1
|
Oliveira JIN, Cabral-de-Mello DC, Valente GT, Martins C. Transcribing the enigma: the B chromosome as a territory of uncharted RNAs. Genetics 2024; 227:iyae026. [PMID: 38513121 DOI: 10.1093/genetics/iyae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/10/2024] [Indexed: 03/23/2024] Open
Abstract
B chromosomes are supernumerary elements found in several groups of eukaryotes, including fungi, plants, and animals. Typically, these chromosomes either originate from their hosts through errors in meiosis or interspecifically through horizontal transfer. While many B chromosomes are primarily heterochromatic and possess a low number of coding genes, these additional elements are still capable of transcribing sequences and exerting influence on the expression of host genes. How B chromosomes escape elimination and which impacts can be promoted in the cell always intrigued the cytogeneticists. In pursuit of understanding the behavior and functional impacts of these extra elements, cytogenetic studies meet the advances of molecular biology, incorporating various techniques into investigating B chromosomes from a functional perspective. In this review, we present a timeline of studies investigating B chromosomes and RNAs, highlighting the advances and key findings throughout their history. Additionally, we identified which RNA classes are reported in the B chromosomes and emphasized the necessity for further investigation into new perspectives on the B chromosome functions. In this context, we present a phylogenetic tree that illustrates which branches either report B chromosome presence or have functional RNA studies related to B chromosomes. We propose investigating other unexplored RNA classes and conducting functional analysis in conjunction with cytogenetic studies to enhance our understanding of the B chromosome from an RNA perspective.
Collapse
Affiliation(s)
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil
| | - Guilherme T Valente
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, Botucatu 18618-687, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| |
Collapse
|
2
|
Rajpal VR, Sharma S, Sehgal D, Sharma P, Wadhwa N, Dhakate P, Chandra A, Thakur RK, Deb S, Rama Rao S, Mir BA, Raina SN. Comprehending the dynamism of B chromosomes in their journey towards becoming unselfish. Front Cell Dev Biol 2023; 10:1072716. [PMID: 36684438 PMCID: PMC9846793 DOI: 10.3389/fcell.2022.1072716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Investigated for more than a century now, B chromosomes (Bs) research has come a long way from Bs being considered parasitic or neutral to becoming unselfish and bringing benefits to their hosts. B chromosomes exist as accessory chromosomes along with the standard A chromosomes (As) across eukaryotic taxa. Represented singly or in multiple copies, B chromosomes are largely heterochromatic but also contain euchromatic and organellar segments. Although B chromosomes are derived entities, they follow their species-specific evolutionary pattern. B chromosomes fail to pair with the standard chromosomes during meiosis and vary in their number, size, composition and structure across taxa and ensure their successful transmission through non-mendelian mechanisms like mitotic, pre-meiotic, meiotic or post-meiotic drives, unique non-disjunction, self-pairing or even imparting benefits to the host when they lack drive. B chromosomes have been associated with cellular processes like sex determination, pathogenicity, resistance to pathogens, phenotypic effects, and differential gene expression. With the advancements in B-omics research, novel insights have been gleaned on their functions, some of which have been associated with the regulation of gene expression of A chromosomes through increased expression of miRNAs or differential expression of transposable elements located on them. The next-generation sequencing and emerging technologies will further likely unravel the cellular, molecular and functional behaviour of these enigmatic entities. Amidst the extensive fluidity shown by B chromosomes in their structural and functional attributes, we perceive that the existence and survival of B chromosomes in the populations most likely seem to be a trade-off between the drive efficiency and adaptive significance versus their adverse effects on reproduction.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India,*Correspondence: Vijay Rani Rajpal, , ; Soom Nath Raina,
| | - Suman Sharma
- Department of Botany, Ramjas College, University of Delhi, Delhi, India
| | - Deepmala Sehgal
- Syngenta, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Prashansa Sharma
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | | | - Atika Chandra
- Department of Botany, Maitreyi College, University of Delhi, New Delhi, India
| | - Rakesh Kr. Thakur
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Sohini Deb
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Satyawada Rama Rao
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Bilal Ahmad Mir
- Department of Botany, University of Kashmir, Srinagar, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,*Correspondence: Vijay Rani Rajpal, , ; Soom Nath Raina,
| |
Collapse
|
3
|
Oliveira JIN, Cardoso AL, Wolf IR, de Oliveira RA, Martins C. First characterization of PIWI-interacting RNA clusters in a cichlid fish with a B chromosome. BMC Biol 2022; 20:204. [PMID: 36127679 PMCID: PMC9490952 DOI: 10.1186/s12915-022-01403-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND B chromosomes are extra elements found in several eukaryote species. Usually, they do not express a phenotype in the host. However, advances in bioinformatics over the last decades have allowed us to describe several genes and molecular functions related to B chromosomes. These advances enable investigations of the relationship between the B chromosome and the host to understand how this element has been preserved in genomes. However, considering that transposable elements (TEs) are highly abundant in this supernumerary chromosome, there is a lack of knowledge concerning the dynamics of TE control in B-carrying cells. Thus, the present study characterized PIWI-interacting RNA (piRNA) clusters and pathways responsible for silencing the mobilization of TEs in gonads of the cichlid fish Astatotilapia latifasciata carrying the B chromosome. RESULTS Through small RNA-seq and genome assembly, we predicted and annotated piRNA clusters in the A. latifasciata genome for the first time. We observed that these clusters had biased expression related to sex and the presence of the B chromosome. Furthermore, three piRNA clusters, named curupira, were identified in the B chromosome. Two of them were expressed exclusively in gonads of samples with the B chromosome. The composition of these curupira sequences was derived from LTR, LINE, and DNA elements, representing old and recent transposition events in the A. latifasciata genome and the B chromosome. The presence of the B chromosome also affected the expression of piRNA pathway genes. The mitochondrial cardiolipin hydrolase-like (pld6) gene is present in the B chromosome, as previously reported, and an increase in its expression was detected in gonads with the B chromosome. CONCLUSIONS Due to the high abundance of TEs in the B chromosome, it was possible to investigate the origin of piRNA from these jumping genes. We hypothesize that the B chromosome has evolved its own genomic guardians to prevent uncontrolled TE mobilization. Furthermore, we also detected an expression bias in the presence of the B chromosome over A. latifasciata piRNA clusters and pathway genes.
Collapse
Affiliation(s)
- Jordana Inácio Nascimento Oliveira
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Adauto Lima Cardoso
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Ivan Rodrigo Wolf
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Rogério Antônio de Oliveira
- Department of Biostatistics, Plant Biology, Parasitology and Zoology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil.
| |
Collapse
|
4
|
Cardoso AL, Venturelli NB, da Cruz I, de Sá Patroni FM, de Moraes D, de Oliveira RA, Benavente R, Martins C. Meiotic behavior, transmission and active genes of B chromosomes in the cichlid Astatotilapia latifasciata: new clues about nature, evolution and maintenance of accessory elements. Mol Genet Genomics 2022; 297:1151-1167. [PMID: 35704117 DOI: 10.1007/s00438-022-01911-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/24/2022] [Indexed: 12/23/2022]
Abstract
Supernumerary B chromosomes (Bs) are dispensable genetic elements widespread in eukaryotes and are poorly understood mainly in relation to mechanisms of maintenance and transmission. The cichlid Astatotilapia latifasciata can harbor Bs in a range of 0 (named B -) and 1-2 (named B +). The B in A. latifasciata is rich in several classes of repetitive DNA sequences, contains protein coding genes, and affects hosts in diverse ways, including sex-biased effects. To advance in the knowledge about the mechanisms of maintenance and transmission of B chromosomes in A. latifasciata, here, we studied the meiotic behavior in males and transmission rates of A. latifasciata B chromosome. We also analyzed structurally and functionally the predicted B chromosome copies of the cell cycle genes separin-like, tubb1-like and kif11-like. We identified in the meiotic structure relative to the B chromosome the presence of proteins associated with Synaptonemal Complex organization (SMC3, SYCP1 and SYCP3) and found that the B performs self-pairing. These data suggest that isochromosome formation was a step during B chromosome evolution and this element is in a stage of diversification of the two arms keeping the self-pairing behavior to protect the A chromosome complement of negative effects of recombination. Moreover, we observed no occurrence of B-drive and confirmed the presence of cell cycle genes copies in the B chromosome and their transcription in encephalon, muscle and gonads, which can indicates beneficial effects to hosts and contribute to B maintenance.
Collapse
Affiliation(s)
- Adauto Lima Cardoso
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, Sao Paulo State University, UNESP, Botucatu, SP, 18618-689, Brazil
| | - Natália Bortholazzi Venturelli
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, Sao Paulo State University, UNESP, Botucatu, SP, 18618-689, Brazil
| | - Irene da Cruz
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Fábio Malta de Sá Patroni
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, Sao Paulo State University, UNESP, Botucatu, SP, 18618-689, Brazil
| | - Diogo de Moraes
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, Sao Paulo State University, UNESP, Botucatu, SP, 18618-689, Brazil
| | - Rogério Antonio de Oliveira
- Department of Biostatistics, Plant Biology, Parasitology and Zoology, Institute of Biosciences at Botucatu, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, Sao Paulo State University, UNESP, Botucatu, SP, 18618-689, Brazil.
| |
Collapse
|