1
|
Chesters D, Bossert S, Orr MC. [genus]_[species]; Presenting phylogenies to facilitate synthesis. Cladistics 2025; 41:177-192. [PMID: 39673226 DOI: 10.1111/cla.12601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024] Open
Abstract
Each published phylogeny is a potential contribution to the synthesis of the Tree of Life and countless downstream projects. Steps are needed for fully synthesizable science, but only a minority of studies achieve these. We here review the range of phylogenetic presentation and note aspects that hinder further analysis. We provide simple suggestions on publication that would greatly enhance utilizability, and propose a formal grammar for phylogeny terminal format. We suggest that each published phylogeny should be accompanied by at minimum the single preferred result in machine readable tree (e.g. Newick) form in the supplement, a simple task fulfilled by fewer than half of studies. Further, the tree should be clear from the file name and extension; the orientation (rooted or unrooted) should match the figures; terminals labels should include genus and species IDs; underscores should separate strings within-field (instead of white spaces); and if other informational fields are added these should be separated by a unique delimiting character (we suggest multiple underscores or the vertical pipe character, |) and ordered consistently. These requirements are largely independent of phylogenetic study aims, while we note other requirements for synthesis (e.g. removal of species repeats and uninformative terminals) that are not necessarily the responsibility of authors. Machine readable trees show greater variation in terminal formatting than typical phylogeny images (owing presumably to greater scrutiny of the latter), and thus are complex and laborious to parse. Since the majority of existing studies have provided only images, we additionally review typical variation in plotting style, information that will be necessary for developing the automated phylogeny transcription tools needed for their eventual inclusion in the Tree of Life.
Collapse
Affiliation(s)
- Douglas Chesters
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- International College, University of Chinese Academy of Sciences, Shijingshan District, Beijing, 100049, China
| | - Silas Bossert
- Department of Entomology, Washington State University, 1945 Ferdinand's Ln, Pullman, WA, 99163, USA
| | - Michael C Orr
- Entomologie, Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, Stuttgart, 70191, Germany
| |
Collapse
|
2
|
Tan S, Wang W, Li J, Sha Z. Comprehensive analysis of 111 Pleuronectiformes mitochondrial genomes: insights into structure, conservation, variation and evolution. BMC Genomics 2025; 26:50. [PMID: 39833664 PMCID: PMC11745014 DOI: 10.1186/s12864-025-11204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Pleuronectiformes, also known as flatfish, are important model and economic animals. However, a comprehensive genome survey of their important organelles, mitochondria, has been limited. Therefore, we aim to analyze the genomic structure, codon preference, nucleotide diversity, selective pressure and repeat sequences, as well as reconstruct the phylogenetic relationship using the mitochondrial genomes of 111 flatfish species. RESULTS Our analysis revealed a conserved gene content of protein-coding genes and rRNA genes, but varying numbers of tRNA genes and control regions across species. Various gene rearrangements were found in flatfish species, especially for the rearrangement of nad5-nad6-cytb block in Samaridae family, the swapping rearrangement of nad6 and cytb gene in Bothidae family, as well as the control region translocation and tRNA-Gln gene inversion in the subfamily Cynoglossinae, suggesting their unique evolutionary history and/or functional benefit. Codon usage showed obvious biases, with adenine being the most frequent nucleotide at the third codon position. Nucleotide diversity and selective pressure analysis suggested that different protein-coding genes underwent varying degrees of evolutionary pressure, with cytb and cox genes being the most conserved ones. Phylogenetic analysis using both whole mitogenome information and concatenated independently aligned protein-coding genes largely mirrored the taxonomic classification of the species, but showed different phylogeny. The identification of simple sequence repeats and various long repetitive sequences provided additional complexity of genome organization and offered markers for evolutionary studies and breeding practices. CONCLUSIONS This study represents a significant step forward in our comprehension of the flatfish mitochondrial genomes, providing valuable insights into the structure, conservation and variation within flatfish mitogenomes, with implications for understanding their evolutionary history, functional genomics and fisheries management. Future research can delve deeper into conservation biology, evolutionary biology and functional usages of variations.
Collapse
Affiliation(s)
- Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Wenwen Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jinjiang Li
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
3
|
Shi A, Li C, Farhan M, Xu C, Zhang Y, Qian H, Zhang S, Jing T. Characterization, Codon Usage Pattern and Phylogenetic Implications of the Waterlily Aphid Rhopalosiphum nymphaeae (Hemiptera: Aphididae) Mitochondrial Genome. Int J Mol Sci 2024; 25:11336. [PMID: 39518889 PMCID: PMC11547030 DOI: 10.3390/ijms252111336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The water lily aphid, Rhopalosiphum nymphaeae, is the only known aphid that can live in both terrestrial and aquatic conditions. In this study, the complete mitochondrial genome of R. nymphaeae was generated using Illumina sequencing technology. The typical circular DNA mitochondrial genome of R. nymphaeae is 15,772 bp in length, with a high A+T content (84.34%). It contains 37 coding genes (13 protein-coding genes, 22 transport RNAs, and two ribosomal RNAs) and two non-coding regions (one control region and one repeat region). Enc-plot, PR2-bias, and neutrality plot analysis indicated that the codon usage of the protein-coding genes is mainly affected by natural selection. The evolution rate analysis (the ratio of nonsynonymous to synonymous, Ka/Ks) indicated that all the PCGs in R. nymphaeae are under a strong purifying selection. The control region has conserved structure elements, and two types of tandem repeat units exist. The length and sequence of the aphid-unique repeat region has high similarity with closely related species. Phylogenetic analyses determined by both maximum likelihood and Bayesian inference support the monophyly of Aphidinae, Aphidini, Aphidina, and Rhopalosiphina. However, the monophyly of the genera in Rhopalosiphina, such as Rhopalosiphum, is still not resolved. This study may help us to understand the phylogenetic relationship of aphids, and much more aphid data are needed in future studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tianxing Jing
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (A.S.); (C.L.); (M.F.); (C.X.); (Y.Z.); (H.Q.); (S.Z.)
| |
Collapse
|
4
|
Chang H, Guo J, Li M, Gao Y, Wang S, Wang X, Liu Y. Comparative genome and phylogenetic analysis revealed the complex mitochondrial genome and phylogenetic position of Conopomorpha sinensis Bradley. Sci Rep 2023; 13:4989. [PMID: 36973296 PMCID: PMC10042987 DOI: 10.1038/s41598-023-30570-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Conopomorpha sinensis Bradley is a destructive pest that causes severe economic damage to litchi and longan. Previous C. sinensis research has focused on population life tables, oviposition selectivity, pest population prediction, and control technology. However, there are few studies on its mitogenome and phylogenetic evolution. In this study, we sequenced the whole mitogenome of C. sinensis by the third-generation sequencing, and analyzed the characteristics of its mitogenome by comparative genome. The complete mitogenome of C. sinensis is a typical circular and double-stranded structure. The ENC-plot analyses revealed that natural selection could affect the information of codon bias of the protein-coding genes in the mitogenome of C. sinensis in the evolutionary process. Compared with 12 other Tineoidea species, the trnA-trnF gene cluster of tRNA in the C. sinensis mitogenome appears to have a new arrangement pattern. This new arrangement has not been found in other Tineoidea or other Lepidoptera, which needs further exploration. Meanwhile, a long AT repeated sequence was inserted between trnR and trnA, trnE and trnF, ND1 and trnS in the mitogenome of C. sinensis, and the reason for this sequence remains to be further studied. Furthermore, the results of phylogenetic analysis showed that the litchi fruit borer belonged to Gracillariidae, and Gracillariidae was monophyletic. The results will contribute to an improved understanding of the complex mitogenome and phylogeny of C. sinensis. It also will provide a molecular basis for further research on the genetic diversity and population differentiation of C. sinensis.
Collapse
Affiliation(s)
- Hong Chang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China
| | - Jianglong Guo
- Key Laboratory of Integrated Pest Management On Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Center of Hebei Province, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, 071000, China
| | - Mingzhi Li
- Bio&Data Biotechnologies Co. Ltd., Guangzhou, 510640, China
| | - Yan Gao
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China
| | - Siwei Wang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China
| | - Xiaonan Wang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China
| | - Yanping Liu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China.
| |
Collapse
|
5
|
Huang W, Zhang C, Zhang T, Xu Y, Xu S, Tian L, Li H, Cai W, Song F. Features and evolution of control regions in leafroller moths (Lepidoptera: Tortricidae) inferred from mitochondrial genomes and phylogeny. Int J Biol Macromol 2023; 236:123928. [PMID: 36889622 DOI: 10.1016/j.ijbiomac.2023.123928] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
The control region (CR) of the mitochondrial genome (mitogenome) represents a major noncoding fragment with several special structural features that are thought to be responsible for the initiation of mitogenome transcription and replication. However, few studies have revealed the evolutionary patterns of CR in the phylogenetic context. Here, we explain the characteristics and evolution of CR in Tortricidae, inferred from a mitogenome-based phylogeny. The first complete mitogenomes of the genera Meiligma and Matsumuraeses were sequenced. Both mitogenomes are double-stranded circular DNA molecules with lengths of 15,675 bp and 15,330 bp, respectively. Phylogenetic analyses derived from 13 protein-coding genes and two ribosomal RNAs showed that most tribes, including subfamilies Olethreutinae and Tortricinae, were recovered as monophyletic clades, similar to previous studies based on morphological or nuclear data. Moreover, comprehensive comparative analyses of the structural organization and role of tandem replications on the length variation and high AT content of CR sequences were conducted. The results reveal a significant positive correlation between the total length and AT content of tandem repeats and whole CR sequences in Tortricidae. The structural organization in CR sequences is diverse, even between closely related tribes, which demonstrates the plasticity of the mitochondrial DNA molecule in Tortricidae.
Collapse
Affiliation(s)
- Weidong Huang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management College of Plant Protection, China Agricultural University, Beijing, China.
| | - Changhua Zhang
- Zunyi Tobacco Company of Guizhou Provincial Tobacco Corporation, Zunyi, China.
| | - Tingzhen Zhang
- Suiyang County Branch, Zunyi Tobacco Company of Guizhou Provincial Tobacco Corporation, Zunyi, China.
| | - Ye Xu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management College of Plant Protection, China Agricultural University, Beijing, China.
| | - Shiwen Xu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management College of Plant Protection, China Agricultural University, Beijing, China.
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management College of Plant Protection, China Agricultural University, Beijing, China.
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management College of Plant Protection, China Agricultural University, Beijing, China.
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management College of Plant Protection, China Agricultural University, Beijing, China.
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Ding W, Xu H, Wu Z, Hu L, Huang L, Yang M, Li L. The mitochondrial genomes of the Geometroidea (Lepidoptera) and their phylogenetic implications. Ecol Evol 2023; 13:e9813. [PMID: 36789341 PMCID: PMC9911631 DOI: 10.1002/ece3.9813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/12/2023] Open
Abstract
The Geometroidea is a large superfamily of Lepidoptera in species composition and contains numerous economically important pest species that cause great loss in crop and forest production. However, understanding of mitogenomes remains limited due to relatively fewer mitogenomes previously reported for this megadiverse group. Here, we sequenced and annotated nine mitogenomes for Geometridae and further analyzed the mitogenomic evolution and phylogeny of the whole superfamily. All nine mitogenomes contained 37 mitochondrial genes typical in insects, and gene organization was conserved except for Somatina indicataria. In S. indicataria, the positions of two tRNAs were rearranged. The trnR was located before trnA instead of after trnA typical in Lepidoptera, whereas the trnE was detected rarely on the minority strand (N-strand). This trnR-trnA-trnN-trnS1-trnE-trnF newly recognized in S. indicataria represents the first gene rearrangement reported for Geometroidea and is also unique in Lepidoptera. Besides, nucleotide composition analyses showed little heterogeneity among the four geometrid subfamilies involved herein, and overall, nad6 and atp8 have higher nucleotide diversity and Ka/Ks rate in Geometridae. In addition, the taxonomic assignments of the nine species, historically defined by morphological studies, were confirmed by various phylogenetic analyses based on the hitherto most extensive mitogenomic sampling in Geometroidea.
Collapse
Affiliation(s)
- Weili Ding
- Finance OfficeZhoukou Normal UniversityZhoukouChina
| | - Haizhen Xu
- College of Life Science and AgronomyZhoukou Normal UniversityZhoukouChina
| | - Zhipeng Wu
- College of Life Science and AgronomyZhoukou Normal UniversityZhoukouChina
| | - Lizong Hu
- College of Life Science and AgronomyZhoukou Normal UniversityZhoukouChina
| | - Li Huang
- College of Life Science and AgronomyZhoukou Normal UniversityZhoukouChina
| | - Mingsheng Yang
- College of Life Science and AgronomyZhoukou Normal UniversityZhoukouChina
| | - Lili Li
- College of Life Science and AgronomyZhoukou Normal UniversityZhoukouChina
- Key Laboratory of Plant Genetics and Molecular BreedingZhoukou Normal UniversityZhoukouChina
| |
Collapse
|
7
|
Dysin AP, Shcherbakov YS, Nikolaeva OA, Terletskii VP, Tyshchenko VI, Dementieva NV. Salmonidae Genome: Features, Evolutionary and Phylogenetic Characteristics. Genes (Basel) 2022; 13:genes13122221. [PMID: 36553488 PMCID: PMC9778375 DOI: 10.3390/genes13122221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The salmon family is one of the most iconic and economically important fish families, primarily possessing meat of excellent taste as well as irreplaceable nutritional and biological value. One of the most common and, therefore, highly significant members of this family, the Atlantic salmon (Salmo salar L.), was not without reason one of the first fish species for which a high-quality reference genome assembly was produced and published. Genomic advancements are becoming increasingly essential in both the genetic enhancement of farmed salmon and the conservation of wild salmon stocks. The salmon genome has also played a significant role in influencing our comprehension of the evolutionary and functional ramifications of the ancestral whole-genome duplication event shared by all Salmonidae species. Here we provide an overview of the current state of research on the genomics and phylogeny of the various most studied subfamilies, genera, and individual salmonid species, focusing on those studies that aim to advance our understanding of salmonid ecology, physiology, and evolution, particularly for the purpose of improving aquaculture production. This review should make potential researchers pay attention to the current state of research on the salmonid genome, which should potentially attract interest in this important problem, and hence the application of new technologies (such as genome editing) in uncovering the genetic and evolutionary features of salmoniforms that underlie functional variation in traits of commercial and scientific importance.
Collapse
Affiliation(s)
- Artem P. Dysin
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
- Correspondence:
| | - Yuri S. Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Olga A. Nikolaeva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Valerii P. Terletskii
- All-Russian Research Veterinary Institute of Poultry Science-Branch of the Federal Scientific Center, All-Russian Research and Technological Poultry Institute (ARRVIPS), Lomonosov, 198412 St. Petersburg, Russia
| | - Valentina I. Tyshchenko
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Natalia V. Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| |
Collapse
|
8
|
Yang W, Dong R, Song X, Yu H. Complete mitochondrial genome analysis and molecular phylogenetic implications of Kennelia xylinana (Lepidoptera: Tortricidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21912. [PMID: 35535464 DOI: 10.1002/arch.21912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Kennelia is a small genus in Tortricidae that is distributed in the Oriental and Palaearctic regions, and its taxonomic position within the subfamily Olethreutinae is controversial. For a comprehensive understanding of the genus, we sequenced the mitogenome of Kennelia xylinana, the type species of Kennelia, and Ancylis unculana, a species of Enarmoniini; analyzed the mitogenome characteristics of K. xylinana; and explored its phylogenetic position. Similar to other members of Lepidoptera, the mitogenome of K. xylinana is 15,762-bp long and consists of 13 protein-coding genes (PCGs), two ribosomal RNA genes, 22 transfer RNA genes, and a noncoding control region. In particular, we found a structure (TATAATTAATAA)11 in the middle of the AT-rich region. Based on the Bayesian inference and maximum likelihood analyses of the 13 PCGs of 40 tortricid species, representing 8 tribes of 2 subfamilies, K. xylinana was clustered with two members of Enarmoniini, A. unculana and Loboschiza koenigiana, and formed highly supported monophyly. The results indicate that Kennelia should be placed in the tribe Enarmoniini.
Collapse
Affiliation(s)
- Wenxu Yang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Ruiqin Dong
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Xueling Song
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Haili Yu
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| |
Collapse
|