1
|
Wang H, Yang X, Li T, Li Z, Zhao J, Wang Z, Wang Z, Li T, Chen C, Zhao J, Wang C, Liu X, Deng P, Ji W. Comparative transcriptomes reveal insights into different host responses associated with Fusarium head blight resistance in wheat. BMC PLANT BIOLOGY 2025; 25:509. [PMID: 40259243 PMCID: PMC12012965 DOI: 10.1186/s12870-025-06553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
Fusarium head blight (FHB) has become a major challenge in global wheat production, causing severe yield losses and exacerbating food safety concerns. In recent years, FHB-related research has focused on understanding resistance mechanisms, identifying genetic markers, and breeding resistant varieties to mitigate the disease's impact on yield and quality. This study comparatively analyzed transcriptome data from six wheat materials with differing levels of resistance following infection by Fusarium graminearum (F. graminearum). The results displayed that a total of 26,767 protein-coding genes and 2,463 long non-coding RNAs (lncRNAs) showed differential expression levels between normal and FHB treatment in at least one material. Among them, 14,130 FHB-responsive protein-coding genes and 913 lncRNAs were identified as material-specific, with functions related to the unique disease resistance mechanisms of the respective materials. Some of these genes have previously been reported to participate in physiological processes related to wheat FHB resistance, including Pm3-like resistance proteins, lactoylglutathione lyase, serine/threonine protein phosphatases, NBS-LRR resistance proteins, glutathione S-transferase (GST), and RPM1 resistance proteins. Additionally, we integrated FHB-responsive genes and lncRNAs with previously reported FHB QTLs, and constructed an interaction regulatory network between pathogen and host through a co-expression network. Based on this network, we identified five genes (one gene encoding glutathione synthetase and four genes encoding glutathione transferase) in the glutathione metabolism pathway, which overlapped with Fhb2 QTLs regions and exhibited material-specific expression patterns. These results will provide new insights into further dissecting of the functional genes and lncRNAs involved in wheat FHB resistance.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xiaoying Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Zuchun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jianing Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Zi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Zhenyu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Tingdong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Chunhuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Jixin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Xinlun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China.
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China.
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Sharma NK, Mishra DC, Kumar B, Srivastava S, Chaturvedi KK, Singh AK, Madival SD, Budhlakoti N, Jha GK. Beyond the genome: unveiling tissue-specific non-coding RNAs in clove ( Syzygium aromaticum L.). 3 Biotech 2025; 15:81. [PMID: 40071125 PMCID: PMC11891123 DOI: 10.1007/s13205-025-04251-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Clove (Syzygium aromaticum), valued for its role in food preservation and medicine, has recently drawn research interest for its noncoding RNAs (ncRNAs). This study discovers 3274 long noncoding RNAs (lncRNAs) and 2404 circular RNAs (circRNAs) from publicly available RNAseq data. We identified the regulation of 834 genes through miRNA-lncRNA-mRNA network interactions. Additionally, 35 lncRNAs were predicted as precursors for 17 microRNAs (miRNAs), highlighting their role in post-transcriptional regulation. Tissue-specific analysis of circRNAs revealed their interaction with 1047 miRNAs and competing for binding sites on 2382 messenger RNAs (mRNAs). These results underscore their involvement in complex regulatory networks. To support further research and development, we developed SaroNcRDb (http://backlin.cabgrid.res.in/saroncrdb/), a web resource providing detailed insights into the types, chromosomal locations, tissue distributions, and interactions of identified ncRNAs. The findings pave the way for future studies to harness the regulatory roles of ncRNAs in improving Clove's agronomic traits and secondary metabolite production.
Collapse
Affiliation(s)
- Nitesh Kumar Sharma
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Dwijesh Chandra Mishra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
- Department of Environmental and Public Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45221 USA
| | - Baibhav Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Sudhir Srivastava
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Krishna Kumar Chaturvedi
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Awani Kumar Singh
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Sharanbasappa D. Madival
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Neeraj Budhlakoti
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Girish Kumar Jha
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| |
Collapse
|
3
|
Feng Z, Wang X, Luo Z, Liu A, Wen C, Ma Q, Liu W, Li X, Ma L, Li Y, Yang B, Wang L. Identification and expression analysis of lncRNAs in rice roots (Oryza sativa L.) under elevated CO 2 concentration and/or cadmium stress. Genomics 2025; 117:110980. [PMID: 39674421 DOI: 10.1016/j.ygeno.2024.110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
The gradual rise of CO2 is one of the global climate changes, Cd stress is also a major abiotic stress factor that affects rice (Oryza sativa L.). The rice seedlings were treated under two CO2 concentrations and two CdCl2 concentrations for 7 days (treatments names: 400 ± 20 μmol mol-1 CO2 and 0 μmol L-1 CdCl2 concentrations, AC; 400 ± 20 μmol mol-1 CO2 and 150 μmol L-1 CdCl2 concentrations, Cd; 800 ± 20 μmol mol-1 CO2 and 0 μmol L-1 CdCl2 concentrations, EC; 800 ± 20 μmol mol-1 CO2 and 150 μmol L-1 CdCl2 concentrations, EC + Cd). The lncRNAs informations were analyzed and excavated using high-throughput sequencing, target genes annotation, and qRT-PCR analysis techniques so as to reveal the regulatory mechanism of lncRNAs in rice roots under high CO2 concentrations and/or Cd stress. The results show that: (1) 326 (AC vs Cd), 331 (AC vs EC), 343 (AC vs EC + Cd), 112 (Cd vs EC + Cd) DE-lncRNAs were identified. (2) MAPK signaling pathway-plant (relevant genes Os04g0534166, Os05g0399800 regulated by MSTRG.18576.11, MSTRG.20864.1) and diterpenoid biosynthesis (relevant genes Os12g0491800, Os02g0570400 regulated by MSTRG.8965.1, MSTRG.11509.1) were annotated in AC vs Cd; Under EC relative to AC, DE-lncRNAs were annotated significantly to the flavonoid biosynthesis (relevant genes Os10g0196100, Os10g0320100, Os11g0116300, Os03g0819600 regulated by MSTRG.4612.1, MSTRG.4668.1, MSTRG.6051.1, MSTRG.16669.1); Under composite treatments, relative to AC, DE-lncRNAs were mainly annotated in the plant hormone signal transduction pathway (relevant genes Os03g0180800, Os03g0180900, Os03g0181100 regulated by MSTRG.13776.1). Under combined treatment, elevated CO2 alleviates Cd stress damage by regulating phenylpropanoid biosynthesis through DE-lncRNAs (relevant genes Os09g0419200 regulated by MSTRG. 29,573.1).
Collapse
Affiliation(s)
- Ziyuan Feng
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Xiaoyu Wang
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Zihan Luo
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Aihua Liu
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Caixia Wen
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Qi Ma
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Wenyong Liu
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Xuemei Li
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Lianju Ma
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Yueying Li
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Bin Yang
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Lanlan Wang
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China.
| |
Collapse
|
4
|
Ye B, Liu Y, Wang Z, Shen L, Yin C, Shen K, Sun J, Xu X, Sun M, Wu J, He Z, Yu X, Lu F, Hao Y, Guo Z. Genetic basis of geographical differentiation, breeding selection, domestication effects, and breeding application for TaJAZ1 in wheat. J Genet Genomics 2024; 51:665-668. [PMID: 38295875 DOI: 10.1016/j.jgg.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 03/08/2024]
Affiliation(s)
- Botao Ye
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziying Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Botanical Garden, Beijing 100093, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Kuocheng Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqiang Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaowan Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengjing Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; International Maize and Wheat Improvement Center China Office, c/o CAAS, Beijing 100081, China
| | - Xuchang Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Lu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Botanical Garden, Beijing 100093, China.
| |
Collapse
|
5
|
Yadav A, Mathan J, Dubey AK, Singh A. The Emerging Role of Non-Coding RNAs (ncRNAs) in Plant Growth, Development, and Stress Response Signaling. Noncoding RNA 2024; 10:13. [PMID: 38392968 PMCID: PMC10893181 DOI: 10.3390/ncrna10010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Plant species utilize a variety of regulatory mechanisms to ensure sustainable productivity. Within this intricate framework, numerous non-coding RNAs (ncRNAs) play a crucial regulatory role in plant biology, surpassing the essential functions of RNA molecules as messengers, ribosomal, and transfer RNAs. ncRNAs represent an emerging class of regulators, operating directly in the form of small interfering RNAs (siRNAs), microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). These ncRNAs exert control at various levels, including transcription, post-transcription, translation, and epigenetic. Furthermore, they interact with each other, contributing to a variety of biological processes and mechanisms associated with stress resilience. This review primarily concentrates on the recent advancements in plant ncRNAs, delineating their functions in growth and development across various organs such as root, leaf, seed/endosperm, and seed nutrient development. Additionally, this review broadens its scope by examining the role of ncRNAs in response to environmental stresses such as drought, salt, flood, heat, and cold in plants. This compilation offers updated information and insights to guide the characterization of the potential functions of ncRNAs in plant growth, development, and stress resilience in future research.
Collapse
Affiliation(s)
- Amit Yadav
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA;
| | - Jyotirmaya Mathan
- Sashi Bhusan Rath Government Autonomous Women’s College, Brahmapur 760001, India;
| | - Arvind Kumar Dubey
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Anuradha Singh
- Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Luo X, Yang Y, Lin X, Xiao J. Deciphering spike architecture formation towards yield improvement in wheat. J Genet Genomics 2023; 50:835-845. [PMID: 36907353 DOI: 10.1016/j.jgg.2023.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023]
Abstract
Wheat is the most widely grown crop globally, providing 20% of the daily consumed calories and protein content around the world. With the growing global population and frequent occurrence of extreme weather caused by climate change, ensuring adequate wheat production is essential for food security. The architecture of the inflorescence plays a crucial role in determining the grain number and size, which is a key trait for improving yield. Recent advances in wheat genomics and gene cloning techniques have improved our understanding of wheat spike development and its applications in breeding practices. Here, we summarize the genetic regulation network governing wheat spike formation, the strategies used for identifying and studying the key factors affecting spike architecture, and the progress made in breeding applications. Additionally, we highlight future directions that will aid in the regulatory mechanistic study of wheat spike determination and targeted breeding for grain yield improvement.
Collapse
Affiliation(s)
- Xumei Luo
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
7
|
Liu Y, Chen J, Yin C, Wang Z, Wu H, Shen K, Zhang Z, Kang L, Xu S, Bi A, Zhao X, Xu D, He Z, Zhang X, Hao C, Wu J, Gong Y, Yu X, Sun Z, Ye B, Liu D, Zhang L, Shen L, Hao Y, Ma Y, Lu F, Guo Z. A high-resolution genotype-phenotype map identifies the TaSPL17 controlling grain number and size in wheat. Genome Biol 2023; 24:196. [PMID: 37641093 PMCID: PMC10463835 DOI: 10.1186/s13059-023-03044-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Large-scale genotype-phenotype association studies of crop germplasm are important for identifying alleles associated with favorable traits. The limited number of single-nucleotide polymorphisms (SNPs) in most wheat genome-wide association studies (GWASs) restricts their power to detect marker-trait associations. Additionally, only a few genes regulating grain number per spikelet have been reported due to sensitivity of this trait to variable environments. RESULTS We perform a large-scale GWAS using approximately 40 million filtered SNPs for 27 spike morphology traits. We detect 132,086 significant marker-trait associations and the associated SNP markers are located within 590 associated peaks. We detect additional and stronger peaks by dividing spike morphology into sub-traits relative to GWAS results of spike morphology traits. We propose that the genetic dissection of spike morphology is a powerful strategy to detect signals for grain yield traits in wheat. The GWAS results reveal that TaSPL17 positively controls grain size and number by regulating spikelet and floret meristem development, which in turn leads to enhanced grain yield per plant. The haplotypes at TaSPL17 indicate geographical differentiation, domestication effects, and breeding selection. CONCLUSION Our study provides valuable resources for genetic improvement of spike morphology and a fast-forward genetic solution for candidate gene detection and cloning in wheat.
Collapse
Affiliation(s)
- Yangyang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Ziying Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kuocheng Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiliang Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Lipeng Kang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Song Xu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Aoyue Bi
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Xuebo Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Daxing Xu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing, 100081, China
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Chenyang Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yan Gong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xuchang Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiwen Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Botao Ye
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danni Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Liping Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Youzhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Fei Lu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Flavell RB. A framework for improving wheat spike development and yield based on the master regulatory TOR and SnRK gene systems. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:755-768. [PMID: 36477879 PMCID: PMC9899413 DOI: 10.1093/jxb/erac469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The low rates of yield gain in wheat breeding programs create an ominous situation for the world. Amongst the reasons for this low rate are issues manifested in spike development that result in too few spikelets, fertile florets, and therefore grains being produced. Phases in spike development are particularly sensitive to stresses of various kinds and origins, and these are partly responsible for the deficiencies in grain production and slow rates of gain in yield. The diversity of developmental processes, stresses, and the large numbers of genes involved make it particularly difficult to prioritize approaches in breeding programs without an overarching, mechanistic framework. Such a framework, introduced here, is provided around the master regulator target of rapamycin and sucrose non-fermenting-1 (SNF1)-related protein kinase complexes and their control by trehalose-6-phosphate and other molecules. Being master regulators of the balance between growth and growth inhibition under stress, these provide genetic targets for creating breakthroughs in yield enhancement. Examples of potential targets and experimental approaches are described.
Collapse
Affiliation(s)
- Richard B Flavell
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| |
Collapse
|
9
|
Wang H, Ma Q, Shan F, Tian L, Gong J, Quan W, Yang W, Hou Q, Zhang F, Zhang S. Transcriptional regulation mechanism of wheat varieties with different nitrogen use efficiencies in response to nitrogen deficiency stress. BMC Genomics 2022; 23:727. [PMID: 36289540 PMCID: PMC9597979 DOI: 10.1186/s12864-022-08948-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background As one of the microelements, nitrogen play essential roles in cereal production. Although the use of chemical fertilizers has significantly improved the yield of wheat, it has also caused increasingly adverse environmental pollution. Revealing the molecular mechanism manipulating wheat nitrogen use efficiency (NUE), and cultivating wheat germplasms with high nitrogen use efficiency has become important goals for wheat researchers. In this study, we investigated the physiological and transcriptional differences of three wheat cultivars with different NUE under low nitrogen stress. Results The results showed that, under low nitrogen conditions, the activities of nitrogen metabolism-related enzymes (GS, NR, GDH), antioxidant enzymes (SOD, POD, CAT) and soluble protein contents of ZM366 (high NUE cultivar) were higher than those of JD8 (low NUE cultivar). The hybrid cultivar of ZM366 and JD8 showed mid-parent or over-parent heterosis. Transcriptome analysis revealed that ‘alanine, aspartate and glutamate metabolism’, ‘terpenoid backbone biosynthesis’ and ‘vitamin B6 metabolism’ pathways play key roles in nitrogen use efficiency in wheat. The significant enhancement of the ‘Calvin cycle’ and ‘photorespiration’ in ZM366 contributed to its higher level of carbon metabolism under low nitrogen stress, which is an important attribute differs from the other two varieties. In addition, the activation of ABA signal transduction and biosynthesis pathways also helps to maintain NUE under low- nitrogen conditions. Moreover, bHLH transcription factors were also found to play a positive role in wheat NUE. Conclusions In conclusion, these results enriched our knowledge of the mechanism of wheat NUE, and provided a theoretical basis for improving wheat NUE and breeding new cultivars. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08948-0.
Collapse
Affiliation(s)
- Hanxia Wang
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Qiaoyun Ma
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Fuhua Shan
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Liping Tian
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Jie Gong
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Wei Quan
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Weibing Yang
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Qiling Hou
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Fengting Zhang
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Shengquan Zhang
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| |
Collapse
|
10
|
Wu T, Chen J, Jiao C, Hu H, Wu Q, Xie Y. Identification of Long Non-Coding RNAs and Their Target Genes from Mycelium and Primordium in Model Mushroom Schizophyllum commune. MYCOBIOLOGY 2022; 50:357-365. [PMID: 36404904 PMCID: PMC9645281 DOI: 10.1080/12298093.2022.2116819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 06/16/2023]
Abstract
Schizophyllum commune has emerged as the most promising model mushroom to study developmental stages (mycelium, primordium), which are two primary processes of fruit body development. Long non-coding RNA (lncRNA) has been proved to participate in fruit development and sex differentiation in fungi. However, potential lncRNAs have not been identified in S. commune from mycelium to primordium developmental stages. In this study, lncRNA-seq was performed in S. commune and 61.56 Gb clean data were generated from mycelium and primordium developmental stages. Furthermore, 191 lncRNAs had been obtained and a total of 49 lncRNAs were classified as differently expressed lncRNAs. Additionally, 26 up-regulated differently expressed lncRNAs and 23 down-regulated between mycelium and primordia libraries were detected. Further, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differentially expressed lncRNAs target genes from the MAPK pathway, phosphatidylinositol signal, ubiquitin-mediated proteolysis, autophagy, and cell cycle. This study provides a new resource for further research on the relationship between lncRNA and two developmental stages (mycelium, primordium) in S. commune.
Collapse
Affiliation(s)
- Tuheng Wu
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jian Chen
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Chunwei Jiao
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou, China
| | - Huiping Hu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yizhen Xie
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
11
|
Yu S, Zhang Z, Li J, Zhu Y, Yin Y, Zhang X, Dai Y, Zhang A, Li C, Zhu Y, Fan J, Ruan Y, Dong X. Genome-wide identification and characterization of lncRNAs in sunflower endosperm. BMC PLANT BIOLOGY 2022; 22:494. [PMID: 36271333 PMCID: PMC9587605 DOI: 10.1186/s12870-022-03882-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/13/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), as important regulators, play important roles in plant growth and development. The expression and epigenetic regulation of lncRNAs remain uncharacterized generally in plant seeds, especially in the transient endosperm of the dicotyledons. RESULTS In this study, we identified 11,840 candidate lncRNAs in 12 day-after-pollination sunflower endosperm by analyzing RNA-seq data. These lncRNAs were evenly distributed in all chromosomes and had specific features that were distinct from mRNAs including tissue-specificity expression, shorter and fewer exons. By GO analysis of protein coding genes showing strong correlation with the lncRNAs, we revealed that these lncRNAs potential function in many biological processes of seed development. Additionally, genome-wide DNA methylation analyses revealed that the level of DNA methylation at the transcription start sites was negatively correlated with gene expression levels in lncRNAs. Finally, 36 imprinted lncRNAs were identified including 32 maternally expressed lncRNAs and four paternally expressed lncRNAs. In CG and CHG context, DNA methylation levels of imprinted lncRNAs in the upstream and gene body regions were slightly lower in the endosperm than that in embryo tissues, which indicated that the maternal demethylation potentially induce the paternally bias expression of imprinted lncRNAs in sunflower endosperm. CONCLUSION Our findings not only identified and characterized lncRNAs on a genome-wide scale in the development of sunflower endosperm, but also provide novel insights into the parental effects and epigenetic regulation of lncRNAs in dicotyledonous seeds.
Collapse
Affiliation(s)
- Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Zhichao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Jing Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanbin Zhu
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China
- State Key Laboratory of the Northeast Crop Genetics and Breeding, Shenyang, China
| | - Yanzhe Yin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaoyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yuxin Dai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Ao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanshu Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Jinjuan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China.
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China.
- State Key Laboratory of the Northeast Crop Genetics and Breeding, Shenyang, China.
| |
Collapse
|
12
|
Li N, Liu T, Guo F, Yang J, Shi Y, Wang S, Sun D. Identification of long non-coding RNA-microRNA-mRNA regulatory modules and their potential roles in drought stress response in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1011064. [PMID: 36304395 PMCID: PMC9592863 DOI: 10.3389/fpls.2022.1011064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/23/2022] [Indexed: 06/12/2023]
Abstract
Drought is one of the most severe abiotic stresses that influence wheat production across the globe. Understanding the molecular regulatory network of wheat in response to drought is of great importance in molecular breeding. Noncoding RNAs influence plant development and resistance to abiotic stresses by regulating gene expression. In this study, whole-transcriptome sequencing was performed on the seedlings of two wheat varieties with contrasting levels of drought tolerance under drought and control conditions to identify long noncoding RNAs (lncRNAs), micro RNAs (miRNAs), and mRNAs related to drought stress and explore the potential lncRNA-miRNA-mRNA regulatory modules in controlling wheat drought stress response. A total of 1515 differentially expressed lncRNAs (DELs), 209 differentially expressed miRNAs (DEMs), and 20462 differentially expressed genes (DEGs) were identified. Of the 20462 DEGs, 1025 were identified as potential wheat drought resistance-related DEGs. Based on the regulatory relationship and expression patterns of DELs, DEMs, and DEGs, 10 DEL-DEM-DEG regulatory modules related to wheat drought stress response were screened, and preliminary expression verification of two important candidate modules was performed. Our results revealed the possible roles of lncRNA-miRNA-mRNA modules in regulatory networks related to drought tolerance and provided useful information as valuable genomic resources in molecular breeding of wheat.
Collapse
|
13
|
Yang G, Deng P, Guo Q, Shi T, Pan W, Cui L, Liu X, Nie X. Population transcriptomic analysis identifies the comprehensive lncRNAs landscape of spike in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2022; 22:450. [PMID: 36127641 PMCID: PMC9490906 DOI: 10.1186/s12870-022-03828-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are emerging as the important regulators involving in growth and development as well as stress response in plants. However, current lncRNA studies were mainly performed at the individual level and the significance of it is not well understood in wheat. RESULTS In this study, the lncRNA landscape of wheat spike was characterized through analysing a total of 186 spike RNA-seq datasets from 93 wheat genotypes. A total of 35,913 lncRNAs as well as 1,619 lncRNA-mRNA pairs comprised of 443 lncRNAs and 464 mRNAs were obtained. Compared to coding genes, these lncRNAs displayed rather low conservation among wheat and other gramineous species. Based on re-sequencing data, the genetic variations of these lncRNA were investigated and obvious genetic bottleneck were found on them during wheat domestication process. Furthermore, 122 lncRNAs were found to act as ceRNA to regulate endogenous competition. Finally, association and co-localization analysis of the candidate lncRNA-mRNA pairs identified 170 lncRNAs and 167 target mRNAs significantly associated with spike-related traits, including lncRNA.127690.1/TraesCS2A02G518500.1 (PMEI) and lncRNA.104854.1/TraesCS6A02G050300.1 (ATG5) associated with heading date and spike length, respectively. CONCLUSIONS This study reported the lncRNA landscape of wheat spike through the population transcriptome analysis, which not only contribute to better understand the wheat evolution from the perspective of lncRNA, but also lay the foundation for revealing roles of lncRNA playing in spike development.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qifan Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tingrui Shi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Xiaoqin Liu
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, Shandong, China.
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
14
|
Gao Y, Cui Y, Zhao R, Chen X, Zhang J, Zhao J, Kong L. Cryo-Treatment Enhances the Embryogenicity of Mature Somatic Embryos via the lncRNA-miRNA-mRNA Network in White Spruce. Int J Mol Sci 2022; 23:ijms23031111. [PMID: 35163033 PMCID: PMC8834816 DOI: 10.3390/ijms23031111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
In conifers, somatic embryogenesis is uniquely initiated from immature embryos in a narrow time window, which is considerably hindered by the difficulty to induce embryogenic tissue (ET) from other tissues, including mature somatic embryos. In this study, the embryogenic ability of newly induced ET and DNA methylation levels was detected, and whole-transcriptome sequencing analyses were carried out. The results showed that ultra-low temperature treatment significantly enhanced ET induction from mature somatic embryos, with the induction rate from 0.4% to 15.5%, but the underlying mechanisms remain unclear. The newly induced ET showed higher capability in generating mature embryos than the original ET. DNA methylation levels fluctuated during the ET induction process. Here, WGCNA analysis revealed that OPT4, TIP1-1, Chi I, GASA5, GST, LAX3, WRKY7, MYBS3, LRR-RLK, PBL7, and WIN1 genes are involved in stress response and auxin signal transduction. Through co-expression analysis, lncRNAs MSTRG.505746.1, MSTRG.1070680.1, and MSTRG.33602.1 might bind to pre-novel_miR_339 to promote the expression of WRKY7 genes for stress response; LAX3 could be protected by lncRNAs MSTRG.1070680.1 and MSTRG.33602.1 via serving as sponges for novel_miR_495 to initiate auxin signal transduction; lncRNAs MSTRG.505746.1, MSTRG.1070680.1, and MSTRG.33602.1 might serve as sponges for novel_miR_527 to enhance the expression of Chi I for early somatic embryo development. This study provides new insight into the area of stress-enhanced early somatic embryogenesis in conifers, which is also attributable to practical applications.
Collapse
Affiliation(s)
- Ying Gao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Ying Cui
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Ruirui Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Xiaoyi Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Jinfeng Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Jian Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
- Correspondence: (J.Z.); (L.K.)
| | - Lisheng Kong
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
- Correspondence: (J.Z.); (L.K.)
| |
Collapse
|