1
|
Saigo T, Satoh K, Kunieda T. Comparative Study of Gamma Radiation Tolerance between Desiccation-Sensitive and Desiccation-Tolerant Tardigrades. Zoolog Sci 2025; 42. [PMID: 39932749 DOI: 10.2108/zs240056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/08/2024] [Indexed: 05/08/2025]
Abstract
Tardigrades are small metazoans renowned for their exceptional tolerance against various harsh environments in a dehydrated state. Some species exhibited an extraordinary tolerance against high-dose irradiation even in a hydrated state. Given that natural sources of high radiation are rare, the selective pressure to obtain such a high radiotolerance during evolution remains elusive. It has been postulated that high radiation tolerances could be derived from adaptation to dehydration, because both dehydration and radiation cause similar damage on biomolecules at least partly, e.g., DNA cleavage and oxidation of various biomolecules, and dehydration is a common environmental stress that terrestrial organisms should adapt to. Although tardigrades are known for high radiotolerance, the radiotolerance records have been reported only for desiccation-tolerant tardigrade species and nothing was known about the radiotolerance in desiccation-sensitive tardigrade species. Hence, the relationship between desiccation-tolerance and radiotolerance remained unexplored. To this end, we examined the radiotolerance of the desiccation-sensitive tardigrade Grevenius myrops (formerly known as Isohypsibius myrops) in comparison to the well-characterized desiccation-tolerant tardigrade, Ramazzottius varieornatus. The median lethal dose (LD50) of G. myrops was approximately 2240 Gy. This was much lower than those reported for desiccation tolerant eutardigrades. The effects of irradiation on the lifespan and the ovipositions were more severe in G. myrops compared to those in R. varieornatus. The present study provides precise records on the radiotolerance of a desiccation-sensitive tardigrade and the current data supported the correlation between desiccation tolerance and radiotolerance at least in eutardigrades.
Collapse
Affiliation(s)
- Tokiko Saigo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bukyo-ku, Tokyo 113-0033, Japan
| | - Katsuya Satoh
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki, Gunma 370-1292, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bukyo-ku, Tokyo 113-0033, Japan,
| |
Collapse
|
2
|
Kato S, Deguchi K, Obana M, Fujio Y, Fukuda Y, Inoue T. Metabolite phosphatase from anhydrobiotic tardigrades. FEBS J 2024; 291:5195-5213. [PMID: 39417615 PMCID: PMC11616004 DOI: 10.1111/febs.17296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/09/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
Terrestrial organisms have systems to escape from desiccation stresses. For example, tardigrades (also known as water bears) can survive severe dried and other extreme environments by anhydrobiosis. Although their extraordinary ability has enchanted people, little is known about the detailed molecular mechanisms of anhydrobiosis. Here, we focused on the tardigrade Ramazzottius varieornatus, one of the toughest animals on Earth. A transcriptome database of R. varieornatus shows that genes encoding a Ferritin-like protein are upregulated during desiccation or ultraviolet radiation. This protein shows sequence similarity to enigmatic proteins in desiccation-tolerant bacteria and plants, which are hypothesized to be desiccation-related. However, because these proteins lack detailed biological information, their functions are relatively unknown. We determined an atomic (1.05 Å) resolution crystal structure of a Ferritin-like protein from R. varieornatus. The structure revealed a dinuclear metal binding site, and we showed that this Ferritin-like protein has phosphatase activity toward several metabolite compounds including unusual nucleotide phosphates produced by oxidative or radiation damage. We also found that a homologous protein from a desiccation- and ultraviolet-tolerant bacterium Deinococcus radiodurans is a metabolite phosphatase. Our results indicate that through cleaning up damaged metabolites or regulation of metabolite levels, this phosphatase family can contribute to stress tolerances. This study provides a clue to one of the universal molecular bases of desiccation-stress tolerance.
Collapse
Affiliation(s)
- Subaru Kato
- Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan
| | - Koki Deguchi
- Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan
| | - Masanori Obana
- Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| | - Yasushi Fujio
- Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| | - Yohta Fukuda
- Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan
| |
Collapse
|
3
|
Li L, Ge Z, Liu S, Zheng K, Li Y, Chen K, Fu Y, Lei X, Cui Z, Wang Y, Huang J, Liu Y, Duan M, Sun Z, Chen J, Li L, Shen P, Wang G, Chen J, Li R, Li C, Yang Z, Ning Y, Luo A, Chen B, Seim I, Liu X, Wang F, Yao Y, Guo F, Yang M, Liu CH, Fan G, Wang L, Yang D, Zhang L. Multi-omics landscape and molecular basis of radiation tolerance in a tardigrade. Science 2024; 386:eadl0799. [PMID: 39446960 DOI: 10.1126/science.adl0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/05/2024] [Indexed: 10/26/2024]
Abstract
Tardigrades are captivating organisms known for their resilience in extreme environments, including ultra-high-dose radiation, but the underlying mechanisms of this resilience remain largely unknown. Using genome, transcriptome, and proteome analysis of Hypsibius henanensis sp. nov., we explored the molecular basis contributing to radiotolerance in this organism. A putatively horizontally transferred gene, DOPA dioxygenase 1 (DODA1), responds to radiation and confers radiotolerance by synthesizing betalains-a type of plant pigment with free radical-scavenging properties. A tardigrade-specific radiation-induced disordered protein, TRID1, facilitates DNA damage repair through a mechanism involving phase separation. Two mitochondrial respiratory chain complex assembly proteins, BCS1 and NDUFB8, accumulate to accelerate nicotinamide adenine dinucleotide (NAD+) regeneration for poly(adenosine diphosphate-ribosyl)ation (PARylation) and subsequent poly(adenosine diphosphate-ribose) polymerase 1 (PARP1)-mediated DNA damage repair. These three observations expand our understanding of mechanisms of tardigrade radiotolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Inge Seim
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572006, China
| | | | | | | | | | | | | | | | | | | | - Lingqiang Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
4
|
Zarubin M, Murugova T, Ryzhykau Y, Ivankov O, Uversky VN, Kravchenko E. Structural study of the intrinsically disordered tardigrade damage suppressor protein (Dsup) and its complex with DNA. Sci Rep 2024; 14:22910. [PMID: 39358423 PMCID: PMC11447161 DOI: 10.1038/s41598-024-74335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Studies of proteins, found in one of the most stress-resistant animals tardigrade Ramazzottius varieornatus, aim to reveal molecular principles of extreme tolerance to various types of stress and developing applications based on them for medicine, biotechnology, pharmacy, and space research. Tardigrade DNA/RNA-binding damage suppressor protein (Dsup) reduces DNA damage caused by reactive oxygen spices (ROS) produced upon irradiation and oxidative stresses in Dsup-expressing transgenic organisms. This work is focused on the determination of structural features of Dsup protein and Dsup-DNA complex, which refines details of protective mechanism. For the first time, intrinsically disordered nature of Dsup protein with highly flexible structure was experimentally proven and characterized by the combination of small angle X-ray scattering (SAXS) technique, circular dichroism spectroscopy, and computational methods. Low resolution models of Dsup protein and an ensemble of conformations were presented. In addition, we have shown that Dsup forms fuzzy complex with DNA.
Collapse
Affiliation(s)
- Mikhail Zarubin
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna, Russia
| | - Tatiana Murugova
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Yury Ryzhykau
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Oleksandr Ivankov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Vladimir N Uversky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Elena Kravchenko
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna, Russia.
| |
Collapse
|
5
|
Mapalo MA, Wolfe JM, Ortega-Hernández J. Cretaceous amber inclusions illuminate the evolutionary origin of tardigrades. Commun Biol 2024; 7:953. [PMID: 39107512 PMCID: PMC11303527 DOI: 10.1038/s42003-024-06643-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
Tardigrades are a diverse phylum of microscopic invertebrates widely known for their extreme survival capabilities. Molecular clocks suggest that tardigrades diverged from other panarthropods before the Cambrian, but their fossil record is extremely sparse. Only the fossil tardigrades Milnesium swolenskyi (Late Cretaceous) and Paradoryphoribius chronocaribbeus (Miocene) have resolved taxonomic positions, restricting the availability of calibration points for estimating for the origin of this phylum. Here, we revise two crown-group tardigrades from Canadian Cretaceous-aged amber using confocal fluorescence microscopy, revealing critical morphological characters that resolve their taxonomic positions. Formal morphological redescription of Beorn leggi reveals that it features Hypsibius-type claws. We also describe Aerobius dactylus gen. et sp. nov. based on its unique combination of claw characters. Phylogenetic analyses indicate that Beo. leggi and Aer. dactylus belong to the eutardigrade superfamily Hypsibioidea, adding a critical fossil calibration point to investigate tardigrade origins. Our molecular clock estimates suggest an early Paleozoic diversification of crown-group Tardigrada and highlight the importance of Beo. leggi as a calibration point that directly impacts estimates of shallow nodes. Our results suggest that independent terrestrialization of eutardigrades and heterotardigrades occurred around the end-Carboniferous and Lower Jurassic, respectively. These estimates also provide minimum ages for convergent acquisition of cryptobiosis.
Collapse
Affiliation(s)
- Marc A Mapalo
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Joanna M Wolfe
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
6
|
Sadowska-Bartosz I, Bartosz G. Antioxidant Defense in the Toughest Animals on the Earth: Its Contribution to the Extreme Resistance of Tardigrades. Int J Mol Sci 2024; 25:8393. [PMID: 39125965 PMCID: PMC11313143 DOI: 10.3390/ijms25158393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Tardigrades are unique among animals in their resistance to dehydration, mainly due to anhydrobiosis and tun formation. They are also very resistant to high-energy radiation, low and high temperatures, low and high pressure, and various chemical agents, Interestingly, they are resistant to ionizing radiation both in the hydrated and dehydrated states to a similar extent. They are able to survive in the cosmic space. Apparently, many mechanisms contribute to the resistance of tardigrades to harmful factors, including the presence of trehalose (though not common to all tardigrades), heat shock proteins, late embryogenesis-abundant proteins, tardigrade-unique proteins, DNA repair proteins, proteins directly protecting DNA (Dsup and TDR1), and efficient antioxidant system. Antioxidant enzymes and small-molecular-weight antioxidants are an important element in the tardigrade resistance. The levels and activities of many antioxidant proteins is elevated by anhydrobiosis and UV radiation; one explanation for their induction during dehydration is provided by the theory of "preparation for oxidative stress", which occurs during rehydration. Genes coding for some antioxidant proteins are expanded in tardigrades; some genes (especially those coding for catalases) were hypothesized to be of bacterial origin, acquired by horizontal gene transfer. An interesting antioxidant protein found in tardigrades is the new Mn-dependent peroxidase.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland;
| | | |
Collapse
|
7
|
Smith FW, Game M, Mapalo MA, Chavarria RA, Harrison TR, Janssen R. Developmental and genomic insight into the origin of the tardigrade body plan. Evol Dev 2024; 26:e12457. [PMID: 37721221 DOI: 10.1111/ede.12457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Tardigrada is an ancient lineage of miniaturized animals. As an outgroup of the well-studied Arthropoda and Onychophora, studies of tardigrades hold the potential to reveal important insights into body plan evolution in Panarthropoda. Previous studies have revealed interesting facets of tardigrade development and genomics that suggest that a highly compact body plan is a derived condition of this lineage, rather than it representing an ancestral state of Panarthropoda. This conclusion was based on studies of several species from Eutardigrada. We review these studies and expand on them by analyzing the publicly available genome and transcriptome assemblies of Echiniscus testudo, a representative of Heterotardigrada. These new analyses allow us to phylogenetically reconstruct important features of genome evolution in Tardigrada. We use available data from tardigrades to interrogate several recent models of body plan evolution in Panarthropoda. Although anterior segments of panarthropods are highly diverse in terms of anatomy and development, both within individuals and between species, we conclude that a simple one-to-one alignment of anterior segments across Panarthropoda is the best available model of segmental homology. In addition to providing important insight into body plan diversification within Panarthropoda, we speculate that studies of tardigrades may reveal generalizable pathways to miniaturization.
Collapse
Affiliation(s)
- Frank W Smith
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Mandy Game
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Marc A Mapalo
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Raul A Chavarria
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Taylor R Harrison
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Sugiura K, Yoshida Y, Hayashi K, Arakawa K, Kunieda T, Matsumoto M. Sexual dimorphism in the tardigrade Paramacrobiotus metropolitanus transcriptome. ZOOLOGICAL LETTERS 2024; 10:11. [PMID: 38902818 PMCID: PMC11191345 DOI: 10.1186/s40851-024-00233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND In gonochoristic animals, the sex determination pathway induces different morphological and behavioral features that can be observed between sexes, a condition known as sexual dimorphism. While many components of this sex differentiation cascade show high levels of diversity, factors such as the Doublesex-Mab-3-Related Transcription factor (DMRT) are widely conserved across animal taxa. Species of the phylum Tardigrada exhibit remarkable diversity in morphology and behavior between sexes, suggesting a pathway regulating this dimorphism. Despite the wealth of genomic and zoological knowledge accumulated in recent studies, the sexual differences in tardigrades genomes have not been identified. In the present study, we focused on the gonochoristic species Paramacrobiotus metropolitanus and employed omics analyses to unravel the molecular basis of sexual dimorphism. RESULTS Transcriptome analysis between sex-identified specimens revealed numerous differentially expressed genes, of which approximately 2,000 male-biased genes were focused on 29 non-male-specific genomic loci. From these regions, we identified two Macrobiotidae family specific DMRT paralogs, which were significantly upregulated in males and lacked sex specific splicing variants. Furthermore, phylogenetic analysis indicated all tardigrade genomes lack the doublesex ortholog, suggesting doublesex emerged after the divergence of Tardigrada. In contrast to sex-specific expression, no evidence of genomic differences between the sexes was found. We also identified several anhydrobiosis genes that exhibit sex-biased expression, suggesting a possible mechanism for protection of sex-specific tissues against extreme stress. CONCLUSIONS This study provides a comprehensive analysis for analyzing the genetic differences between sexes in tardigrades. The existence of male-biased, but not male-specific, genomic loci and identification of the family specific male-biased DMRT subfamily provides the foundation for understanding the sex determination cascade. In addition, sex-biased expression of several tardigrade-specific genes which are involved their stress tolerance suggests a potential role in protecting sex-specific tissue and gametes.
Collapse
Affiliation(s)
- Kenta Sugiura
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan
| | - Yuki Yoshida
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Kohei Hayashi
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihoji, Tsuruoka, Yamagata, 997-0017, Japan
- Exploratory Research Center On Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Takekazu Kunieda
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Midori Matsumoto
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
9
|
Kondo K, Tanaka A, Kunieda T. Single-step generation of homozygous knockout/knock-in individuals in an extremotolerant parthenogenetic tardigrade using DIPA-CRISPR. PLoS Genet 2024; 20:e1011298. [PMID: 38870088 PMCID: PMC11175437 DOI: 10.1371/journal.pgen.1011298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
Tardigrades are small aquatic invertebrates known for their remarkable tolerance to diverse extreme stresses. To elucidate the in vivo mechanisms underlying this extraordinary resilience, methods for genetically manipulating tardigrades have long been desired. Despite our prior success in somatic cell gene editing by microinjecting Cas9 ribonucleoproteins (RNPs) into the body cavity of tardigrades, the generation of gene-edited individuals remained elusive. In this study, employing an extremotolerant parthenogenetic tardigrade species, Ramazzottius varieornatus, we established conditions that led to the generation of gene-edited tardigrade individuals. Drawing inspiration from the direct parental CRISPR (DIPA-CRISPR) technique employed in several insects, we simply injected a concentrated Cas9 RNP solution into the body cavity of parental females shortly before their initial oviposition. This approach yielded gene-edited G0 progeny. Notably, only a single allele was predominantly detected at the target locus for each G0 individual, indicative of homozygous mutations. By co-injecting single-stranded oligodeoxynucleotides (ssODNs) with Cas9 RNPs, we achieved the generation of homozygously knocked-in G0 progeny, and these edited alleles were inherited by G1/G2 progeny. This is the first example of heritable gene editing in the entire phylum of Tardigrada. This establishment of a straightforward method for generating homozygous knockout/knock-in individuals not only facilitates in vivo analyses of the molecular mechanisms underpinning extreme tolerance, but also opens up avenues for exploring various topics, including Evo-Devo, in tardigrades.
Collapse
Affiliation(s)
- Koyuki Kondo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, Tsudanuma, Narashino, Chiba, Japan
| | - Akihiro Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
10
|
Clark-Hachtel CM, Hibshman JD, De Buysscher T, Stair ER, Hicks LM, Goldstein B. The tardigrade Hypsibius exemplaris dramatically upregulates DNA repair pathway genes in response to ionizing radiation. Curr Biol 2024; 34:1819-1830.e6. [PMID: 38614079 PMCID: PMC11078613 DOI: 10.1016/j.cub.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Tardigrades can survive remarkable doses of ionizing radiation, up to about 1,000 times the lethal dose for humans. How they do so is incompletely understood. We found that the tardigrade Hypsibius exemplaris suffers DNA damage upon gamma irradiation, but the damage is repaired. We show that this species has a specific and robust response to ionizing radiation: irradiation induces a rapid upregulation of many DNA repair genes. This upregulation is unexpectedly extreme-making some DNA repair transcripts among the most abundant transcripts in the animal. By expressing tardigrade genes in bacteria, we validate that increased expression of some repair genes can suffice to increase radiation tolerance. We show that at least one such gene is important in vivo for tardigrade radiation tolerance. We hypothesize that the tardigrades' ability to sense ionizing radiation and massively upregulate specific DNA repair pathway genes may represent an evolved solution for maintaining DNA integrity.
Collapse
Affiliation(s)
- Courtney M Clark-Hachtel
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Biology Department, The University of North Carolina at Asheville, Asheville, NC 28804, USA.
| | - Jonathan D Hibshman
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tristan De Buysscher
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Bioinformatics & Analytics Research Collaborative, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Evan R Stair
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bob Goldstein
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Fleming JF, Pisani D, Arakawa K. The Evolution of Temperature and Desiccation-Related Protein Families in Tardigrada Reveals a Complex Acquisition of Extremotolerance. Genome Biol Evol 2024; 16:evad217. [PMID: 38019582 PMCID: PMC10799326 DOI: 10.1093/gbe/evad217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
Tardigrada is an ecdysozoan lineage famed for its resilience. Tardigrades can tolerate high doses of radiation, low-oxygen environments, desiccation, and both high and low temperatures under a dormant state called "anhydrobiosis", which is a reversible halt of metabolism upon almost complete desiccation. A large amount of research has focused on the genetic pathways related to these capabilities, and a number of genes have been identified and linked to the extremotolerant response of tardigrades. However, the history of these genes is unclear, and the origins and history of extremotolerant genes within Tardigrada remain a mystery. Here, we generate the first phylogenies of six separate protein families linked with desiccation and radiation tolerance in Tardigrada: cytosolic abundant heat-soluble protein, mitochondrial abundant heat-soluble protein, secretory abundant heat-soluble protein, meiotic recombination 11 homolog, and the newly discovered Echiniscus testudo abundant heat-soluble proteins (alpha and beta). The high number of independent gene duplications found amongst the six gene families studied suggests that tardigrades have a complex history with numerous independent adaptations to cope with aridity within the limnoterrestrial environment. Our results suggest that tardigrades likely transitioned from a marine environment to a limnoterrestrial environment only twice, once in stem Eutardigrada and once in Heterotardigrada, which explains the unique adaptations to anhydrobiosis present in both classes.
Collapse
Affiliation(s)
- James F Fleming
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Davide Pisani
- Palaeobiology Research Group, School of Biological Sciences and School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
| |
Collapse
|
12
|
Hagelbäck P, Jönsson KI. An experimental study on tolerance to hypoxia in tardigrades. Front Physiol 2023; 14:1249773. [PMID: 37731547 PMCID: PMC10507709 DOI: 10.3389/fphys.2023.1249773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction: Tardigrades are small aquatic invertebrates with well documented tolerance to several environmental stresses, including desiccation, low temperature, and radiation, and an ability to survive long periods in a cryptobiotic state under arrested metabolism. Many tardigrade populations live in habitats where temporary exposure to hypoxia is expected, e.g., benthic layers or substrates that regularly undergo desiccation, but tolerance to hypoxia has so far not been thoroughly investigated in tardigrades. Method: We studied the response to exposure for hypoxia (<1 ppm) during 1-24 h in two tardigrade species, Richtersius cf. coronifer and Hypsibius exemplaris. The animals were exposed to hypoxia in their hydrated active state. Results: Survival was high in both species after the shortest exposures to hypoxia but tended to decline with longer exposures, with almost complete failure to recover after 24 h in hypoxia. R. cf. coronifer tended to be more tolerant than H. exemplaris. When oxygen level was gradually reduced from 8 to 1 ppm, behavioral responses in terms of irregular body movements were first observed at 3-4 ppm. Discussion: The study shows that both limno-terrestrial and freshwater tardigrades are able to recover after exposure to severe hypoxia, but only exposure for relatively short periods of time. It also indicates that tardigrade species have different sensitivity and response patterns to exposure to hypoxia. These results will hopefully encourage more studies on how tardigrades are affected by and respond to hypoxic conditions.
Collapse
Affiliation(s)
| | - K. Ingemar Jönsson
- Department of Environmental Science, Kristianstad University, Kristianstad, Sweden
| |
Collapse
|
13
|
Sim KS, Inoue T. Structure of a superoxide dismutase from a tardigrade: Ramazzottius varieornatus strain YOKOZUNA-1. Acta Crystallogr F Struct Biol Commun 2023; 79:169-179. [PMID: 37358501 PMCID: PMC10327573 DOI: 10.1107/s2053230x2300523x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023] Open
Abstract
Superoxide dismutase (SOD) is an essential and ubiquitous antioxidant protein that is widely present in biological systems. The anhydrobiotic tardigrades are some of the toughest micro-animals. They have an expanded set of genes for antioxidant proteins such as SODs. These proteins are thought to play an essential role in oxidative stress resistance in critical situations such as desiccation, although their functions at the molecular level have yet to be explored. Here, crystal structures of a copper/zinc-containing SOD (RvSOD15) from an anhydrobiotic tardigrade, Ramazzottius varieornatus strain YOKOZUNA-1, are reported. In RvSOD15, one of the histidine ligands of the catalytic copper center is replaced by a valine (Val87). The crystal structures of the wild type and the V87H mutant show that even though a histidine is placed at position 87, a nearby flexible loop can destabilize the coordination of His87 to the Cu atom. Model structures of other RvSODs were investigated and it was found that some of them are also unusual SODs, with features such as deletion of the electrostatic loop or β3 sheet and unusual metal-binding residues. These studies show that RvSOD15 and some other RvSODs may have evolved to lose the SOD function, suggesting that gene duplications of antioxidant proteins do not solely explain the high stress tolerance of anhydrobiotic tardigrades.
Collapse
Affiliation(s)
- Kee-Shin Sim
- Graduate School of Pharmaceutical Science, Osaka University, Suita City, Osaka 565-0871, Japan
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Science, Osaka University, Suita City, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Fleming JF. The wealth of shared resources: Improving molecular taxonomy using eDNA and public databases. ZOOL SCR 2023. [DOI: 10.1111/zsc.12591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
15
|
Tanaka S, Aoki K, Arakawa K. In vivo expression vector derived from anhydrobiotic tardigrade genome enables live imaging in Eutardigrada. Proc Natl Acad Sci U S A 2023; 120:e2216739120. [PMID: 36693101 PMCID: PMC9945988 DOI: 10.1073/pnas.2216739120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023] Open
Abstract
Water is essential for life, but anhydrobiotic tardigrades can survive almost complete dehydration. Anhydrobiosis has been a biological enigma for more than a century with respect to how organisms sustain life without water, but the few choices of genetic toolkits available in tardigrade research have been a challenging circumstance. Here, we report the development of an in vivo expression system for tardigrades. This transient transgenic technique is based on a plasmid vector (TardiVec) with promoters that originated from an anhydrobiotic tardigrade Ramazzottius varieornatus. It enables the introduction of GFP-fused proteins and genetically encoded indicators such as the Ca2+ indicator GCaMP into tardigrade cells; consequently, the dynamics of proteins and cells in tardigrades may be observed by fluorescence live imaging. This system is applicable for several tardigrades in the class Eutardigrada: the promoters of anhydrobiosis-related genes showed tissue-specific expression in this work. Surprisingly, promoters functioned similarly between multiple species, even for species with different modes of expression of anhydrobiosis-related genes, such as Hypsibius exemplaris, in which these genes are highly induced upon facing desiccation, and Thulinius ruffoi, which lacks anhydrobiotic capability. These results suggest that the highly dynamic expression changes in desiccation-induced species are regulated in trans. Tissue-specific expression of tardigrade-unique unstructured proteins also suggests differing anhydrobiosis machinery depending on the cell types. We believe that tardigrade transgenic technology opens up various experimental possibilities in tardigrade research, especially to explore anhydrobiosis mechanisms.
Collapse
Affiliation(s)
- Sae Tanaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
| | - Kazuhiro Aoki
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
- Faculty of Life Science, Graduate University for Advanced Studies, Okazaki, 444-8787, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, 252-0882, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, 252-0882, Japan
| |
Collapse
|
16
|
Roszkowska M, Gołdyn B, Wojciechowska D, Księżkiewicz Z, Fiałkowska E, Pluskota M, Kmita H, Kaczmarek Ł. How long can tardigrades survive in the anhydrobiotic state? A search for tardigrade anhydrobiosis patterns. PLoS One 2023; 18:e0270386. [PMID: 36630322 PMCID: PMC9833599 DOI: 10.1371/journal.pone.0270386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Anhydrobiosis is a desiccation tolerance that denotes the ability to survive almost complete dehydration without sustaining damage. The knowledge on the survival capacity of various tardigrade species in anhydrobiosis is still very limited. Our research compares anhydrobiotic capacities of four tardigrade species from different genera, i.e. Echiniscus testudo, Paramacrobiotus experimentalis, Pseudohexapodibius degenerans and Macrobiotus pseudohufelandi, whose feeding behavior and occupied habitats are different. Additionally, in the case of Ech. testudo, we analyzed two populations: one urban and one from a natural habitat. The observed tardigrade species displayed clear differences in their anhydrobiotic capacity, which appear to be determined by the habitat rather than nutritional behavior of species sharing the same habitat type. The results also indicate that the longer the state of anhydrobiosis lasts, the more time the animals need to return to activity.
Collapse
Affiliation(s)
- Milena Roszkowska
- Faculty of Biology, Department of Animal Taxonomy and Ecology, Adam Mickiewicz University, Poznań, Poland
- Faculty of Biology, Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Bartłomiej Gołdyn
- Faculty of Biology, Department of General Zoology, Adam Mickiewicz University, Poznań, Poland
| | - Daria Wojciechowska
- Faculty of Physics, Department of Biomedical Physics, Adam Mickiewicz University, Poznań, Poland
| | - Zofia Księżkiewicz
- Faculty of Biology, Department of General Zoology, Adam Mickiewicz University, Poznań, Poland
| | - Edyta Fiałkowska
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Mateusz Pluskota
- Faculty of Biology, Department of General Zoology, Adam Mickiewicz University, Poznań, Poland
| | - Hanna Kmita
- Faculty of Biology, Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Łukasz Kaczmarek
- Faculty of Biology, Department of Animal Taxonomy and Ecology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
17
|
Metivier JC, Chain FJJ. Diversity in Expression Biases of Lineage-Specific Genes During Development and Anhydrobiosis Among Tardigrade Species. Evol Bioinform Online 2022; 18:11769343221140277. [PMID: 36578471 PMCID: PMC9791283 DOI: 10.1177/11769343221140277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022] Open
Abstract
Lineage-specific genes can contribute to the emergence and evolution of novel traits and adaptations. Tardigrades are animals that have adapted to tolerate extreme conditions by undergoing a form of cryptobiosis called anhydrobiosis, a physical transformation to an inactive desiccated state. While studies to understand the genetics underlying the interspecies diversity in anhydrobiotic transitions have identified tardigrade-specific genes and family expansions involved in this process, the contributions of species-specific genes to the variation in tardigrade development and cryptobiosis are less clear. We used previously published transcriptomes throughout development and anhydrobiosis (5 embryonic stages, 7 juvenile stages, active adults, and tun adults) to assess the transcriptional biases of different classes of genes between 2 tardigrade species, Hypsibius exemplaris and Ramazzottius varieornatus. We also used the transcriptomes of 2 other tardigrades, Echiniscoides sigismundi and Richtersius coronifer, and data from 3 non-tardigrade species (Adenita vaga, Drosophila melanogaster, and Caenorhabditis elegans) to help identify lineage-specific genes. We found that lineage-specific genes have generally low and narrow expression but are enriched among biased genes in different stages of development depending on the species. Biased genes tend to be specific to early and late development, but there is little overlap in functional enrichment of biased genes between species. Gene expansions in the 2 tardigrades also involve families with different functions despite homologous genes being expressed during anhydrobiosis in both species. Our results demonstrate the interspecific variation in transcriptional contributions and biases of lineage-specific genes during development and anhydrobiosis in 2 tardigrades.
Collapse
Affiliation(s)
| | - Frédéric J J Chain
- Frédéric J J Chain, Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, USA.
| |
Collapse
|
18
|
Kumagai H, Kondo K, Kunieda T. Application of CRISPR/Cas9 system and the preferred no-indel end-joining repair in tardigrades. Biochem Biophys Res Commun 2022; 623:196-201. [PMID: 35926276 DOI: 10.1016/j.bbrc.2022.07.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 12/20/2022]
Abstract
Tardigrades are small aquatic animals known for the tolerant ability against various extreme stresses. Recent studies identified several tardigrade-unique proteins as protective factors of biomolecules from extreme stresses. Due to the limitation of the technique available in tardigrades, the function of these protective molecules has largely been studied utilizing the systems of in vitro and the heterologous expression in other organisms. Although RNAi is feasible in tardigrades, their effects are variable and not always sufficient. To analyze the functions of the tardigrade protective proteins, in vivo genetic manipulations have been desired. In this study, we used a tardigrade Hypsibius exemplaris as a model whose genome is available, and developed the delivery method of Cas9 ribonucleoproteins (RNPs) to adult tardigrade cells. Cas9 RNPs containing two kinds of crRNAs were injected to the body cavity of adult tardigrades and subjected to the subsequent electroporation to facilitate the incorporation of RNPs to the cells. Using this delivery method, we detected the deletion of the intervening region between two crRNAs from the genome. Intriguingly, all examined joining sites exhibited no incorporation of insertions/deletions (indels), suggesting that no-indel end-joining is dominant repair system in this tardigrade. We also detected similar removal of the intervening region even in the tardigrades injected with Cas9 RNPs without electroporation and in this case the no-indel end-joining is detected in still dominant but not all examined joining sites. This study provides the development of the delivery method of Cas9 RNPs to tardigrade cells and our data also suggested that simultaneous application of more than two crRNAs/gRNAs are recommended to disrupt the target gene by CRISPR/Cas9 system to avoid scarless repair in the tardigrade.
Collapse
Affiliation(s)
- Hitomi Kumagai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koyuki Kondo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
19
|
Tanaka A, Nakano T, Watanabe K, Masuda K, Honda G, Kamata S, Yasui R, Kozuka-Hata H, Watanabe C, Chinen T, Kitagawa D, Sawai S, Oyama M, Yanagisawa M, Kunieda T. Stress-dependent cell stiffening by tardigrade tolerance proteins that reversibly form a filamentous network and gel. PLoS Biol 2022; 20:e3001780. [PMID: 36067153 PMCID: PMC9592077 DOI: 10.1371/journal.pbio.3001780] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 08/02/2022] [Indexed: 12/30/2022] Open
Abstract
Tardigrades are able to tolerate almost complete dehydration by entering a reversible ametabolic state called anhydrobiosis and resume their animation upon rehydration. Dehydrated tardigrades are exceptionally stable and withstand various physical extremes. Although trehalose and late embryogenesis abundant (LEA) proteins have been extensively studied as potent protectants against dehydration in other anhydrobiotic organisms, tardigrades produce high amounts of tardigrade-unique protective proteins. Cytoplasmic-abundant heat-soluble (CAHS) proteins are uniquely invented in the lineage of eutardigrades, a major class of the phylum Tardigrada and are essential for their anhydrobiotic survival. However, the precise mechanisms of their action in this protective role are not fully understood. In the present study, we first postulated the presence of tolerance proteins that form protective condensates via phase separation in a stress-dependent manner and searched for tardigrade proteins that reversibly form condensates upon dehydration-like stress. Through a comprehensive search using a desolvating agent, trifluoroethanol (TFE), we identified 336 proteins, collectively dubbed "TFE-Dependent ReversiblY condensing Proteins (T-DRYPs)." Unexpectedly, we rediscovered CAHS proteins as highly enriched in T-DRYPs, 3 of which were major components of T-DRYPs. We revealed that these CAHS proteins reversibly polymerize into many cytoskeleton-like filaments depending on hyperosmotic stress in cultured cells and undergo reversible gel-transition in vitro. Furthermore, CAHS proteins increased cell stiffness in a hyperosmotic stress-dependent manner and counteract the cell shrinkage caused by osmotic pressure, and even improved the survival against hyperosmotic stress. The conserved putative helical C-terminal region is necessary and sufficient for filament formation by CAHS proteins, and mutations disrupting the secondary structure of this region impaired both the filament formation and the gel transition. On the basis of these results, we propose that CAHS proteins are novel cytoskeleton-like proteins that form filamentous networks and undergo gel-transition in a stress-dependent manner to provide on-demand physical stabilization of cell integrity against deformative forces during dehydration and could contribute to the exceptional physical stability in a dehydrated state.
Collapse
Affiliation(s)
- Akihiro Tanaka
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomomi Nakano
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kento Watanabe
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazutoshi Masuda
- Komaba Institute for Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Gen Honda
- Komaba Institute for Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Shuichi Kamata
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Reitaro Yasui
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The
University of Tokyo, Minato-ku, Tokyo, Japan
| | - Chiho Watanabe
- Komaba Institute for Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Sawai
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The
University of Tokyo, Minato-ku, Tokyo, Japan
| | - Miho Yanagisawa
- Komaba Institute for Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
20
|
Yoshida Y, Tanaka S. Deciphering the Biological Enigma-Genomic Evolution Underlying Anhydrobiosis in the Phylum Tardigrada and the Chironomid Polypedilum vanderplanki. INSECTS 2022; 13:557. [PMID: 35735894 PMCID: PMC9224920 DOI: 10.3390/insects13060557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023]
Abstract
Anhydrobiosis, an ametabolic dehydrated state triggered by water loss, is observed in several invertebrate lineages. Anhydrobiotes revive when rehydrated, and seem not to suffer the ultimately lethal cell damage that results from severe loss of water in other organisms. Here, we review the biochemical and genomic evidence that has revealed the protectant molecules, repair systems, and maintenance pathways associated with anhydrobiosis. We then introduce two lineages in which anhydrobiosis has evolved independently: Tardigrada, where anhydrobiosis characterizes many species within the phylum, and the genus Polypedilum, where anhydrobiosis occurs in only two species. Finally, we discuss the complexity of the evolution of anhydrobiosis within invertebrates based on current knowledge, and propose perspectives to enhance the understanding of anhydrobiosis.
Collapse
Affiliation(s)
- Yuki Yoshida
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Sae Tanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Institute for Advanced Biosciences, Keio University, 341-1 Mizukami, Tsuruoka 997-0052, Japan
| |
Collapse
|
21
|
Yoshida Y, Satoh T, Ota C, Tanaka S, Horikawa DD, Tomita M, Kato K, Arakawa K. Time-series transcriptomic screening of factors contributing to the cross-tolerance to UV radiation and anhydrobiosis in tardigrades. BMC Genomics 2022; 23:405. [PMID: 35643424 PMCID: PMC9145152 DOI: 10.1186/s12864-022-08642-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 05/18/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Tardigrades are microscopic animals that are capable of tolerating extreme environments by entering a desiccated state of suspended animation known as anhydrobiosis. While antioxidative stress proteins, antiapoptotic pathways and tardigrade-specific intrinsically disordered proteins have been implicated in the anhydrobiotic machinery, conservation of these mechanisms is not universal within the phylum Tardigrada, suggesting the existence of overlooked components. RESULTS Here, we show that a novel Mn-dependent peroxidase is an important factor in tardigrade anhydrobiosis. Through time-series transcriptome analysis of Ramazzottius varieornatus specimens exposed to ultraviolet light and comparison with anhydrobiosis entry, we first identified several novel gene families without similarity to existing sequences that are induced rapidly after stress exposure. Among these, a single gene family with multiple orthologs that is highly conserved within the phylum Tardigrada and enhances oxidative stress tolerance when expressed in human cells was identified. Crystallographic study of this protein suggested Zn or Mn binding at the active site, and we further confirmed that this protein has Mn-dependent peroxidase activity in vitro. CONCLUSIONS Our results demonstrated novel mechanisms for coping with oxidative stress that may be a fundamental mechanism of anhydrobiosis in tardigrades. Furthermore, localization of these sets of proteins mainly in the Golgi apparatus suggests an indispensable role of the Golgi stress response in desiccation tolerance.
Collapse
Affiliation(s)
- Yuki Yoshida
- Institute for Advanced Biosciences, Keio University, Nihonkoku, 403-1, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan
| | - Tadashi Satoh
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho, Nagoya, 467-8603, Japan
| | - Chise Ota
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho, Nagoya, 467-8603, Japan
| | - Sae Tanaka
- Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Daiki D Horikawa
- Institute for Advanced Biosciences, Keio University, Nihonkoku, 403-1, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Nihonkoku, 403-1, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan
| | - Koichi Kato
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho, Nagoya, 467-8603, Japan
- Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Nihonkoku, 403-1, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan.
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan.
- Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
22
|
Neves RC, Møbjerg A, Kodama M, Ramos-Madrigal J, Gilbert MTP, Møbjerg N. Differential expression profiling of heat stressed tardigrades reveals major shift in the transcriptome. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111169. [PMID: 35182765 DOI: 10.1016/j.cbpa.2022.111169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Tardigrades are renowned for their extreme stress tolerance, which includes the ability to endure complete desiccation, high levels of radiation and very low sub-zero temperatures. Nevertheless, tardigrades appear to be vulnerable to high temperatures and thus the potential effects of global warming. Here, we provide the first analysis of transcriptome data obtained from heat stressed specimens of the eutardigrade Ramazzottius varieornatus, with the aim of providing new insights into the molecular processes affected by high temperatures. Specifically, we compare RNA-seq datasets obtained from active, heat-exposed (35 °C) tardigrades to that of active controls kept at 5 °C. Our data reveal a surprising shift in transcription, involving 9634 differentially expressed transcripts, corresponding to >35% of the transcriptome. The latter data are in striking contrast to the hitherto observed constitutive expression underlying tardigrade extreme stress tolerance and entrance into the latent state of life, known as cryptobiosis. Thus, when examining the molecular response, heat-stress appears to be more stressful for R. varieornatus than extreme conditions, such as desiccation or freezing. A gene ontology analysis reveals that the heat stress response involves a change in transcription and presumably translation, including an adjustment of metabolism, and, putatively, preparation for encystment and subsequent diapause. Among the differentially expressed transcripts we find heat-shock proteins as well as the eutardigrade specific proteins (CAHS, SAHS, MAHS, RvLEAM, and Dsup). The latter proteins thus seem to contribute to a general stress response, and may not be directly related to cryptobiosis.
Collapse
Affiliation(s)
| | - Ask Møbjerg
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Miyako Kodama
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jazmín Ramos-Madrigal
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark; University Museum, NTNU, Trondheim, Norway
| | - Nadja Møbjerg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
23
|
Abstract
Tardigrades are ubiquitous meiofauna that are especially renowned for their exceptional extremotolerance to various adverse environments, including pressure, temperature, and even ionizing radiation. This is achieved through a reversible halt of metabolism triggered by desiccation, a phenomenon called anhydrobiosis. Recent establishment of genome resources for two tardigrades, Hypsibius exemplaris and Ramazzottius varieornatus, accelerated research to uncover the molecular mechanisms behind anhydrobiosis, leading to the discovery of many tardigrade-unique proteins. This review focuses on the history, methods, discoveries, and current state and challenges regarding tardigrade genomics, with an emphasis on molecular anhydrobiology. Remaining questions and future perspectives regarding prospective approaches to fully elucidate the molecular machinery of this complex phenomenon are discussed.
Collapse
Affiliation(s)
- Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Daishouji, Tsuruoka, Yamagata, Japan; .,Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan.,Graduate School of Media and Governance, Systems Biology Program, Keio University, Fujisawa, Kanagawa, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| |
Collapse
|
24
|
Giovannini I, Boothby TC, Cesari M, Goldstein B, Guidetti R, Rebecchi L. Production of reactive oxygen species and involvement of bioprotectants during anhydrobiosis in the tardigrade Paramacrobiotus spatialis. Sci Rep 2022; 12:1938. [PMID: 35121798 PMCID: PMC8816950 DOI: 10.1038/s41598-022-05734-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022] Open
Abstract
Water unavailability is an abiotic stress causing unfavourable conditions for life. Nevertheless, some animals evolved anhydrobiosis, a strategy allowing for the reversible organism dehydration and suspension of metabolism as a direct response to habitat desiccation. Anhydrobiotic animals undergo biochemical changes synthesizing bioprotectants to help combat desiccation stresses. One stress is the generation of reactive oxygen species (ROS). In this study, the eutardigrade Paramacrobiotus spatialis was used to investigate the occurrence of ROS associated with the desiccation process. We observed that the production of ROS significantly increases as a function of time spent in anhydrobiosis and represents a direct demonstration of oxidative stress in tardigrades. The degree of involvement of bioprotectants, including those combating ROS, in the P. spatialis was evaluated by perturbing their gene functions using RNA interference and assessing the successful recovery of animals after desiccation/rehydration. Targeting the glutathione peroxidase gene compromised survival during drying and rehydration, providing evidence for the role of the gene in desiccation tolerance. Targeting genes encoding glutathione reductase and catalase indicated that these molecules play roles during rehydration. Our study also confirms the involvement of aquaporins 3 and 10 during rehydration. Therefore, desiccation tolerance depends on the synergistic action of many different molecules working together.
Collapse
Affiliation(s)
- Ilaria Giovannini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/D, 41125, Modena, Italy.
| | - Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michele Cesari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/D, 41125, Modena, Italy
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Roberto Guidetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/D, 41125, Modena, Italy
| | - Lorena Rebecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/D, 41125, Modena, Italy
| |
Collapse
|