1
|
Monteiro R, Yu C, Dolatabadi S, Hagen F, Sandoval-Denis M, Crous P, Fisher M, Gonçalves S, de Camargo Z, Hofling-Lima A, Rodrigues A. Novel amplified fragment length polymorphism (AFLP) markers for typing medically relevant Fusarium and allied fusarioid genera. Fungal Syst Evol 2025; 15:79-96. [PMID: 40170763 PMCID: PMC11959234 DOI: 10.3114/fuse.2025.15.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/25/2024] [Indexed: 01/05/2025] Open
Abstract
Fusariosis is an emerging mycosis caused by diverse Fusarium and allied fusarioid genera that are characterized by spindle-shaped macroconidia. These fungi possess a broad ecological distribution, causing infections in a wide diversity of hosts, spanning the animal and plant kingdoms. The spectrum of human fusariosis encompasses superficial lesions like keratitis and onychomycosis to invasive fungal diseases. Notable genera within the medically relevant fusarioid group include Neocosmospora, Fusarium s. str., and Bisifusarium. While Neocosmospora species (formerly F. solani species complex) are primary causative agents of human fusariosis, instances involving Fusarium s. str. and Bisifusarium (formerly F. dimerum species complex) have been reported. There is an urgent need for DNA-based markers to explore the epidemiology of these emerging fusarioid pathogens using molecular methods. We took advantage of fusarioid genomes available in NCBI (n = 20) to optimize the development of novel amplified fragment length polymorphism (AFLP) markers by conducting in-depth in silico analyses to refine their applicability for studies on these pathogens' genetic epidemiology. In-silico screening highlighted eight primer pair combinations (C1-C8) to be tested in vitro. The AFLP protocol was used for genotyping 40 medically relevant fusarioid fungi. Based on the overall scored AFLP markers (77-93 fragments), the values of polymorphism information content (PIC = 0.3474-0.3725), marker index (MI = 0.0038-0.0056), effective multiplex ratio (E = 26.3750-40.4750), resolving power (Rp = 40.1500-54.6000), discriminating power (D = 0.7978-0.8857), expected heterozygosity (H = 0.4476-0.4949), and mean heterozygosity (H avp = 0.0001) demonstrated the utility of these primer combinations for discriminating Neocosmospora, Fusarium s. str., and Bisifusarium species. Of relevance, some AFLP panels were better than others at studying genetic trends in Neocosmospora (#2 EcoRI-AT/MseI-TA, #3 EcoRI-AA/MseI-TT, and #5 EcoRI-AT/MseI-AG) or Fusarium s. str. (mainly #2 EcoRI-AT/MseI-TA and #6 EcoRI-GA/MseI-TT) and Bisifusarium (#1 EcoRI-GA/MseI-AG and #6 EcoRI-GA/MseI-TT), and these combinations will better resolve disease transmission routes. Our DNA fingerprint assay has proven effective by exhibiting rapidity, reproducibility, and high discriminatory capabilities, which represents a valuable asset in the ongoing efforts to combat fusariosis and enhance our scientific understanding of medically relevant Fusarium and allied fusarioid genera. Citation: Monteiro RC, Yu CZ, Dolatabadi S, Hagen F, Sandoval-Denis M, Crous PW, Fisher MC, Gonçalves SS, de Camargo ZP, Hofling-Lima AL, Rodrigues AM (2025). Novel amplified fragment length polymorphism (AFLP) markers for typing medically relevant Fusarium and allied fusarioid genera. Fungal Systematics and Evolution 15: 79-96. doi: 10.3114/fuse.2025.15.03.
Collapse
Affiliation(s)
- R.C. Monteiro
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| | - C.Z. Yu
- Laboratory of Ophthalmology (LOFT), Department of Ophthalmology and Visual Sciences, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| | - S. Dolatabadi
- Department of Biology, Hakim Sabzevari University, Sabzevar, Iran
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - M.C. Fisher
- Medical Research Council Center for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
| | - S.S. Gonçalves
- Infectious Diseases Postgraduate Program, Center for Research in Medical Mycology, Federal University of Espírito Santo (UFES), Espírito Santo, 29043900, Brazil
| | - Z.P. de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| | - A.L. Hofling-Lima
- Laboratory of Ophthalmology (LOFT), Department of Ophthalmology and Visual Sciences, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, Brazil
| |
Collapse
|
2
|
Chen C, Chang H, Pang X, Liu Q, Xue L, Yin C. Genetic diversity analysis and conservation strategy recommendations for ex situ conservation of Cupressus chengiana. BMC PLANT BIOLOGY 2025; 25:552. [PMID: 40295907 PMCID: PMC12039293 DOI: 10.1186/s12870-025-06581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Cupressus chengiana is mainly distributed in the Hengduan Mountains area in China. It is one of the Class II endangered plants, ex situ conservation is often used to the affected C. chengiana population due to the construction of the power station. However, population fragmentation and inbreeding in the ex situ conservation have led to decline in genetic diversity. It is therefore important to clarify the differences in genetic diversity between native populations and ex situ population. RESULTS In this study, we used Genotyping-by-Sequencing to assess the genetic diversity of 30 C. chengiana trees from four populations in the Dadu River Basin, southwest China, including one ex situ conserved population (DK) and three native populations (BW, SA, RJ). The results showed that compared with the native populations, the DK population showed higher genetic diversity. Among the three native populations, SA population may experience inbreeding and has low genetic diversity. The population structure analysis further revealed that the DK population had higher gene flow and lower differentiation than other three populations. For ex situ populations, the primary determinant of genetic diversity is the genetic variation present in the seedlings sourced from natural populations. CONCLUSION These findings support the feasibility of ex situ conservation for C. chengiana conservation. This study provides a scientific foundation for the preservation, management, and restoration of C. chengiana, and would offer valuable insights for the conservation of other endangered plants.
Collapse
Affiliation(s)
- Chaoqun Chen
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - He Chang
- China Renewable Energy Engineering Institute, No. 57A Andingmenwai Street, Beijing, 100120, P. R. China
| | - Xueyong Pang
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, P. R. China
| | - Qinghua Liu
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, P. R. China
| | - Lianfang Xue
- China Renewable Energy Engineering Institute, No. 57A Andingmenwai Street, Beijing, 100120, P. R. China
| | - Chunying Yin
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, P. R. China.
| |
Collapse
|
3
|
Fischer D, Tapio M, Bitz O, Iso-Touru T, Kause A, Tapio I. Fine-tuning GBS data with comparison of reference and mock genome approaches for advancing genomic selection in less studied farmed species. BMC Genomics 2025; 26:111. [PMID: 39910437 PMCID: PMC11796084 DOI: 10.1186/s12864-025-11296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Diversifying animal cultivation demands efficient genotyping for enabling genomic selection, but non-model species lack efficient genotyping solutions. The aim of this study was to optimize a genotyping-by-sequencing (GBS) double-digest RAD-sequencing (ddRAD) pipeline. Bovine data was used to automate the bioinformatic analysis. The application of the optimization was demonstrated on non-model European whitefish data. RESULTS DdRAD data generation was designed for a reliable estimation of relatedness and is scalable to up to 384 samples. The GBS sequencing yielded approximately one million reads for each of the around 100 assessed samples. Optimizing various strategies to create a de-novo reference genome for variant calling (mock reference) showed that using three samples outperformed other building strategies with single or very large number of samples. Adjustments to most pipeline tuning parameters had limited impact on high-quality data, except for the identity criterion for merging mock reference genome clusters. For each species, over 15k GBS variants based on the mock reference were obtained and showed comparable results with the ones called using an existing reference genome. Repeatability analysis showed high concordance over replicates, particularly in bovine while in European whitefish data repeatability did not exceed earlier observations. CONCLUSIONS The proposed cost-effective ddRAD strategy, coupled with an efficient bioinformatics workflow, enables broad adoption of ddRAD GBS across diverse farmed species. While beneficial, a reference genome is not obligatory. The integration of Snakemake streamlines the pipeline usage on computer clusters and supports customization. This user-friendly solution facilitates genotyping for both model and non-model species.
Collapse
Affiliation(s)
- Daniel Fischer
- Applied Statistical Methods, Natural Resources, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland.
| | - Miika Tapio
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| | - Oliver Bitz
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| | - Terhi Iso-Touru
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| | - Antti Kause
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| | - Ilma Tapio
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| |
Collapse
|
4
|
Huang PH, Wang TR, Li M, Fang OY, Su RP, Meng HH, Song YG, Li J. Different reference genomes determine different results: Comparing SNP calling in RAD-seq of Engelhardia roxburghiana using different reference genomes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112109. [PMID: 38704094 DOI: 10.1016/j.plantsci.2024.112109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Advances in next-generation sequencing (NGS) have significantly reduced the cost and improved the efficiency of obtaining single nucleotide polymorphism (SNP) markers, particularly through restriction site-associated DNA sequencing (RAD-seq). Meanwhile, the progression in whole genome sequencing has led to the utilization of an increasing number of reference genomes in SNP calling processes. This study utilized RAD-seq data from 242 individuals of Engelhardia roxburghiana, a tropical tree of the walnut family (Juglandaceae), with SNP calling conducted using the STACKS pipeline. We aimed to compare both reference-based approaches, namely, employing a closely related species as the reference genome versus the species itself as the reference genome, to evaluate their respective merits and limitations. Our findings indicate a substantial discrepancy in the number of obtained SNPs between using a closely related species as opposed to the species itself as reference genomes, the former yielded approximately an order of magnitude fewer SNPs compared to the latter. While the missing rate of individuals and sites of the final SNPs obtained in the two scenarios showed no significant difference. The results showed that using the reference genome of the species itself tends to be prioritized in RAD-seq studies. However, if this is unavailable, considering closely related genomes is feasible due to their wide applicability and low missing rate as alternatives. This study contributes to enrich the understanding of the impact of SNP acquisition when utilizing different reference genomes.
Collapse
Affiliation(s)
- Pei-Han Huang
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China; Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Li
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ou-Yan Fang
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren-Ping Su
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Hu Meng
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw 05282, Myanmar.
| | - Yi-Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Jie Li
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China.
| |
Collapse
|
5
|
Crossman CA, Hamilton PK, Brown MW, Conger LA, George RC, Jackson KA, Radvan SN, Frasier TR. Effects of inbreeding on reproductive success in endangered North Atlantic right whales. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240490. [PMID: 39086821 PMCID: PMC11289666 DOI: 10.1098/rsos.240490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/24/2024] [Indexed: 08/02/2024]
Abstract
Only approximately 356 North Atlantic right whales (Eubalaena glacialis) remain. With extremely low levels of genetic diversity, limited options for mates, and variation in reproductive success across females, there is concern regarding the potential for genetic limitations of population growth from inbreeding depression. In this study, we quantified reproductive success of female North Atlantic right whales with a modified de-lifing approach using reproductive history information collected over decades of field observations. We used double-digest restriction site-associated sequencing to sequence approximately 2% of the genome of 105 female North Atlantic right whales and combined genomic inbreeding estimates with individual fecundity values to assess evidence of inbreeding depression. Inbreeding depression could not explain the variance in reproductive success of females, however we present evidence that inbreeding depression may be affecting the viability of inbred fetuses-potentially lowering the reproductive success of the species as a whole. Combined, these results allay some concerns that genetic factors are impacting species survival as genetic diversity is being retained through selection against inbred fetuses. While still far fewer calves are being born each year than expected, the small role of genetics underlying variance in female fecundity suggests that variance may be explained by external factors that can potentially be mitigated through protection measures designed to reduce serious injury and mortality from human activities.
Collapse
Affiliation(s)
- Carla A. Crossman
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, Canada B3H 3C3
| | - Philip K. Hamilton
- Anderson Cabot Center for Ocean Life, New England Aquarium, Central Wharf, Boston, Massachusetts, USA
| | - Moira W. Brown
- Canadian Whale Institute, Welshpool, New Brunswick, Canada
| | - Lisa A. Conger
- NOAA Fisheries, Northeast Fisheries Science Center, Woods Hole, MA, USA
| | - R. Clay George
- Georgia Department of Natural Resources, Wildlife Conservation Section, Brunswick, GA, USA
| | - Katharine A. Jackson
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Saint Petersburg, FL, USA
| | - Sonya N. Radvan
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, Canada B3H 3C3
| | - Timothy R. Frasier
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, Canada B3H 3C3
| |
Collapse
|
6
|
Genomic Hatchery Introgression in Brown Trout (Salmo trutta L.): Development of a Diagnostic SNP Panel for Monitoring the Impacted Mediterranean Rivers. Genes (Basel) 2022; 13:genes13020255. [PMID: 35205298 PMCID: PMC8872556 DOI: 10.3390/genes13020255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Brown trout (Salmo trutta L.) populations have been restocked during recent decades to satisfy angling demand and counterbalance the decline of wild populations. Millions of fertile brown trout individuals were released into Mediterranean and Atlantic rivers from hatcheries with homogeneous central European stocks. Consequently, many native gene pools have become endangered by introgressive hybridization with those hatchery stocks. Different genetic tools have been used to identify and evaluate the degree of introgression starting from pure native and restocking reference populations (e.g., LDH-C* locus, microsatellites). However, due to the high genetic structuring of brown trout, the definition of the "native pool" is hard to achieve. Additionally, although the LDH-C* locus is useful for determining the introgression degree at the population level, its consistency at individual level is far from being accurate, especially after several generations were since releases. Accordingly, the development of a more powerful and cost-effective tool is essential for an appropriate monitoring to recover brown-trout-native gene pools. Here, we used the 2b restriction site-associated DNA sequencing (2b-RADseq) and Stacks 2 with a reference genome to identify single-nucleotide polymorphisms (SNPs) diagnostic for hatchery-native fish discrimination in the Atlantic and Mediterranean drainages of the Iberian Peninsula. A final set of 20 SNPs was validated in a MassARRAY® System genotyping by contrasting data with the whole SNP dataset using samples with different degree of introgression from those previously recorded. Heterogeneous introgression impact was confirmed among and within river basins, and was the highest in the Mediterranean Slope. The SNP tool reported here should be assessed in a broader sample scenario in Southern Europe considering its potential for monitoring recovery plans.
Collapse
|
7
|
Development of SNP Set for the Marker-Assisted Selection of Guar ( Cyamopsis tetragonoloba (L.) Taub.) Based on a Custom Reference Genome Assembly. PLANTS 2021; 10:plants10102063. [PMID: 34685872 PMCID: PMC8539970 DOI: 10.3390/plants10102063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Guar gum, a polysaccharide derived from guar seeds, is widely used in a variety of industrial applications, including oil and gas production. Although guar is mostly propagated in India, interest in guar as a new industrial legume crop is increasing worldwide, demanding the development of effective tools for marker-assisted selection. In this paper, we report a wide-ranging set of 4907 common SNPs and 327 InDels generated from RADseq genotyping data of 166 guar plants of different geographical origin. A custom guar reference genome was assembled and used for variant calling. A consensus set of variants was built using three bioinformatic pipelines for short variant discovery. The developed molecular markers were used for genome-wide association study, resulting in the discovery of six markers linked to the variation of an important agronomic trait—percentage of pods matured to the harvest date under long light day conditions. One of the associated variants was found inside the putative transcript sequence homologous to an ABC transporter in Arabidopsis, which has been shown to play an important role in D-myo-inositol phosphates metabolism. Earlier, we suggested that genes involved in myo-inositol phosphate metabolism have significant impact on the early flowering of guar plants. Hence, we believe that the developed SNP set allows for the identification of confident molecular markers of important agrobiological traits.
Collapse
|