1
|
Edwards RJ, Chen SH, Halliday B, Bragg JG. Small but Mitey: A Gapless Telomere-to-Telomere Assembly of an Unidentified Mite With a Streamlined Genome. Genome Biol Evol 2025; 17:evaf023. [PMID: 39943745 PMCID: PMC11879100 DOI: 10.1093/gbe/evaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
A draft assembly of the rainforest tree Rhodamnia argentea Benth. (malletwood, Myrtaceae) revealed contaminating DNA sequences that most closely matched those from mites in the family Eriophyidae. Eriophyoid mites are plant parasites that often induce galls or other deformities on their host plants. They are notable for their small size (averaging 200 μm), distinctive four-legged body structure, and heavily streamlined genomes, which are among the smallest known of all arthropods. Contaminating mite sequences were assembled into a high-quality gapless telomere-to-telomere nuclear genome. The entire genome was assembled on two fully contiguous chromosomes, capped with a novel TTTGG or TTTGGTGTTGG telomere sequence, and exhibited clear signs of genome reduction (34.5 Mbp total length, 68.6% arachnid Benchmarking Universal Single-Copy Ortholog completeness). Phylogenomic analysis confirmed that this genome is that of a previously unsequenced eriophyoid mite. Despite its unknown identity, this complete nuclear genome provides a valuable resource to investigate invertebrate genome reduction.
Collapse
Affiliation(s)
- Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, Evolution & Ecology Research Centre, University of New South Wales, Kensington, NSW 2052, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Stephanie H Chen
- School of Biotechnology and Biomolecular Sciences, Evolution & Ecology Research Centre, University of New South Wales, Kensington, NSW 2052, Australia
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Sydney, NSW 2000, Australia
- Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT 2601, Australia
| | - Bruce Halliday
- Australian National Insect Collection, CSIRO, Canberra, ACT 2601, Australia
| | - Jason G Bragg
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Sydney, NSW 2000, Australia
| |
Collapse
|
2
|
Du H, Zhuo Y, Lu S, Li W, Zhou L, Sun F, Liu G, Liu JF. Pangenome Reveals Gene Content Variations and Structural Variants Contributing to Pig Characteristics. GENOMICS, PROTEOMICS & BIOINFORMATICS 2025; 22:qzae081. [PMID: 39535885 PMCID: PMC12017589 DOI: 10.1093/gpbjnl/qzae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Pigs are one of the most essential sources of high-quality proteins in human diets. Structural variants (SVs) are a major source of genetic variants associated with diverse traits and evolutionary events. However, the current linear reference genome of pigs restricts the accurate presentation of position information for SVs. In this study, we generated a pangenome of pigs and a genome variation map of 599 deeply sequenced genomes across Eurasia. Additionally, we established a section-wide gene repertoire, revealing that core genes are more evolutionarily conserved than variable genes. Furthermore, we identified 546,137 SVs, their enrichment regions, and relationships with genomic features and found significant divergence across Eurasian pigs. More importantly, the pangenome-detected SVs could complement heritability estimates and genome-wide association studies based only on single nucleotide polymorphisms. Among the SVs shaped by selection, we identified an insertion in the promoter region of the TBX19 gene, which may be related to the development, growth, and timidity traits of Asian pigs and may affect the gene expression. The constructed pig pangenome and the identified SVs in this study provide rich resources for future functional genomic research on pigs.
Collapse
Affiliation(s)
- Heng Du
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yue Zhuo
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shiyu Lu
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wanying Li
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lei Zhou
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Feizhou Sun
- National Animal Husbandry Service, Beijing 100125, China
| | - Gang Liu
- National Animal Husbandry Service, Beijing 100125, China
| | - Jian-Feng Liu
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Kliver S, Kovacic I, Mak S, Sinding MHS, Stagegaard J, Petersen B, Nesme J, Gilbert MTP. A chromosome phased diploid genome assembly of African hunting dog (Lycaon pictus). J Hered 2025; 116:78-87. [PMID: 39316562 DOI: 10.1093/jhered/esae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
The African hunting dog (Lycaon pictus, 2n = 78) once ranged over most sub-Saharan ecosystems except its deserts and rainforests. However, as a result of (still ongoing) population declines, today they remain only as small fragmented populations. Furthermore, the future of the species remains unclear, due to both anthropogenic pressure and interactions with domestic dogs, thus their preservation is a conservation priority. On the tree of life, the hunting dog is basal to Canis and Cuon and forms a crown group with them, making it a useful species for comparative genomic studies. Here, we present a diploid chromosome-level assembly of an African hunting dog. Assembled according to Vertebrate Genomes Project guidelines from a combination of PacBio HiFi reads and HiC data, it is phased at the level of individual chromosomes. The maternal (pseudo)haplotype (mat) of our assembly has a length of 2.38 Gbp, and 99.36% of the sequence is encompassed by 39 chromosomal scaffolds. The rest is included in only 36 unplaced short scaffolds. At the contig level, the mat consists of only 166 contigs with an N50 of 39 Mbp. BUSCO (Benchmarking Universal Single-Copy Orthologue) analysis showed 95.4% completeness based on Carnivora conservative genes (carnivora_odb10). When compared with other available genomes from subtribe Canina, the quality of the assembly is excellent, typically between the first and third depending on the parameter used, and a significant improvement on previously published genomes for the species. We hope this assembly will play an important role in future conservation efforts and comparative studies of canid genomes.
Collapse
Affiliation(s)
- Sergei Kliver
- Center for Evolutionary Hologenomics, The Globe Institute, The University of Copenhagen, Copenhagen, Denmark
| | - Iva Kovacic
- Department of Biology, The University of Copenhagen, Copenhagen, Denmark
| | - Sarah Mak
- Center for Evolutionary Hologenomics, The Globe Institute, The University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Holger S Sinding
- Center for Evolutionary Hologenomics, The Globe Institute, The University of Copenhagen, Copenhagen, Denmark
- Department of Biology, The University of Copenhagen, Copenhagen, Denmark
| | | | - Bent Petersen
- Center for Evolutionary Hologenomics, The Globe Institute, The University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Bedong, Kedah, Malaysia
| | - Joseph Nesme
- Department of Biology, The University of Copenhagen, Copenhagen, Denmark
| | - Marcus Thomas Pius Gilbert
- Center for Evolutionary Hologenomics, The Globe Institute, The University of Copenhagen, Copenhagen, Denmark
- University Museum, NTNU, Trondheim, Norway
| |
Collapse
|
4
|
Nguyen AK, Schall PZ, Kidd JM. A map of canine sequence variation relative to a Greenland wolf outgroup. Mamm Genome 2024; 35:565-576. [PMID: 39088040 DOI: 10.1007/s00335-024-10056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
For over 15 years, canine genetics research relied on a reference assembly from a Boxer breed dog named Tasha (i.e., canFam3.1). Recent advances in long-read sequencing and genome assembly have led to the development of numerous high-quality assemblies from diverse canines. These assemblies represent notable improvements in completeness, contiguity, and the representation of gene promoters and gene models. Although genome graph and pan-genome approaches have promise, most genetic analyses in canines rely upon the mapping of Illumina sequencing reads to a single reference. The Dog10K consortium, and others, have generated deep catalogs of genetic variation through an alignment of Illumina sequencing reads to a reference genome obtained from a German Shepherd Dog named Mischka (i.e., canFam4, UU_Cfam_GSD_1.0). However, alignment to a breed-derived genome may introduce bias in genotype calling across samples. Since the use of an outgroup reference genome may remove this effect, we have reprocessed 1929 samples analyzed by the Dog10K consortium using a Greenland wolf (mCanLor1.2) as the reference. We efficiently performed remapping and variant calling using a GPU-implementation of common analysis tools. The resulting call set removes the variability in genetic differences seen across samples and breed relationships revealed by principal component analysis are not affected by the choice of reference genome. Using this sequence data, we inferred the history of population sizes and found that village dog populations experienced a 9-13 fold reduction in historic effective population size relative to wolves.
Collapse
Affiliation(s)
- Anthony K Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Peter Z Schall
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Cheung K, Rollins LA, Hammond JM, Barton K, Ferguson JM, Eyck HJF, Shine R, Edwards RJ. Repeat-Rich Regions Cause False-Positive Detection of NUMTs: A Case Study in Amphibians Using an Improved Cane Toad Reference Genome. Genome Biol Evol 2024; 16:evae246. [PMID: 39548850 PMCID: PMC11606642 DOI: 10.1093/gbe/evae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Mitochondrial DNA (mtDNA) has been widely used in genetics research for decades. Contamination from nuclear DNA of mitochondrial origin (NUMTs) can confound studies of phylogenetic relationships and mtDNA heteroplasmy. Homology searches with mtDNA are widely used to detect NUMTs in the nuclear genome. Nevertheless, false-positive detection of NUMTs is common when handling repeat-rich sequences, while fragmented genomes might result in missing true NUMTs. In this study, we investigated different NUMT detection methods and how the quality of the genome assembly affects them. We presented an improved nuclear genome assembly (aRhiMar1.3) of the invasive cane toad (Rhinella marina) with additional long-read Nanopore and 10× linked-read sequencing. The final assembly was 3.47 Gb in length with 91.3% of tetrapod universal single-copy orthologs (n = 5,310), indicating the gene-containing regions were well assembled. We used 3 complementary methods (NUMTFinder, dinumt, and PALMER) to study the NUMT landscape of the cane toad genome. All 3 methods yielded consistent results, showing very few NUMTs in the cane toad genome. Furthermore, we expanded NUMT detection analyses to other amphibians and confirmed a weak relationship between genome size and the number of NUMTs present in the nuclear genome. Amphibians are repeat-rich, and we show that the number of NUMTs found in highly repetitive genomes is prone to inflation when using homology-based detection without filters. Together, this study provides an exemplar of how to robustly identify NUMTs in complex genomes when confounding effects on mtDNA analyses are a concern.
Collapse
Affiliation(s)
- Kelton Cheung
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, Australia
- Evolution & Ecology Research Centre, School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Lee Ann Rollins
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Jillian M Hammond
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
| | - Kirston Barton
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - James M Ferguson
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
| | - Harrison J F Eyck
- National Collections and Marine Infrastructure, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Richard Shine
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Richard J Edwards
- Evolution & Ecology Research Centre, School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Western Australia, Australia
| |
Collapse
|
6
|
Schall PZ, Meadows JRS, Ramos-Almodovar F, Kidd JM. Characterization of Nuclear Mitochondrial Insertions in Canine Genome Assemblies. Genes (Basel) 2024; 15:1318. [PMID: 39457442 PMCID: PMC11507379 DOI: 10.3390/genes15101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The presence of mitochondrial sequences in the nuclear genome (Numts) confounds analyses of mitochondrial sequence variation, and is a potential source of false positives in disease studies. To improve the analysis of mitochondrial variation in canines, we completed a systematic assessment of Numt content across genome assemblies, canine populations and the carnivore lineage. RESULTS Centering our analysis on the UU_Cfam_GSD_1.0/canFam4/Mischka assembly, a commonly used reference in dog genetic variation studies, we found a total of 321 Numts located throughout the nuclear genome and encompassing the entire sequence of the mitochondria. A comparison with 14 canine genome assemblies identified 63 Numts with presence-absence dimorphism among dogs, wolves, and a coyote. Furthermore, a subset of Numts were maintained across carnivore evolutionary time (arctic fox, polar bear, cat), with eight sequences likely more than 10 million years old, and shared with the domestic cat. On a population level, using structural variant data from the Dog10K Consortium for 1879 dogs and wolves, we identified 11 Numts that are absent in at least one sample, as well as 53 Numts that are absent from the Mischka assembly. CONCLUSIONS We highlight scenarios where the presence of Numts is a potentially confounding factor and provide an annotation of these sequences in canine genome assemblies. This resource will aid the identification and interpretation of polymorphisms in both somatic and germline mitochondrial studies in canines.
Collapse
Affiliation(s)
- Peter Z. Schall
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; (P.Z.S.); (F.R.-A.)
| | - Jennifer R. S. Meadows
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75132 Uppsala, Sweden;
- SciLifeLab, Uppsala University, 75132 Uppsala, Sweden
| | - Fabian Ramos-Almodovar
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; (P.Z.S.); (F.R.-A.)
| | - Jeffrey M. Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; (P.Z.S.); (F.R.-A.)
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Funk MW, Kidd JM. A Variant-Centric Analysis of Allele Sharing in Dogs and Wolves. Genes (Basel) 2024; 15:1168. [PMID: 39336759 PMCID: PMC11431226 DOI: 10.3390/genes15091168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Canines are an important model system for genetics and evolution. Recent advances in sequencing technologies have enabled the creation of large databases of genetic variation in canines, but analyses of allele sharing among canine groups have been limited. We applied GeoVar, an approach originally developed to study the sharing of single nucleotide polymorphisms across human populations, to assess the sharing of genetic variation among groups of wolves, village dogs, and breed dogs. Our analysis shows that wolves differ from each other at an average of approximately 2.3 million sites while dogs from the same breed differ at nearly 1 million sites. We found that 22% of the variants are common across wolves, village dogs, and breed dogs, that ~16% of variable sites are common across breed dogs, and that nearly half of the differences between two dogs of different breeds are due to sites that are common in all clades. These analyses represent a succinct summary of allele sharing across canines and illustrate the effects of canine history on the apportionment of genetic variation.
Collapse
Affiliation(s)
- Matthew W. Funk
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Jeffrey M. Kidd
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Buckley RM, Ostrander EA. Large-scale genomic analysis of the domestic dog informs biological discovery. Genome Res 2024; 34:811-821. [PMID: 38955465 PMCID: PMC11293549 DOI: 10.1101/gr.278569.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Recent advances in genomics, coupled with a unique population structure and remarkable levels of variation, have propelled the domestic dog to new levels as a system for understanding fundamental principles in mammalian biology. Central to this advance are more than 350 recognized breeds, each a closed population that has undergone selection for unique features. Genetic variation in the domestic dog is particularly well characterized compared with other domestic mammals, with almost 3000 high-coverage genomes publicly available. Importantly, as the number of sequenced genomes increases, new avenues for analysis are becoming available. Herein, we discuss recent discoveries in canine genomics regarding behavior, morphology, and disease susceptibility. We explore the limitations of current data sets for variant interpretation, tradeoffs between sequencing strategies, and the burgeoning role of long-read genomes for capturing structural variants. In addition, we consider how large-scale collections of whole-genome sequence data drive rare variant discovery and assess the geographic distribution of canine diversity, which identifies Asia as a major source of missing variation. Finally, we review recent comparative genomic analyses that will facilitate annotation of the noncoding genome in dogs.
Collapse
Affiliation(s)
- Reuben M Buckley
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
9
|
Nguyen AK, Blacksmith MS, Kidd JM. Duplications and Retrogenes Are Numerous and Widespread in Modern Canine Genomic Assemblies. Genome Biol Evol 2024; 16:evae142. [PMID: 38946312 PMCID: PMC11259980 DOI: 10.1093/gbe/evae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024] Open
Abstract
Recent years have seen a dramatic increase in the number of canine genome assemblies available. Duplications are an important source of evolutionary novelty and are also prone to misassembly. We explored the duplication content of nine canine genome assemblies using both genome self-alignment and read-depth approaches. We find that 8.58% of the genome is duplicated in the canFam4 assembly, derived from the German Shepherd Dog Mischka, including 90.15% of unplaced contigs. Highlighting the continued difficulty in properly assembling duplications, less than half of read-depth and assembly alignment duplications overlap, but the mCanLor1.2 Greenland wolf assembly shows greater concordance. Further study shows the presence of multiple segments that have alignments to four or more duplicate copies. These high-recurrence duplications correspond to gene retrocopies. We identified 3,892 candidate retrocopies from 1,316 parental genes in the canFam4 assembly and find that ∼8.82% of duplicated base pairs involve a retrocopy, confirming this mechanism as a major driver of gene duplication in canines. Similar patterns are found across eight other recent canine genome assemblies, with metrics supporting a greater quality of the PacBio HiFi mCanLor1.2 assembly. Comparison between the wolf and other canine assemblies found that 92% of retrocopy insertions are shared between assemblies. By calculating the number of generations since genome divergence, we estimate that new retrocopy insertions appear, on average, in 1 out of 3,514 births. Our analyses illustrate the impact of retrogene formation on canine genomes and highlight the variable representation of duplicated sequences among recently completed canine assemblies.
Collapse
Affiliation(s)
- Anthony K Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Matthew S Blacksmith
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Kehl A, Aupperle-Lellbach H, de Brot S, van der Weyden L. Review of Molecular Technologies for Investigating Canine Cancer. Animals (Basel) 2024; 14:769. [PMID: 38473154 PMCID: PMC10930838 DOI: 10.3390/ani14050769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Genetic molecular testing is starting to gain traction as part of standard clinical practice for dogs with cancer due to its multi-faceted benefits, such as potentially being able to provide diagnostic, prognostic and/or therapeutic information. However, the benefits and ultimate success of genomic analysis in the clinical setting are reliant on the robustness of the tools used to generate the results, which continually expand as new technologies are developed. To this end, we review the different materials from which tumour cells, DNA, RNA and the relevant proteins can be isolated and what methods are available for interrogating their molecular profile, including analysis of the genetic alterations (both somatic and germline), transcriptional changes and epigenetic modifications (including DNA methylation/acetylation and microRNAs). We also look to the future and the tools that are currently being developed, such as using artificial intelligence (AI) to identify genetic mutations from histomorphological criteria. In summary, we find that the molecular genetic characterisation of canine neoplasms has made a promising start. As we understand more of the genetics underlying these tumours and more targeted therapies become available, it will no doubt become a mainstay in the delivery of precision veterinary care to dogs with cancer.
Collapse
Affiliation(s)
- Alexandra Kehl
- Laboklin GmbH & Co. KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (A.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675 München, Germany
| | - Heike Aupperle-Lellbach
- Laboklin GmbH & Co. KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (A.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675 München, Germany
| | - Simone de Brot
- Institute of Animal Pathology, COMPATH, University of Bern, 3012 Bern, Switzerland;
| | | |
Collapse
|
11
|
Schall PZ, Winkler PA, Petersen-Jones SM, Yuzbasiyan-Gurkan V, Kidd JM. Genome-wide methylation patterns from canine nanopore assemblies. G3 (BETHESDA, MD.) 2023; 13:jkad203. [PMID: 37681359 PMCID: PMC10627269 DOI: 10.1093/g3journal/jkad203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Recent advances in long-read sequencing have enabled the creation of reference-quality genome assemblies for multiple individuals within a species. In particular, 8 long-read genome assemblies have recently been published for the canine model (dogs and wolves). These assemblies were created using a range of sequencing and computational approaches, with only limited comparisons described among subsets of the assemblies. Here we present 3 high-quality de novo reference assemblies based upon Oxford Nanopore long-read sequencing: 2 Bernese Mountain Dogs (BD & OD) and a Cairn terrier (CA611). These breeds are of particular interest due to the enrichment of unresolved genetic disorders. Leveraging advancement in software technologies, we utilized published data of Labrador Retriever (Yella) to generate a new assembly, resulting in a ∼280-fold increase in continuity (N50 size of 91 kbp vs 25.75 Mbp). In conjunction with these 4 new assemblies, we uniformly assessed 8 existing assemblies for generalized quality metrics, sequence divergence, and a detailed BUSCO assessment. We identified a set of ∼400 conserved genes during the BUSCO analysis missing in all assemblies. Genome-wide methylation profiles were generated from the nanopore sequencing, resulting in broad concordance with existing whole-genome and reduced-representation bisulfite sequencing, while highlighting superior overage of mobile elements. These analyses demonstrate the ability of Nanopore sequencing to resolve the sequence and epigenetic profile of canine genomes.
Collapse
Affiliation(s)
- Peter Z Schall
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paige A Winkler
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Vilma Yuzbasiyan-Gurkan
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Meadows JRS, Kidd JM, Wang GD, Parker HG, Schall PZ, Bianchi M, Christmas MJ, Bougiouri K, Buckley RM, Hitte C, Nguyen AK, Wang C, Jagannathan V, Niskanen JE, Frantz LAF, Arumilli M, Hundi S, Lindblad-Toh K, Ginja C, Agustina KK, André C, Boyko AR, Davis BW, Drögemüller M, Feng XY, Gkagkavouzis K, Iliopoulos G, Harris AC, Hytönen MK, Kalthoff DC, Liu YH, Lymberakis P, Poulakakis N, Pires AE, Racimo F, Ramos-Almodovar F, Savolainen P, Venetsani S, Tammen I, Triantafyllidis A, vonHoldt B, Wayne RK, Larson G, Nicholas FW, Lohi H, Leeb T, Zhang YP, Ostrander EA. Genome sequencing of 2000 canids by the Dog10K consortium advances the understanding of demography, genome function and architecture. Genome Biol 2023; 24:187. [PMID: 37582787 PMCID: PMC10426128 DOI: 10.1186/s13059-023-03023-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/25/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 × data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function. RESULTS We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection. CONCLUSIONS We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.
Collapse
Affiliation(s)
- Jennifer R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden.
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48107, USA.
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Heidi G Parker
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Peter Z Schall
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48107, USA
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
| | - Matthew J Christmas
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
| | - Katia Bougiouri
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Reuben M Buckley
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Christophe Hitte
- University of Rennes, CNRS, Institute Genetics and Development Rennes - UMR6290, 35000, Rennes, France
| | - Anthony K Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48107, USA
| | - Chao Wang
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Julia E Niskanen
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Laurent A F Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E14NS, UK and Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, D-80539, Munich, Germany
| | - Meharji Arumilli
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Sruthi Hundi
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Catarina Ginja
- BIOPOLIS-CIBIO-InBIO-Centro de Investigação Em Biodiversidade E Recursos Genéticos - ArchGen Group, Universidade Do Porto, 4485-661, Vairão, Portugal
| | | | - Catherine André
- University of Rennes, CNRS, Institute Genetics and Development Rennes - UMR6290, 35000, Rennes, France
| | - Adam R Boyko
- Department of Biomedical Sciences, Cornell University, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Michaela Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Xin-Yao Feng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Konstantinos Gkagkavouzis
- Department of Genetics, School of Biology, ), Aristotle University of Thessaloniki, Thessaloniki, Macedonia 54124, Greece and Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH, Balkan Center, Thessaloniki, Greece
| | - Giorgos Iliopoulos
- NGO "Callisto", Wildlife and Nature Conservation Society, 54621, Thessaloniki, Greece
| | - Alexander C Harris
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Daniela C Kalthoff
- NGO "Callisto", Wildlife and Nature Conservation Society, 54621, Thessaloniki, Greece
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Petros Lymberakis
- Natural History Museum of Crete & Department of Biology, University of Crete, 71202, Irakleio, Greece
- Biology Department, School of Sciences and Engineering, University of Crete, Heraklion, Greece
- Palaeogenomics and Evolutionary Genetics Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Nikolaos Poulakakis
- Natural History Museum of Crete & Department of Biology, University of Crete, 71202, Irakleio, Greece
- Biology Department, School of Sciences and Engineering, University of Crete, Heraklion, Greece
- Palaeogenomics and Evolutionary Genetics Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Ana Elisabete Pires
- BIOPOLIS-CIBIO-InBIO-Centro de Investigação Em Biodiversidade E Recursos Genéticos - ArchGen Group, Universidade Do Porto, 4485-661, Vairão, Portugal
| | - Fernando Racimo
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | | | - Peter Savolainen
- Department of Gene Technology, Science for Life Laboratory, KTH - Royal Institute of Technology, 17121, Solna, Sweden
| | - Semina Venetsani
- Department of Genetics, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Macedonia, Greece
| | - Imke Tammen
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2570, Australia
| | - Alexandros Triantafyllidis
- Department of Genetics, School of Biology, ), Aristotle University of Thessaloniki, Thessaloniki, Macedonia 54124, Greece and Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH, Balkan Center, Thessaloniki, Greece
| | - Bridgett vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-7246, USA
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, OX1 3TG, UK
| | - Frank W Nicholas
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2570, Australia
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Liu K, Xie N, Wang Y, Liu X. Extensive mitogenomic heteroplasmy and its implications in the phylogeny of the fish genus Megalobrama. 3 Biotech 2023; 13:115. [PMID: 36915286 PMCID: PMC10006376 DOI: 10.1007/s13205-023-03523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
Megalobrama is China's most economically valuable fish genera. Four species make up this genus: M. amblycephala (MA), M. terminalis (MT), M. pellegrini (MP), and M. hoffmanni (MH). Many researchers have investigated the genetic relationship of Megalobrama based on mitochondrial DNA (mtDNA) and discovered that the branches of the phylogenetic tree for MT and MP are intertwined. We hypothesized that this occurs because mitogenomic heteroplasmy is overlooked when working with mtDNA, which causes MP and MT positions to intersect in phylogenetic trees. To eliminate the influence of nuclear mitochondrial DNA fragments (NUMTs) before analyzing mitogenomic heteroplasmy, we used PLastZ to identify NUMTs, which were then removed from the samples for the subsequent heteroplasmy analysis. Using the heteroplasmy caller icHET, we discovered 126, 339, 135, and 203 heteroplasmic variants in six MA, MT, MP, and MH samples. We reconstructed the Megalobrama fish genus's phylogenetic tree using the RY coding method and rejecting the third position on codons, which improved the performance of the phylogenetic tree by increasing the ratio of treeness to relative component variability from 100.02 ± 1.76 to 688.59 ± 190.56. Despite this, the RY coding method cannot alter the intersection of MP and MT positions in phylogenetic trees. We hypothesize that gene flow between MT and MP leads to intertwining mtDNA-based phylogenetic trees. In conclusion, our findings on the mitogenomic heteroplasmy of Megalobrama provide new insights into mtDNA-based phylogenetic studies. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03523-0.
Collapse
Affiliation(s)
- Kai Liu
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Nan Xie
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Yuxi Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyi Liu
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
14
|
Ballard JWO, Field MA, Edwards RJ, Wilson LAB, Koungoulos LG, Rosen BD, Chernoff B, Dudchenko O, Omer A, Keilwagen J, Skvortsova K, Bogdanovic O, Chan E, Zammit R, Hayes V, Aiden EL. The Australasian dingo archetype: de novo chromosome-length genome assembly, DNA methylome, and cranial morphology. Gigascience 2023; 12:giad018. [PMID: 36994871 PMCID: PMC10353722 DOI: 10.1093/gigascience/giad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/13/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND One difficulty in testing the hypothesis that the Australasian dingo is a functional intermediate between wild wolves and domesticated breed dogs is that there is no reference specimen. Here we link a high-quality de novo long-read chromosomal assembly with epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It was critical to establish an Alpine dingo reference because this ecotype occurs throughout coastal eastern Australia where the first drawings and descriptions were completed. FINDINGS We generated a high-quality chromosome-level reference genome assembly (Canfam_ADS) using a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. Compared to the previously published Desert dingo assembly, there are large structural rearrangements on chromosomes 11, 16, 25, and 26. Phylogenetic analyses of chromosomal data from Cooinda the Alpine dingo and 9 previously published de novo canine assemblies show dingoes are monophyletic and basal to domestic dogs. Network analyses show that the mitochondrial DNA genome clusters within the southeastern lineage, as expected for an Alpine dingo. Comparison of regulatory regions identified 2 differentially methylated regions within glucagon receptor GCGR and histone deacetylase HDAC4 genes that are unmethylated in the Alpine dingo genome but hypermethylated in the Desert dingo. Morphologic data, comprising geometric morphometric assessment of cranial morphology, place dingo Cooinda within population-level variation for Alpine dingoes. Magnetic resonance imaging of brain tissue shows she had a larger cranial capacity than a similar-sized domestic dog. CONCLUSIONS These combined data support the hypothesis that the dingo Cooinda fits the spectrum of genetic and morphologic characteristics typical of the Alpine ecotype. We propose that she be considered the archetype specimen for future research investigating the evolutionary history, morphology, physiology, and ecology of dingoes. The female has been taxidermically prepared and is now at the Australian Museum, Sydney.
Collapse
Affiliation(s)
- J William O Ballard
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, Victoria 3052, Australia
- Department of Environment and Genetics, SABE, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Matt A Field
- Centre for Tropical Bioinformatics and Molecular Biology, College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, Queensland 4870, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Laura A B Wilson
- School of Archaeology and Anthropology, The Australian National University, Acton, ACT 2600, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Loukas G Koungoulos
- Department of Archaeology, School of Philosophical and Historical Inquiry, the University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service USDA, Beltsville, MD 20705, USA
| | - Barry Chernoff
- College of the Environment, Departments of Biology, and Earth & Environmental Sciences, Wesleyan University, Middletown, CT 06459, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
| | - Arina Omer
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
| | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Quedlinburg 06484, Germany
| | - Ksenia Skvortsova
- Developmental Epigenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Ozren Bogdanovic
- Developmental Epigenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Eva Chan
- Developmental Epigenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Statewide Genomics, New South Wales Health Pathology, Newcastle, NSW 2300, Australia
| | - Robert Zammit
- Vineyard Veterinary Hospital,Vineyard, NSW 2765, Australia
| | - Vanessa Hayes
- Developmental Epigenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Charles Perkins Centre, Faculty of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
15
|
Leeb T, Bannasch D, Schoenebeck JJ. Identification of Genetic Risk Factors for Monogenic and Complex Canine Diseases. Annu Rev Anim Biosci 2023; 11:183-205. [PMID: 36322969 DOI: 10.1146/annurev-animal-050622-055534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Advances in DNA sequencing and other technologies have greatly facilitated the identification of genetic risk factors for inherited diseases in dogs. We review recent technological developments based on selected examples from canine disease genetics. The identification of disease-causing variants in dogs with monogenic diseases may become a widely employed diagnostic approach in clinical veterinary medicine in the not-too-distant future. Diseases with complex modes of inheritance continue to pose challenges to researchers but have also become much more tangible than in the past. In addition to strategies for identifying genetic risk factors, we provide some thoughts on the interpretation of sequence variants that are largely inspired by developments in human clinical genetics.
Collapse
Affiliation(s)
- Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland;
| | - Danika Bannasch
- Department of Population Health and Reproduction, University of California, Davis, California, USA;
| | - Jeffrey J Schoenebeck
- The Roslin Institute and Royal (Dick) School for Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom;
| |
Collapse
|
16
|
Ballard JWO, Field MA, Edwards RJ, Wilson LAB, Koungoulos LG, Rosen BD, Chernoff B, Dudchenko O, Omer A, Keilwagen J, Skvortsova K, Bogdanovic O, Chan E, Zammit R, Hayes V, Aiden EL. The Australasian dingo archetype: De novo chromosome-length genome assembly, DNA methylome, and cranial morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525801. [PMID: 36747621 PMCID: PMC9900879 DOI: 10.1101/2023.01.26.525801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background One difficulty in testing the hypothesis that the Australasian dingo is a functional intermediate between wild wolves and domesticated breed dogs is that there is no reference specimen. Here we link a high-quality de novo long read chromosomal assembly with epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It was critical to establish an Alpine dingo reference because this ecotype occurs throughout coastal eastern Australia where the first drawings and descriptions were completed. Findings We generated a high-quality chromosome-level reference genome assembly (Canfam_ADS) using a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. Compared to the previously published Desert dingo assembly, there are large structural rearrangements on Chromosomes 11, 16, 25 and 26. Phylogenetic analyses of chromosomal data from Cooinda the Alpine dingo and nine previously published de novo canine assemblies show dingoes are monophyletic and basal to domestic dogs. Network analyses show that the mtDNA genome clusters within the southeastern lineage, as expected for an Alpine dingo. Comparison of regulatory regions identified two differentially methylated regions within glucagon receptor GCGR and histone deacetylase HDAC4 genes that are unmethylated in the Alpine dingo genome but hypermethylated in the Desert dingo. Morphological data, comprising geometric morphometric assessment of cranial morphology place dingo Cooinda within population-level variation for Alpine dingoes. Magnetic resonance imaging of brain tissue show she had a larger cranial capacity than a similar-sized domestic dog. Conclusions These combined data support the hypothesis that the dingo Cooinda fits the spectrum of genetic and morphological characteristics typical of the Alpine ecotype. We propose that she be considered the archetype specimen for future research investigating the evolutionary history, morphology, physiology, and ecology of dingoes. The female has been taxidermically prepared and is now at the Australian Museum, Sydney.
Collapse
Affiliation(s)
- J William O Ballard
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, Victoria 3052, Australia
- Department of Environment and Genetics, SABE, La Trobe University, Melbourne Victoria 3086, Australia
| | - Matt A Field
- Centre for Tropical Bioinformatics and Molecular Biology, College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, Queensland 4870, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW 2052, Australia
| | - Laura A B Wilson
- School of Archaeology and Anthropology, The Australian National University, Acton, ACT 2600, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Loukas G Koungoulos
- Department of Archaeology, School of Philosophical and Historical Inquiry, the University of Sydney, Sydney, Australia 2006
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service USDA, Beltsville, MD 20705
| | - Barry Chernoff
- College of the Environment, Departments of Biology, and Earth & Environmental Sciences, Wesleyan University, Middletown, CT 06459, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030 USA
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
| | - Arina Omer
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
| | - Jens Keilwagen
- Julius Kühn-Institut, Erwin-Baur-Str. 27 06484 Quedlinburg, Germany
| | | | - Ozren Bogdanovic
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Eva Chan
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Statewide Genomics, New South Wales Health Pathology, 45 Watt St, Newcastle NSW 2300, Australia
| | - Robert Zammit
- Vineyard Veterinary Hospital, 703 Windsor Rd, Vineyard, NSW 2765, Australia
| | - Vanessa Hayes
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Charles Perkins Centre, Faculty of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030 USA
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong 201210, China
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
17
|
Dutrow EV, Serpell JA, Ostrander EA. Domestic dog lineages reveal genetic drivers of behavioral diversification. Cell 2022; 185:4737-4755.e18. [PMID: 36493753 PMCID: PMC10478034 DOI: 10.1016/j.cell.2022.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022]
Abstract
Selective breeding of domestic dogs has generated diverse breeds often optimized for performing specialized tasks. Despite the heritability of breed-typical behavioral traits, identification of causal loci has proven challenging due to the complexity of canine population structure. We overcome longstanding difficulties in identifying genetic drivers of canine behavior by developing a framework for understanding relationships between breeds and the behaviors that define them, utilizing genetic data for over 4,000 domestic, semi-feral, and wild canids and behavioral survey data for over 46,000 dogs. We identify ten major canine genetic lineages and their behavioral correlates and show that breed diversification is predominantly driven by non-coding regulatory variation. We determine that lineage-associated genes converge in neurodevelopmental co-expression networks, identifying a sheepdog-associated enrichment for interrelated axon guidance functions. This work presents a scaffold for canine diversification that positions the domestic dog as an unparalleled system for revealing the genetic origins of behavioral diversity.
Collapse
Affiliation(s)
- Emily V Dutrow
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James A Serpell
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Field MA, Yadav S, Dudchenko O, Esvaran M, Rosen BD, Skvortsova K, Edwards RJ, Keilwagen J, Cochran BJ, Manandhar B, Bustamante S, Rasmussen JA, Melvin RG, Chernoff B, Omer A, Colaric Z, Chan EKF, Minoche AE, Smith TPL, Gilbert MTP, Bogdanovic O, Zammit RA, Thomas T, Aiden EL, Ballard JWO. The Australian dingo is an early offshoot of modern breed dogs. SCIENCE ADVANCES 2022; 8:eabm5944. [PMID: 35452284 PMCID: PMC9032958 DOI: 10.1126/sciadv.abm5944] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/09/2022] [Indexed: 06/11/2023]
Abstract
Dogs are uniquely associated with human dispersal and bring transformational insight into the domestication process. Dingoes represent an intriguing case within canine evolution being geographically isolated for thousands of years. Here, we present a high-quality de novo assembly of a pure dingo (CanFam_DDS). We identified large chromosomal differences relative to the current dog reference (CanFam3.1) and confirmed no expanded pancreatic amylase gene as found in breed dogs. Phylogenetic analyses using variant pairwise matrices show that the dingo is distinct from five breed dogs with 100% bootstrap support when using Greenland wolf as the outgroup. Functionally, we observe differences in methylation patterns between the dingo and German shepherd dog genomes and differences in serum biochemistry and microbiome makeup. Our results suggest that distinct demographic and environmental conditions have shaped the dingo genome. In contrast, artificial human selection has likely shaped the genomes of domestic breed dogs after divergence from the dingo.
Collapse
Affiliation(s)
- Matt A. Field
- Centre for Tropical Bioinformatics and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QLD 4878, Australia
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Sonu Yadav
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High St, Kensington, NSW 2052, Australia
| | - Olga Dudchenko
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Meera Esvaran
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Benjamin D. Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Ksenia Skvortsova
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Richard J. Edwards
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High St, Kensington, NSW 2052, Australia
| | - Jens Keilwagen
- Julius Kühn-Institut, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Blake J. Cochran
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bikash Manandhar
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jacob Agerbo Rasmussen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
- Center for Evolutionary Hologenomics, Faculty of Health and Medical Sciences, The GLOBE Institute University of Copenhagen, Copenhagen, Denmark
| | - Richard G. Melvin
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN 55812, USA
| | - Barry Chernoff
- College of the Environment, Departments of Biology, and Earth and Environmental Sciences, Wesleyan University, Middletown, CT 06459, USA
| | - Arina Omer
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zane Colaric
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eva K. F. Chan
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
- Statewide Genomics, New South Wales Health Pathology, 45 Watt St, Newcastle, NSW 2300, Australia
| | - Andre E. Minoche
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Timothy P. L. Smith
- U.S. Meat Animal Research Center, Agricultural Research Service, USDA, Rd 313, Clay Center, NE 68933, USA
| | - M. Thomas P. Gilbert
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
- University Museum, NTNU, Trondheim, Norway
| | - Ozren Bogdanovic
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High St, Kensington, NSW 2052, Australia
| | - Robert A. Zammit
- Vineyard Veterinary Hospital, 703 Windsor Rd, Vineyard, NSW 2765, Australia
| | - Torsten Thomas
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Erez L. Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Pudong 201210, China
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - J. William O. Ballard
- Department of Environment and Genetics, SABE, La Trobe University, Melbourne, VIC 3086, Australia
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
19
|
Halo JV, Kidd JM. Canis familiaris (Great Dane domestic dog). Trends Genet 2022; 38:514-515. [PMID: 35232612 DOI: 10.1016/j.tig.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Julia V Halo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
20
|
Chen SH, Rossetto M, van der Merwe M, Lu-Irving P, Yap JYS, Sauquet H, Bourke G, Amos TG, Bragg JG, Edwards RJ. Chromosome-level de novo genome assembly of Telopea speciosissima (New South Wales waratah) using long-reads, linked-reads and Hi-C. Mol Ecol Resour 2022; 22:1836-1854. [PMID: 35016262 DOI: 10.1111/1755-0998.13574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022]
Abstract
Telopea speciosissima, the New South Wales waratah, is an Australian endemic woody shrub in the family Proteaceae. Waratahs have great potential as a model clade to better understand processes of speciation, introgression and adaptation, and are significant from a horticultural perspective. Here, we report the first chromosome-level genome for T. speciosissima. Combining Oxford Nanopore long-reads, 10x Genomics Chromium linked-reads and Hi-C data, the assembly spans 823 Mb (scaffold N50 of 69.0 Mb) with 97.8% of Embryophyta BUSCOs "Complete". We present a new method in Diploidocus (https://github.com/slimsuite/diploidocus) for classifying, curating and QC-filtering scaffolds, which combines read depths, k-mer frequencies and BUSCO predictions. We also present a new tool, DepthSizer (https://github.com/slimsuite/depthsizer), for genome size estimation from the read depth of single-copy orthologues and estimate the genome size to be approximately 900 Mb. The largest 11 scaffolds contained 94.1% of the assembly, conforming to the expected number of chromosomes (2n = 22). Genome annotation predicted 40,158 protein-coding genes, 351 rRNAs and 728 tRNAs. We investigated CYCLOIDEA (CYC) genes, which have a role in determination of floral symmetry, and confirm the presence of two copies in the genome. Read depth analysis of 180 "Duplicated" BUSCO genes using a new tool, DepthKopy (https://github.com/slimsuite/depthkopy), suggests almost all are real duplications, increasing confidence in the annotation and highlighting a possible need to revise the BUSCO set for this lineage. The chromosome-level T. speciosissima reference genome (Tspe_v1) provides an important new genomic resource of Proteaceae to support the conservation of flora in Australia and further afield.
Collapse
Affiliation(s)
- Stephanie H Chen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, New South Wales, Australia.,Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Sydney, New South Wales, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Sydney, New South Wales, Australia.,Queensland Alliance of Agriculture and Food Innovation, University of Queensland, St Lucia, Queensland, Australia
| | - Marlien van der Merwe
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Sydney, New South Wales, Australia
| | - Patricia Lu-Irving
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Sydney, New South Wales, Australia
| | - Jia-Yee S Yap
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Sydney, New South Wales, Australia.,Queensland Alliance of Agriculture and Food Innovation, University of Queensland, St Lucia, Queensland, Australia
| | - Hervé Sauquet
- National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, New South Wales, Australia.,School of Biological, Earth and Environmental Sciences, UNSW Sydney, New South Wales, Australia
| | - Greg Bourke
- Blue Mountains Botanic Garden, Mount Tomah, New South Wales, Australia
| | - Timothy G Amos
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| | - Jason G Bragg
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Sydney, New South Wales, Australia.,School of Biological, Earth and Environmental Sciences, UNSW Sydney, New South Wales, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
21
|
Dog10K_Boxer_Tasha_1.0: A Long-Read Assembly of the Dog Reference Genome. Genes (Basel) 2021; 12:genes12060847. [PMID: 34070911 PMCID: PMC8228171 DOI: 10.3390/genes12060847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/27/2022] Open
Abstract
The domestic dog has evolved to be an important biomedical model for studies regarding the genetic basis of disease, morphology and behavior. Genetic studies in the dog have relied on a draft reference genome of a purebred female boxer dog named "Tasha" initially published in 2005. Derived from a Sanger whole genome shotgun sequencing approach coupled with limited clone-based sequencing, the initial assembly and subsequent updates have served as the predominant resource for canine genetics for 15 years. While the initial assembly produced a good-quality draft, as with all assemblies produced at the time, it contained gaps, assembly errors and missing sequences, particularly in GC-rich regions, which are found at many promoters and in the first exons of protein-coding genes. Here, we present Dog10K_Boxer_Tasha_1.0, an improved chromosome-level highly contiguous genome assembly of Tasha created with long-read technologies that increases sequence contiguity >100-fold, closes >23,000 gaps of the CanFam3.1 reference assembly and improves gene annotation by identifying >1200 new protein-coding transcripts. The assembly and annotation are available at NCBI under the accession GCF_000002285.5.
Collapse
|
22
|
Turu G, Soltész-Katona E, Tóth AD, Juhász C, Cserző M, Misák Á, Balla A, Caron MG, Hunyady L. Biased Coupling to β-Arrestin of Two Common Variants of the CB 2 Cannabinoid Receptor. Front Endocrinol (Lausanne) 2021; 12:714561. [PMID: 34484125 PMCID: PMC8415483 DOI: 10.3389/fendo.2021.714561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/08/2021] [Indexed: 01/14/2023] Open
Abstract
β-arrestins are partners of the G protein-coupled receptors (GPCRs), regulating their intracellular trafficking and signaling. Development of biased GPCR agonists, selectively targeting either G protein or β-arrestin pathways, are in the focus of interest due to their therapeutic potential in different pathological conditions. The CB2 cannabinoid receptor (CB2R) is a GPCR involved in various functions in the periphery and the central nervous system. Two common occurring variants of CB2R, harboring Q63R or L133I missense mutations, have been implicated in the development of a diverse set of disorders. To evaluate the effect of these mutations, we characterized the binding profile of these mutant CB2 receptors to G proteins and β-arrestin2. Although their ability to inhibit cAMP signaling was similar, the Q63R mutant had increased, whereas the L133I mutant receptor had decreased β-arrestin2 binding. In line with these observations, the variants also had altered intracellular trafficking. Our results show that two common variants of the CB2 receptor have biased signaling properties, which may contribute to the pathogenesis of the associated disorders and may offer CB2R as a target for further development of biased receptor activation strategies.
Collapse
Affiliation(s)
- Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- Department of Cell Biology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, United States
- *Correspondence: Gábor Turu, ; László Hunyady,
| | - Eszter Soltész-Katona
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - András Dávid Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Cintia Juhász
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Miklós Cserző
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Ádám Misák
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, United States
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- *Correspondence: Gábor Turu, ; László Hunyady,
| |
Collapse
|