Zhu C, Zhang B. Comparative piRNAs Profiles Give a Clue to Transgenerational Inheritance of Sex-Biased piRNAs in Cynoglossus semilaevis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:335-344. [PMID: 35290559 DOI: 10.1007/s10126-022-10109-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Piwi interacting RNAs (piRNAs) are involved in the epigenetic and post-transcriptional gene silencing of retrotransposons in germ line cells, especially in spermatogenesis. There are many related reports on model organisms, such as flies and mice. In fish, however, there are few studies on piRNAs. Cynoglossus semilaevis, a benthic warm water flatfish, with remarkable sexual dimorphism, especially the "pseudo males" with sex reversal, mating with normal females to produce viable offspring, is an ideal material for the study of sex development. Here, sperm piwi-interacting RNAs profiles of Cynoglossus semilaevis were characterized, comparing between male and pseudomale groups. Differential piRNAs were identified with their predicted and annotated targets. Attention was then focused on candidate piRNAs associated with sex development and methylation. We continued to compare the expression levels of 10 candidates differentially expressed piRNAs in F1 spermatozoa. Quantitative RT-PCR demonstrated that five of the ten piRNAs showed sex bias consistent with parental sequencing results, with four significantly higher expression level in sperm of five males offspring than that of pseudomales, while one piRNAs showed the opposite expression profile. The five signature piRNAs (piR-mmu-49600337, piR-mmu-95849, piR-xtr-7474223, piR-xtr-1790334, and piR-mmu-4491546) could be employed as male-specific molecular biomarkers for C. semilaevis. Besides, this study also implied the possibility of transgenerational inheritance of sex-biased piRNAs exiting in sperm of Cynoglossus semilaevis.
Collapse
Affiliation(s)
- Na Zhao
- Fisheries College, Guangdong Ocean University, 524000, Guangdong, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, 300201, China
| | - Qiuxia Deng
- Fisheries College, Guangdong Ocean University, 524000, Guangdong, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Chunhua Zhu
- Fisheries College, Guangdong Ocean University, 524000, Guangdong, People's Republic of China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China.
| | - Bo Zhang
- Fisheries College, Guangdong Ocean University, 524000, Guangdong, People's Republic of China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China.
| |
Collapse
|
8
|
Zhao N, Deng Q, Zhu C, Zhang B. Mucus piRNAs profiles of Vibrio harveyi-infected Cynoglossus semilaevis: A hint for fish disease monitoring. JOURNAL OF FISH DISEASES 2022; 45:165-175. [PMID: 34741552 DOI: 10.1111/jfd.13546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The half-smooth tongue sole, Cynoglossus semilaevis, is an important cultured flatfish species. Vibrio harveyi is a common pathogen to this fish, which may result in great economic loss to C. semilaevis culture industry. piRNAs, a non-coding RNAs with 26-32 nt, have been regarded as promising biomarkers for cancer diagnosis and fish diseases. Here, we extracted the RNA from mucus of C. semilaevis and constructed the differential expression profiles of piRNAs between the sick fish (MS) and healthy fish (MC). We identified 45,696 differentially expressed piRNAs including 22,735 up-regulated piRNAs and 22,961 down-regulated piRNAs in MS group compared with MC group. The GO enrichment and KEGG pathway enrichment analyses of the differential piRNAs were carried out. The result showed immunity-related target genes mainly involved in immune system process, response to stimulus, cell killing, immune system, infectious diseases and cell growth and death. The 10 most differentially expressed piRNAs were chosen to perform the qRT-PCR, while only seven piRNAs were consistent with the sequence result. Compared with MC group, the expression levels of piR-mmu-72173>piR-rno-62831>piR-xtr-704880, piR-dme-15546979, piR-mmu-49941660, piR-mmu-29283297 and piR-mmu-1758399 were significantly lower, and piR-gga-10574 and piR-gga-134812 were significantly higher in MS group. These piRNAs may be potential biomarkers during the V. harveyi infection of C. semilaevis. This study could provide a new method to identify the infection status of C. semilaevis and understand better about the innate and adaptive immune system in C. semilaevis during bacterial infection.
Collapse
Affiliation(s)
- Na Zhao
- Southern Marine science and engineering Guangdong laboratory-Zhanjiang, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Shanghai Ocean University, Shanghai, China
| | - Qiuxia Deng
- Southern Marine science and engineering Guangdong laboratory-Zhanjiang, Guangdong Ocean University, Zhanjiang, China
| | - Chunhua Zhu
- Southern Marine science and engineering Guangdong laboratory-Zhanjiang, Guangdong Ocean University, Zhanjiang, China
| | - Bo Zhang
- Southern Marine science and engineering Guangdong laboratory-Zhanjiang, Guangdong Ocean University, Zhanjiang, China
- Tianjin Fisheries Research Institute, Tianjin, China
| |
Collapse
|
9
|
Tang M, Chen Y, Xian H, Tan S, Lian Z, Peng X, Hu D. Circulating exosome level of indigenous fish may be a novel biomarker for the integrated ecotoxicity effect of water environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113084. [PMID: 34915223 DOI: 10.1016/j.ecoenv.2021.113084] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/28/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The deficiency of effective biomarker for the toxic effects of water pollutants greatly limits the application of biological monitoring. This study aimed to investigate the possibility of circulating exosomes of indigenous fish acting as biomarker for the ecotoxicity effect of water environment. The Helong Reservoir in Guangzhou, China, was chosen as the investigating field, of which the water quality belongs to Class V (2013) (GB 3838-2002, China). The clean drinking water source of the upper reaches of the Liuxihe Reservoir was selected as the control. Indigenous fishes including Oreochromis niloticus (Nile tilapia), Labeo rohita (Rohu), Carassius auratus (Crucian carp) were sampled during the period from July 2020 to April 2021. Circulating exosomes of fish samples were isolated by using ultracentrifugation, characterized with transmission electron microscopy (TEM) and quantified by using bicinchoninic acid (BCA) assay. Oxidative stress, DNA and chromosome damage in liver, kidney, brain, gill and blood of fish samples were measured. The results showed that there were significant differences in superoxide dismutase (SOD) activity, glutathione (GSH) and malondialdehyde (MDA) contents, DNA and chromosome damage in fish samples between the Helong Reservoir and the control. Interestingly, there were also significant differences in circulating exosome levels of fish samples between them. Our data suggested that circulating exosome level of indigenous fish may be a novel biomarker for the ecotoxicity effects of water environment.
Collapse
Affiliation(s)
- Meilin Tang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ying Chen
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongyi Xian
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Suqin Tan
- Grade 2018 Undergraduate Student Majoring in Hygiene Quarantine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenwei Lian
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaowu Peng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Dalin Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
10
|
Proteomic analysis of pikeperch seminal plasma provides novel insight into the testicular development of domesticated fish stocks. Animal 2021; 15:100279. [PMID: 34126386 DOI: 10.1016/j.animal.2021.100279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 11/22/2022] Open
Abstract
Control of the reproduction of domesticated stocks is considered a prerequisite for aquaculture development of pikeperch. However, knowledge about the physiology of the captive pikeperch male reproductive system and the biology of semen is very limited, especially regarding protein characteristics. The aims of our study were to characterize pikeperch sperm quantity and quality parameters and to analyze changes in the proteome of the same males spawned for the first and second times. Moreover, attempts were made to generate the first proteomic library of seminal plasma proteins. Semen collected during the first spawning season was characterized by lower sperm concentration and volume than for the second season. Using mass spectrometry-based label-free quantitative proteomics, we identified 850 proteins in the seminal plasma of pikeperch from both spawning seasons, and 65 seminal proteins were found to be differentially abundant between the first and second spawning seasons. The majority of differentially abundant proteins were involved in stress and immune responses, developmental processes, cofactor metabolic processes, proteolysis, cellular oxidant detoxification and organization of the extracellular matrix (ECM). In addition, several proteins unique to pikeperch seminal plasma were identified, including antifreeze proteins, hibernation-specific plasma proteins, lectins and vitellogenin. In summary, our results indicate that males that spawned for the first time were characterized by incompletely mature gonads and the expression of proteins associated with the early phase of spermatogenesis and ECM organization. On the other hand, males that spawned for the second time exhibited advanced gonadal maturation and expression of proteins related to the late stage of spermatogenesis and sperm maturation, including regulation of reactive oxygen species generation, bicarbonate production, sperm elongation and separation. The identification of a large number of seminal plasma proteins provides a valuable resource for understanding the functions of seminal plasma and the molecular mechanisms involved in testicular development and maturation in domesticated fish, which is a prerequisite for better control of reproduction in captivity.
Collapse
|
11
|
Zhao N, Jia L, He X, Zhang B. Proteomics of mucosal exosomes of Cynoglossus semilaevis altered when infected by Vibrio harveyi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104045. [PMID: 33582105 DOI: 10.1016/j.dci.2021.104045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The cargo of exosomes contains proteins with various functions, which might be promising biomarkers for disease diagnosis and prognosis. To explore the impact of the Vibrio harveyi pathogen on Cynoglossus semilaevis from a different perspective and develop promising biomarkers for infection, the exosomes from epidermal mucus of healthy controls(EC)and sick fish(ES)were extracted and identified, coupled with proteomic screening through iTRAQ followed with LC-MS/MS. 1531 credible proteins were obtained relating to structural, metabolic and immunological functions. 359 different expressed proteins (DEPs) (FC > 2 or FC < 0.5) were found, with 161 up-regulated and 198 down-regulated in ES. Based on the database of C. semilaevis on Uniprot, 71 proteins were characterized as concrete names, including 19 up-regulated proteins and 52 down-regulated proteins, and were selected as subjects for further studies. Ferritin, Toll-like receptor 5S protein and Calcium-transporting ATPase were upregulated, while Histone H2B and Eukaryotic translation initiation factor 5A were downregulated, consistent with the expression levels of related mRNAs in skin tissue verified by qRT-PCR. The integrated analysis between miRomics and proteomics also provided possible regulatory relationships mediated by mucous exosomes during infection. The signature proteins in mucosal exosomes could make sense in the explanation of the infection defending mechanism and the development of biomarkers which can differentiate diseased and healthy C. semilaevis individuals.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Xiaoxu He
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Bo Zhang
- Tianjin Fisheries Research Institute, Tianjin, China.
| |
Collapse
|
12
|
Sex bias miRNAs in Cynoglossus semilaevis could play a role in transgenerational inheritance. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100853. [PMID: 33992844 DOI: 10.1016/j.cbd.2021.100853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022]
Abstract
Alterations of non-coding RNA profiling in spermatozoa are candidate mechanisms related to changes in paternal environment and progeny. Transgenerational inheritance of sex in pseudomales of Cynoglossus semilaevis, a fish with significant sex dimorphism, is a typical example of non-Mendelian inheritance. In the present study, miRNA profiles of spermatozoa were compared between male and pseudomale of C. semilaevis. Differential miRNAs in sperm from F0 and F1 generation also provides clues for revealing the possible role of non-coding RNA mediated transgenerational inheritance. Four sexual bias miRNAs, dre-miR-26a-5p, dre-miR-27b-3p, dre-miR-125b-5p,pol-199a-5p, were identified and verified in F0 and F1 generation of C. semilaevis. All of them were highly expressed in male sperm compared with pseudomale sperm. Function of target genes indicates that target genes of these differential RNAs are highly correlated with sex differentiation, gametogenesis and maintenance of secondary sexual characteristics. In a word, identification of epigenetic markers in gametes has great prospects in predicting susceptibility and properties in offsprings, and providing an indicator of parentalgenetic property.
Collapse
|
13
|
Zhao N, Zhang B, Jia L, He X, Bao B. Extracellular vesicles piwi-interacting RNAs from skin mucus for identification of infected Cynoglossus semilaevis with Vibrio harveyi. FISH & SHELLFISH IMMUNOLOGY 2021; 111:170-178. [PMID: 33561561 DOI: 10.1016/j.fsi.2021.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Extracellular vesicles play a regulatory role in intracellular and intercellular transmission through a variety of biological information molecules, including mRNA, small RNAs and proteins. piRNAs are one kind of regulatory small RNAs in the vesicles at the post transcriptional level. Hereby, we isolated the extracellular vesicles from skin mucus and screened the piRNA profiles of these vesicles, aiming at developing biomarkers related to bacterial infections in Cynoglossus semilaevis. The different profilings of piRNAs in mucous extracellular vesicles of C. semilaevis were compared through small RNA sequencing, between fish infected with Vibrio harveyi and healthy ones. The number of clean reads on the alignment of exosome sick (ES) group was 105, 345 and that of exosome control (EC) group was 455, 144. GO and KEGG pathway enrichment analysis showed that most of the target genes were involved in cellular process, response to stimulus, biological regulation, immune system process and signal transduction, signal molecular and interaction, transport and catabolism. The 45 final candidate piRNAs related to immunity or infectious diseases included 20 piRNAs with high expression in the ES group and 25 piRNAs with a low expression in the ES group. After verification by qRT-PCR, there was significant difference of five piRNAs expression level between infected fish and healthy fish, in line with the sequencing. The expression level of piR-mmu-16401212, piR-mmu-26829319 and piR-gga-244092 in infected fish were significantly lower than that of control group, while piR-gga-71717 and piR-gga-99034 were higher, which implying that these piRNAs in mucous extracellular vesicles can be used to identify diseased fish from normal ones. This work supplied a novel class of biomarker for infection diagnosis in fish, and it will be benefit for screening disease resistant breeding of C. semilaevis.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Bo Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Tianjin Fisheries Research Institute, Tianjin, China.
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Xiaoxu He
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
14
|
Zhao N, Zhang B, Xu Z, Jia L, Li M, He X, Bao B. Detecting Cynoglossus semilaevis infected with Vibrio harveyi using micro RNAs from mucous exosomes. Mol Immunol 2020; 128:268-276. [PMID: 33190007 DOI: 10.1016/j.molimm.2020.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022]
Abstract
Exosomes are important mediators of vesicle transportation and contain microRNAs (miRNAs) that mediate transcriptional gene knockout and silencing in biological processes. Moreover, exosomic miRNAs are promising biomarkers for disease diagnosis and physiological status indication in many species, including fish. The impact of the Vibrio harveyi pathogen on Cynoglossus semilaevis aquaculture is becoming more and more serious as the industry expands. To overcome this challenge, miRNAs in mucous exosomes were screened by small RNA sequencing and verified by quantitative real-time PCR to develop biomarkers. This is the first capture of exosomes from flatfish mucus coupled with miRNA profiling. The results revealed significant differences in expression levels of some miRNAs between infected and healthy fish. Three unique miRNAs were identified for V. harveyi infection diagnosis; expression levels of dre-miR-205-5p and dre-miR-205-5p in infected fish were significantly lower than controls, while dre-miR-100-5p expression was higher. These miRNAs in mucous exosomes could be used to differentiate diseased and healthy fish in an early screening method with practical value for breeding disease-resistant C. semilaevis.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Tianjin Haolingsaiao Biotechnology Co, Ltd, Tianjin, China
| | - Bo Zhang
- Tianjin Fisheries Research Institute, Tianjin, China.
| | - Zihui Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Ming Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, China
| | - Xiaoxu He
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|