1
|
Lo Faro V, Bhattacharya A, Zhou W, Zhou D, Wang Y, Läll K, Kanai M, Lopera-Maya E, Straub P, Pawar P, Tao R, Zhong X, Namba S, Sanna S, Nolte IM, Okada Y, Ingold N, MacGregor S, Snieder H, Surakka I, Shortt J, Gignoux C, Rafaels N, Crooks K, Verma A, Verma SS, Guare L, Rader DJ, Willer C, Martin AR, Brantley MA, Gamazon ER, Jansonius NM, Joos K, Cox NJ, Hirbo J. Novel ancestry-specific primary open-angle glaucoma loci and shared biology with vascular mechanisms and cell proliferation. Cell Rep Med 2024; 5:101430. [PMID: 38382466 PMCID: PMC10897632 DOI: 10.1016/j.xcrm.2024.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/28/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Primary open-angle glaucoma (POAG), a leading cause of irreversible blindness globally, shows disparity in prevalence and manifestations across ancestries. We perform meta-analysis across 15 biobanks (of the Global Biobank Meta-analysis Initiative) (n = 1,487,441: cases = 26,848) and merge with previous multi-ancestry studies, with the combined dataset representing the largest and most diverse POAG study to date (n = 1,478,037: cases = 46,325) and identify 17 novel significant loci, 5 of which were ancestry specific. Gene-enrichment and transcriptome-wide association analyses implicate vascular and cancer genes, a fifth of which are primary ciliary related. We perform an extensive statistical analysis of SIX6 and CDKN2B-AS1 loci in human GTEx data and across large electronic health records showing interaction between SIX6 gene and causal variants in the chr9p21.3 locus, with expression effect on CDKN2A/B. Our results suggest that some POAG risk variants may be ancestry specific, sex specific, or both, and support the contribution of genes involved in programmed cell death in POAG pathogenesis.
Collapse
Affiliation(s)
- Valeria Lo Faro
- Department of Ophthalmology, Amsterdam University Medical Center (AMC), Amsterdam, the Netherlands; Department of Clinical Genetics, Amsterdam University Medical Center (AMC), Amsterdam, the Netherlands; Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Dan Zhou
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ying Wang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kristi Läll
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Masahiro Kanai
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Esteban Lopera-Maya
- University of Groningen, UMCG, Department of Genetics, Groningen, the Netherlands
| | - Peter Straub
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Priyanka Pawar
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ran Tao
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xue Zhong
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Serena Sanna
- University of Groningen, UMCG, Department of Genetics, Groningen, the Netherlands; Institute for Genetics and Biomedical Research (IRGB), National Research Council (CNR), Cagliari, Italy
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Nathan Ingold
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Queensland University of Technology, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ida Surakka
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Shortt
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chris Gignoux
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nicholas Rafaels
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristy Crooks
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anurag Verma
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shefali S Verma
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsay Guare
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Cristen Willer
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Alicia R Martin
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Milam A Brantley
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric R Gamazon
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nomdo M Jansonius
- Department of Ophthalmology, Amsterdam University Medical Center (AMC), Amsterdam, the Netherlands
| | - Karen Joos
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy J Cox
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jibril Hirbo
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Loo Y, Chan ASY, Khor CC, Aung T, Wang Z. Rodent genetically modified models of glaucoma. Mol Aspects Med 2024; 95:101229. [PMID: 38039744 DOI: 10.1016/j.mam.2023.101229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Glaucoma, one of the leading causes of irreversible blindness worldwide, is a complex and heterogenous disease. While environmental factors are important, it is well-recognized that the disease has a strong heritable component. With the advent of large-cohort genome wide association studies, a myriad of genetic risk loci has been linked to different forms of glaucoma. Animal models have been an indispensable tool in characterizing these loci, especially if they lie within coding regions in the genome. Not only do these models connect genotype to phenotype, advancing our understanding of glaucoma pathogenesis in the process, they also have valuable utility as a platform for the pre-clinical testing of potential therapies. In this review, we will outline genetic models used for studying the major forms of glaucoma, including primary open angle glaucoma, normal tension glaucoma, primary angle closure glaucoma, pigmentary glaucoma, pseudoexfoliation glaucoma, and early onset glaucoma, including congenital and developmental glaucoma, and how studying these models have helped shed light on human glaucoma.
Collapse
Affiliation(s)
- Yunhua Loo
- Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Anita Sook Yee Chan
- Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Chiea Chuen Khor
- Duke-NUS Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Tin Aung
- Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Zhenxun Wang
- Duke-NUS Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.
| |
Collapse
|
3
|
Schmitz D, Li Z, Lo Faro V, Rask-Andersen M, Ameur A, Rafati N, Johansson Å. Copy number variations and their effect on the plasma proteome. Genetics 2023; 225:iyad179. [PMID: 37793096 PMCID: PMC10697815 DOI: 10.1093/genetics/iyad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
Structural variations, including copy number variations (CNVs), affect around 20 million bases in the human genome and are common causes of rare conditions. CNVs are rarely investigated in complex disease research because most CNVs are not targeted on the genotyping arrays or the reference panels for genetic imputation. In this study, we characterize CNVs in a Swedish cohort (N = 1,021) using short-read whole-genome sequencing (WGS) and use long-read WGS for validation in a subcohort (N = 15), and explore their effect on 438 plasma proteins. We detected 184,182 polymorphic CNVs and identified 15 CNVs to be associated with 16 proteins (P < 8.22×10-10). Of these, 5 CNVs could be perfectly validated using long-read sequencing, including a CNV which was associated with measurements of the osteoclast-associated immunoglobulin-like receptor (OSCAR) and located upstream of OSCAR, a gene important for bone health. Two other CNVs were identified to be clusters of many short repetitive elements and another represented a complex rearrangement including an inversion. Our findings provide insights into the structure of common CNVs and their effects on the plasma proteome, and highlights the importance of investigating common CNVs, also in relation to complex diseases.
Collapse
Affiliation(s)
- Daniel Schmitz
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Zhiwei Li
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Valeria Lo Faro
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Nima Rafati
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| |
Collapse
|
4
|
Dobrzycka M, Sulewska A, Biecek P, Charkiewicz R, Karabowicz P, Charkiewicz A, Golaszewska K, Milewska P, Michalska-Falkowska A, Nowak K, Niklinski J, Konopińska J. miRNA Studies in Glaucoma: A Comprehensive Review of Current Knowledge and Future Perspectives. Int J Mol Sci 2023; 24:14699. [PMID: 37834147 PMCID: PMC10572595 DOI: 10.3390/ijms241914699] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Glaucoma, a neurodegenerative disorder that leads to irreversible blindness, remains a challenge because of its complex nature. MicroRNAs (miRNAs) are crucial regulators of gene expression and are associated with glaucoma and other diseases. We aimed to review and discuss the advantages and disadvantages of miRNA-focused molecular studies in glaucoma through discussing their potential as biomarkers for early detection and diagnosis; offering insights into molecular pathways and mechanisms; and discussing their potential utility with respect to personalized medicine, their therapeutic potential, and non-invasive monitoring. Limitations, such as variability, small sample sizes, sample specificity, and limited accessibility to ocular tissues, are also addressed, underscoring the need for robust protocols and collaboration. Reproducibility and validation are crucial to establish the credibility of miRNA research findings, and the integration of bioinformatics tools for miRNA database creation is a valuable component of a comprehensive approach to investigate miRNA aberrations in patients with glaucoma. Overall, miRNA research in glaucoma has provided significant insights into the molecular mechanisms of the disease, offering potential biomarkers, diagnostic tools, and therapeutic targets. However, addressing challenges such as variability and limited tissue accessibility is essential, and further investigations and validation will contribute to a deeper understanding of the functional significance of miRNAs in glaucoma.
Collapse
Affiliation(s)
- Margarita Dobrzycka
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| | - Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Przemyslaw Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland;
| | - Radoslaw Charkiewicz
- Center of Experimental Medicine, Medical University of Bialystok, 15-369 Bialystok, Poland;
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | - Piotr Karabowicz
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | - Angelika Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Kinga Golaszewska
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| | - Patrycja Milewska
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | | | - Karolina Nowak
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Joanna Konopińska
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| |
Collapse
|
5
|
Yang X, Wang X, Zou Y, Zhang S, Xia M, Fu L, Vollger MR, Chen NC, Taylor DJ, Harvey WT, Logsdon GA, Meng D, Shi J, McCoy RC, Schatz MC, Li W, Eichler EE, Lu Q, Mao Y. Characterization of large-scale genomic differences in the first complete human genome. Genome Biol 2023; 24:157. [PMID: 37403156 PMCID: PMC10320979 DOI: 10.1186/s13059-023-02995-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The first telomere-to-telomere (T2T) human genome assembly (T2T-CHM13) release is a milestone in human genomics. The T2T-CHM13 genome assembly extends our understanding of telomeres, centromeres, segmental duplication, and other complex regions. The current human genome reference (GRCh38) has been widely used in various human genomic studies. However, the large-scale genomic differences between these two important genome assemblies are not characterized in detail yet. RESULTS Here, in addition to the previously reported "non-syntenic" regions, we find 67 additional large-scale discrepant regions and precisely categorize them into four structural types with a newly developed website tool called SynPlotter. The discrepant regions (~ 21.6 Mbp) excluding telomeric and centromeric regions are highly structurally polymorphic in humans, where the deletions or duplications are likely associated with various human diseases, such as immune and neurodevelopmental disorders. The analyses of a newly identified discrepant region-the KLRC gene cluster-show that the depletion of KLRC2 by a single-deletion event is associated with natural killer cell differentiation in ~ 20% of humans. Meanwhile, the rapid amino acid replacements observed within KLRC3 are probably a result of natural selection in primate evolution. CONCLUSION Our study provides a foundation for understanding the large-scale structural genomic differences between the two crucial human reference genomes, and is thereby important for future human genomics studies.
Collapse
Affiliation(s)
- Xiangyu Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xuankai Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yawen Zou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shilong Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Manying Xia
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Lianting Fu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Mitchell R Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Nae-Chyun Chen
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Dylan J Taylor
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Dan Meng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Junfeng Shi
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Julian TH, Girach Z, Sanderson E, Guo H, Yu J, Cooper-Knock J, Black GC, Sergouniotis PI. Causal factors in primary open angle glaucoma: a phenome-wide Mendelian randomisation study. Sci Rep 2023; 13:9984. [PMID: 37340071 DOI: 10.1038/s41598-023-37144-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 06/16/2023] [Indexed: 06/22/2023] Open
Abstract
Primary open angle glaucoma (POAG) is a chronic, adult-onset optic neuropathy associated with characteristic optic disc and/or visual field changes. With a view to identifying modifiable risk factors for this common neurodegenerative condition, we performed a 'phenome-wide' univariable Mendelian randomisation (MR) study that involved analysing the relationship between 9661 traits and POAG. Utilised analytical approaches included weighted mode based estimation, the weighted median method, the MR Egger method and the inverse variance weighted (IVW) approach. Eleven traits related to POAG risk were identified including: serum levels of the angiopoietin-1 receptor (OR [odds ratio] = 1.11, IVW p = 2.34E-06) and the cadherin 5 protein (OR = 1.06, IVW p = 1.31E-06); intraocular pressure (OR = 2.46-3.79, IVW p = 8.94E-44-3.00E-27); diabetes (OR = 5.17, beta = 1.64, IVW p = 9.68E-04); and waist circumference (OR = 0.79, IVW p = 1.66E-05). Future research focussing on the effects of adiposity, cadherin 5 and angiopoietin-1 receptor on POAG development and progression is expected to provide key insights that might inform the provision of lifestyle modification advice and/or the development of novel therapies.
Collapse
Affiliation(s)
- Thomas H Julian
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Zain Girach
- Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - Eleanor Sanderson
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hui Guo
- Centre for Biostatistics, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jonathan Yu
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Johnathan Cooper-Knock
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Graeme C Black
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Panagiotis I Sergouniotis
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
7
|
Rezaei M, Faramarzpour M, Shobeiri P, Seyedmirzaei H, Sarasyabi MS, Dabiri S. A systematic review, meta-analysis, and network analysis of diagnostic microRNAs in glaucoma. Eur J Med Res 2023; 28:137. [PMID: 36973823 PMCID: PMC10041737 DOI: 10.1186/s40001-023-01093-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
Glaucoma is a chronic neurodegenerative process of the optic nerve that is the leading cause of blindness worldwide, and early diagnosis of the disease could greatly affect patients' prognoses. The pathophysiology of glaucoma is complicated by a combination of genetic and epigenetic factors. Deciphering the early diagnostic biomarkers in glaucoma could attenuate the disease's global burden and help us understand the exact mechanisms involved in glaucoma. The microRNAs are members of a larger family of non-coding RNAs that play an essential role in the epigenetic basis of glaucoma. A systematic study and meta-analysis of diagnostic microRNAs in glaucoma, jointly with network analysis of target genes, were carried out on published papers assessing differentially expressed microRNAs in human subjects. In total, 321 articles were found, and, after screening, six studies were eligible for further analysis. 52 differentially expressed microRNAs were found, of which 28 and 24 were up-regulated and down-regulated, respectively. Only 12 microRNAs were qualified for meta-analysis, with overall sensitivity and specificity of 80% and 74%, respectively. Then, using network analysis, it became apparent that the VEGF-A, AKT1, CXCL12, and HRAS genes were the most important targets for the microRNAs. Perturbations in WNT signaling, protein transport, and extracellular matrix organization pathways were discovered to be important in the etiology of glaucoma using the community detection approach. This study tries to uncover the promising microRNAs and their target genes that govern the epigenetics of glaucoma.
Collapse
Affiliation(s)
- Masoud Rezaei
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
- Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahsa Faramarzpour
- Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Endocrinology and Metabolism Population Sciences Institute, Non-Communicable Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Seyedmirzaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Sharifi Sarasyabi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
- Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Radiology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
8
|
Lo Faro V, Nolte IM, Ten Brink JB, Snieder H, Jansonius NM, Bergen AA. Mitochondrial Genome Study Identifies Association Between Primary Open-Angle Glaucoma and Variants in MT-CYB, MT-ND4 Genes and Haplogroups. Front Genet 2021; 12:781189. [PMID: 34976016 PMCID: PMC8719162 DOI: 10.3389/fgene.2021.781189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Background and purpose: Primary open-angle glaucoma (POAG) is an optic neuropathy characterized by death of retinal ganglion cells and atrophy of the optic nerve head. The susceptibility of the optic nerve to damage has been shown to be mediated by mitochondrial dysfunction. In this study, we aimed to determine a possible association between mitochondrial SNPs or haplogroups and POAG. Methods: Mitochondrial DNA single nucleotide polymorphisms (mtSNPs) were genotyped using the Illumina Infinium Global Screening Array-24 (GSA) 700K array set. Genetic analyses were performed in a POAG case-control study involving the cohorts, Groningen Longitudinal Glaucoma Study-Lifelines Cohort Study and Amsterdam Glaucoma Study, including 721 patients and 1951 controls in total. We excluded samples not passing quality control for nuclear genotypes and samples with low call rate for mitochondrial variation. The mitochondrial variants were analyzed both as SNPs and haplogroups. These were determined with the bioinformatics software HaploGrep, and logistic regression analysis was used for the association, as well as for SNPs. Results: Meta-analysis of the results from both cohorts revealed a significant association between POAG and the allele A of rs2853496 [odds ratio (OR) = 0.64; p = 0.006] within the MT-ND4 gene, and for the T allele of rs35788393 (OR = 0.75; p = 0.041) located in the MT-CYB gene. In the mitochondrial haplogroup analysis, the most significant p-value was reached by haplogroup K (p = 1.2 × 10−05), which increases the risk of POAG with an OR of 5.8 (95% CI 2.7–13.1). Conclusion: We identified an association between POAG and polymorphisms in the mitochondrial genes MT-ND4 (rs2853496) and MT-CYB (rs35788393), and with haplogroup K. The present study provides further evidence that mitochondrial genome variations are implicated in POAG. Further genetic and functional studies are required to substantiate the association between mitochondrial gene polymorphisms and POAG and to define the pathophysiological mechanisms of mitochondrial dysfunction in glaucoma.
Collapse
Affiliation(s)
- Valeria Lo Faro
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Clinical Genetics, Amsterdam University Medical Center (AMC), Amsterdam, Netherlands
| | - Ilja M. Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jacoline B. Ten Brink
- Department of Clinical Genetics, Amsterdam University Medical Center (AMC), Amsterdam, Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nomdo M. Jansonius
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Arthur A. Bergen
- Department of Clinical Genetics, Amsterdam University Medical Center (AMC), Amsterdam, Netherlands
- Department of Ophthalmology, Amsterdam UMC, Amsterdam, Netherlands
- *Correspondence: Arthur A. Bergen,
| |
Collapse
|