1
|
Almeida-Silva MA, Braga-Ferreira RS, Targueta CP, Corvalán LCJ, Silva-Neto CM, Franceschinelli EV, Sobreiro MB, Nunes R, Telles MPC. Chloroplast genomes of Simarouba Aubl., molecular evolution and comparative analyses within Sapindales. Sci Rep 2024; 14:21358. [PMID: 39266625 PMCID: PMC11393331 DOI: 10.1038/s41598-024-71956-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Simarouba, a neotropical genus in the family Simaroubaceae, currently lacks comprehensive genomic data in existing databases. This study aims to fill this gap by providing genomic resources for three Simarouba species, S. amara, S. versicolor, and S. glauca. It also aims to perform comparative molecular evolutionary analyses in relation to other species within the order Sapindales. The analysis of these three Simarouba species revealed the presence of the typical quadripartite structure expected in plastomes. However, some pseudogenization events were identified in the psbC, infA, rpl22, and ycf1 genes. In particular, the CDS of the psbC gene in S. amara was reduced from 1422 bp to 584 bp due to a premature stop codon. Nucleotide diversity data pointed to gene and intergenic regions as promising candidates for species and family discrimination within the group, specifically matK, ycf1, ndhF, rpl32, petA-psbJ, and trnS-trnG. Selection signal analyses showed strong evidence for positive selection on the rpl23 gene. Phylogenetic analyses indicated that S. versicolor and S. glauca have a closer phylogenetic relationship than S. amara. We provide chloroplast genomes of three Simaruba species and use them to elucidate plastome evolution, highlight the presence of pseudogenization, and identify potential DNA barcode regions.
Collapse
Affiliation(s)
- Marla A Almeida-Silva
- Laboratório de Genética and Biodiversidade (LGBio), Universidade Federal de Goiás, Goiânia, GO, Brazil
- Universidade Estadual do Piauí, Campus Prof. Ariston Dias Lima, São Raimundo Nonato, PI, Brazil
| | - Ramilla S Braga-Ferreira
- Laboratório de Genética and Biodiversidade (LGBio), Universidade Federal de Goiás, Goiânia, GO, Brazil
- Universidade Federal de Rondonópolis, Rondonópolis, MT, Brazil
| | - Cíntia P Targueta
- Laboratório de Genética and Biodiversidade (LGBio), Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Leonardo C J Corvalán
- Laboratório de Genética and Biodiversidade (LGBio), Universidade Federal de Goiás, Goiânia, GO, Brazil
- Instituto Federal de Goiás-Polo de Inovação, Goiânia, GO, Brazil
| | - Carlos M Silva-Neto
- Instituto Federal de Goiás-Polo de Inovação, Goiânia, GO, Brazil
- Laboratório de Bioinformática e Biodiversidade (LBB), Universidade Estadual de Goiás, Instituto Acadêmico de Ciências da Saúde e Biológicas (IACSB), Campus Oeste, Unidade Universitária de Iporá, Iporá, GO, 76200-000, Brazil
| | | | - Mariane B Sobreiro
- Laboratório de Genética and Biodiversidade (LGBio), Universidade Federal de Goiás, Goiânia, GO, Brazil
- Laboratório Estadual de Saúde Pública Dr. Giovanni Cysneiros - LACEN-GO, Goiânia, GO, Brazil
| | - Rhewter Nunes
- Laboratório de Genética and Biodiversidade (LGBio), Universidade Federal de Goiás, Goiânia, GO, Brazil.
- Laboratório de Bioinformática e Biodiversidade (LBB), Universidade Estadual de Goiás, Instituto Acadêmico de Ciências da Saúde e Biológicas (IACSB), Campus Oeste, Unidade Universitária de Iporá, Iporá, GO, 76200-000, Brazil.
| | - Mariana P C Telles
- Laboratório de Genética and Biodiversidade (LGBio), Universidade Federal de Goiás, Goiânia, GO, Brazil
- Pontifícia Universidade Católica de Goiás, Escola de Ciências Médicas e da Vida, Goiânia, GO, Brazil
| |
Collapse
|
2
|
Sun T, Tang Y, Zhou L, Qiao X, Ma X, Qin H, Han Y, Sui C. Characterization of the complete chloroplast genome of Rhodiola sachalinensis and comparative analysis with its congeneric plants. FEBS Open Bio 2024; 14:1340-1355. [PMID: 38965647 PMCID: PMC11301261 DOI: 10.1002/2211-5463.13854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
Rhodiola, belonging to the Crassulaceae family, is a perennial herbaceous plant genus. There are about 90 Rhodiola species worldwide, some of which have been reported to have medicinal properties. Rhodiola sachalinensis is a perennial medicinal herb within this genus and, in the present study, its chloroplast genome was sequenced, assembled, annotated and compared with 24 other Rhodiola species. The results obtained show that the chloroplast genome of R. sachalinensis is 151 595 bp long and has a CG content of 37.7%. The inverted repeats (IR) region of the Rhodiola chloroplast genome is the most conserved region, with the main differences being observed in the ycf1 and ndhF genes at the IRb-small single copy boundary, and rps19 and trnH genes at the IRa-large single copy boundary. Phylogenetic analysis showed that Rhodiola species form two major clades, and species with recorded medicinal properties, clustered together in one branch except for R. dumulosa. Within the genus, R. sachalinensis is most closely related to Rhodiola rosea, although comparative analyses showed that only R. sachalinensis and Rhodiola subopposita contained the psbZ gene, which encodes a highly conserved protein subunit of the Photosystem II core complex. Overall, the present study contributes to the understanding of the chloroplast genome of Rhodiola species, and provides a theoretical basis for the study of their genetic diversity and possible use as medicinal plants.
Collapse
Affiliation(s)
- Tianqi Sun
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials)BeijingChina
| | - Yuman Tang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials)BeijingChina
| | - Lei Zhou
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials)BeijingChina
| | - Xu Qiao
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials)BeijingChina
| | - Xuan Ma
- New Cicon Pharmaceutical Co., LtdUrumqiChina
| | - Huaxia Qin
- New Cicon Pharmaceutical Co., LtdUrumqiChina
| | - Yu Han
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials)BeijingChina
| | - Chun Sui
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials)BeijingChina
| |
Collapse
|
3
|
Song W, Shi W, Wang H, Zhang Z, Tao R, Liu J, Wang S, Engel MS, Shi C. Comparative analysis of 12 water lily plastid genomes reveals genomic divergence and evolutionary relationships in early flowering plants. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:425-441. [PMID: 39219675 PMCID: PMC11358372 DOI: 10.1007/s42995-024-00242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/25/2024] [Indexed: 09/04/2024]
Abstract
The aquatic plant Nymphaea, a model genus of the early flowering plant lineage Nymphaeales and family Nymphaeaceae, has been extensively studied. However, the availability of chloroplast genome data for this genus is incomplete, and phylogenetic relationships within the order Nymphaeales remain controversial. In this study, 12 chloroplast genomes of Nymphaea were assembled and analyzed for the first time. These genomes were 158,290-160,042 bp in size and contained 113 non-repeat genes, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. We also report on codon usage, RNA editing sites, microsatellite structures, and new repetitive sequences in this genus. Comparative genomics revealed that expansion and contraction of IR regions can lead to changes in the gene numbers. Additionally, it was observed that the highly variable regions of the chloroplast genome were mainly located in intergenic regions. Furthermore, the phylogenetic tree showed the order Nymphaeales was divided into three families, and the genus Nymphaea can be divided into five (or three) subgenera, with the subgenus Nymphaea being the oldest. The divergence times of nymphaealean taxa were analyzed, with origins of the order Nymphaeales and family Nymphaeaceae being about 194 and 131 million years, respectively. The results of the phylogenetic analysis and estimated divergence times will be useful for future evolutionary studies of basal angiosperm lineages. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00242-0.
Collapse
Affiliation(s)
- Weicai Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Wenbo Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Huan Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Zirui Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Ruiqing Tao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Jin Liu
- Yunnan Institute of Tropical Crops, Xishuangbanna, 666100 China
| | - Shuo Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Michael S. Engel
- American Museum of Natural History, New York, NY 10024-5192 USA
- Natural History Museum, and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045 USA
| | - Chao Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650204 China
| |
Collapse
|
4
|
Chen S, Safiul Azam FM, Akter ML, Ao L, Zou Y, Qian Y. The first complete chloroplast genome of Thalictrum fargesii: insights into phylogeny and species identification. FRONTIERS IN PLANT SCIENCE 2024; 15:1356912. [PMID: 38745930 PMCID: PMC11092384 DOI: 10.3389/fpls.2024.1356912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
Introduction Thalictrum fargesii is a medicinal plant belonging to the genus Thalictrum of the Ranunculaceae family and has been used in herbal medicine in the Himalayan regions of China and India. This species is taxonomically challenging because of its morphological similarities to other species within the genus. Thus, herbal drugs from this species are frequently adulterated, substituted, or mixed with other species, thereby endangering consumer safety. Methods The present study aimed to sequence and assemble the entire chloroplast (cp) genome of T. fargesii using the Illumina HiSeq 2500 platform to better understand the genomic architecture, gene composition, and phylogenetic relationships within the Thalictrum. Results and discussion The cp genome was 155,929 bp long and contained large single-copy (85,395 bp) and small single-copy (17,576 bp) regions that were segregated by a pair of inverted repeat regions (26,479 bp) to form a quadripartite structure. The cp genome contains 133 genes, including 88 protein-coding genes (PCGs), 37 tRNA genes, and 8 rRNA genes. Additionally, this genome contains 64 codons that encode 20 amino acids, the most preferred of which are alanine and leucine. We identified 68 SSRs, 27 long repeats, and 242 high-confidence C-to-U RNA-editing sites in the cp genome. Moreover, we discovered seven divergent hotspot regions in the cp genome of T. fargesii, among which ndhD-psaC and rpl16-rps3 may be useful for developing molecular markers for identifying ethnodrug species and their contaminants. A comparative study with eight other species in the genus revealed that pafI and rps19 had highly variable sites in the cp genome of T. fargesii. Additionally, two special features, (i) the shortest length of the ycf1 gene at the IRA-SSC boundary and (ii) the distance between the rps19 fragment and trnH at the IRA-LSC junction, distinguish the cp genome of T. fargesii from those of other species within the genus. Furthermore, phylogenetic analysis revealed that T. fargesii was closely related to T. tenue and T. petaloidium. Conclusion Considering all these lines of evidence, our findings offer crucial molecular and evolutionary information that could play a significant role in further species identification, evolution, and phylogenetic studies on T. fargesii.
Collapse
Affiliation(s)
- Shixi Chen
- College of Life Science, Neijiang Normal University, Neijiang, Sichuan, China
- Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Key Laboratory of Sichuan Province, Neijiang Normal University, Sichuan, China
| | - Fardous Mohammad Safiul Azam
- College of Life Science, Neijiang Normal University, Neijiang, Sichuan, China
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, University of Development Alternative, Dhaka, Bangladesh
| | - Mst. Lovely Akter
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, University of Development Alternative, Dhaka, Bangladesh
| | - Li Ao
- College of Life Science, Neijiang Normal University, Neijiang, Sichuan, China
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, Sichuan, China
| | - Yuanchao Zou
- College of Life Science, Neijiang Normal University, Neijiang, Sichuan, China
- Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Key Laboratory of Sichuan Province, Neijiang Normal University, Sichuan, China
| | - Ye Qian
- Branch of The First Affiliated Hospital of Xinjiang Medical University, Changji, Xinjiang, China
| |
Collapse
|
5
|
Chen XH, Ding LN, Zong XY, Xu H, Wang WB, Ding R, Qu B. The complete chloroplast genome sequences of four Liparis species (Orchidaceae) and phylogenetic implications. Gene 2023; 888:147760. [PMID: 37661026 DOI: 10.1016/j.gene.2023.147760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Liparis Richard (Malaxideae, Epidendroideae) is a large and diverse genus of the family Orchidaceae, the taxonomy of which is complicated and controversial. In this study, we sequenced, assembled and analyzed four complete chloroplast genomes of Liparis species including L. kumokiri, L. makinoana, L. pauliana, and L. viridiflora, and evaluated their phylogenetic relationships with related species for the first time. These four chloroplast genomes (size range 153,095 to 158,239 bp) possess typical quadripartite structures that consist of a large single copy (LSC, 83,533-86,752 bp), a small single copy (SSC, 17,938-18,156 bp) and a pair of inverted repeats (IRs, 26,421-26,933 bp). The genomes contain 133 genes, including 87 protein coding genes, 38 tRNAs and 8 rRNA genes. The genome arrangements, gene contents, gene order, long repeats and simple sequence repeats were similar with small differences observed among these four chloroplast genomes. Five highly variable regions including ycf1, ndhA, ndhF, trnQ and trnK were identified from the comparative analysis with other nine related Liparis species, which had the potential to be used as DNA markers for species identification and phylogenetic studies of Liparis species. Phylogenetic analysis based on the complete chloroplast genome sequences strongly supported the polyphyly of Liparis and its further division into three branches. These results provided valuable information to illustrate the complicated taxonomy, phylogeny and evolution process of the Liparis genus.
Collapse
Affiliation(s)
- Xu-Hui Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China
| | - Li-Na Ding
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China
| | - Xiao-Yan Zong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China
| | - Hua Xu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, PR China
| | - Wei-Bin Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China
| | - Rui Ding
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China.
| | - Bo Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China.
| |
Collapse
|
6
|
Yan R, Gu L, Qu L, Wang X, Hu G. New Insights into Phylogenetic Relationship of Hydrocotyle (Araliaceae) Based on Plastid Genomes. Int J Mol Sci 2023; 24:16629. [PMID: 38068952 PMCID: PMC10706649 DOI: 10.3390/ijms242316629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Hydrocotyle, belonging to the Hydrocotyloideae of Araliaceae, consists of 95 perennial and 35 annual species. Due to the lack of stable diagnostic morphological characteristics and high-resolution molecular markers, the phylogenetic relationships of Hydrocotyle need to be further investigated. In this study, we newly sequenced and assembled 13 whole plastid genomes of Hydrocotyle and performed comparative plastid genomic analyses with four previously published Hydrocotyle plastomes and phylogenomic analyses within Araliaceae. The plastid genomes of Hydrocotyle exhibited typical quadripartite structures with lengths from 152,659 bp to 153,669 bp, comprising a large single-copy (LSC) region (83,958-84,792 bp), a small single-copy (SSC) region (18,585-18,768 bp), and a pair of inverted repeats (IRs) (25,058-25,145 bp). Each plastome encoded 113 unique genes, containing 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Comparative analyses showed that the IR boundaries of Hydrocotyle plastomes were highly similar, and the coding and IR regions exhibited more conserved than non-coding and single-copy (SC) regions. A total of 2932 simple sequence repeats and 520 long sequence repeats were identified, with specificity in the number and distribution of repeat sequences. Six hypervariable regions were screened from the SC region, including four intergenic spacers (IGS) (ycf3-trnS, trnS-rps4, petA-psbJ, and ndhF-rpl32) and two coding genes (rpl16 and ycf1). Three protein-coding genes (atpE, rpl16, and ycf2) were subjected to positive selection only in a few species, implying that most protein-coding genes were relatively conserved during the plastid evolutionary process. Plastid phylogenomic analyses supported the treatment of Hydrocotyle from Apiaceae to Araliaceae, and topologies with a high resolution indicated that plastome data can be further used in the comprehensive phylogenetic research of Hydrocotyle. The diagnostic characteristics currently used in Hydrocotyle may not accurately reflect the phylogenetic relationships of this genus, and new taxonomic characteristics may need to be evaluated and selected in combination with more comprehensive molecular phylogenetic results.
Collapse
Affiliation(s)
- Rongrong Yan
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (R.Y.); (L.G.); (X.W.)
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Li Gu
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (R.Y.); (L.G.); (X.W.)
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Lu Qu
- Institute of Medicinal Plant Development Yunnan Branch, Chinese Academy of Medical Sciences, Jinghong 666100, China;
| | - Xiaoyu Wang
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (R.Y.); (L.G.); (X.W.)
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Guoxiong Hu
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (R.Y.); (L.G.); (X.W.)
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Yan R, Geng Y, Jia Y, Xiang C, Zhou X, Hu G. Comparative analyses of Linderniaceae plastomes, with implications for its phylogeny and evolution. FRONTIERS IN PLANT SCIENCE 2023; 14:1265641. [PMID: 37828930 PMCID: PMC10565954 DOI: 10.3389/fpls.2023.1265641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Introduction The recently established Linderniaceae, separated from the traditionally defined Scrophulariaceae, is a taxonomically complicated family. Although previous phylogenetic studies based on a few short DNA markers have made great contributions to the taxonomy of Linderniaceae, limited sampling and low resolution of the phylogenetic tree have failed to resolve controversies between some generic circumscriptions. The plastid genome exhibits a powerful ability to solve phylogenetic relationships ranging from shallow to deep taxonomic levels. To date, no plastid phylogenomic studies have been carried out in Linderniaceae. Methods In this study, we newly sequenced 26 plastid genomes of Linderniaceae, including eight genera and 25 species, to explore the phylogenetic relationships and genome evolution of the family through plastid phylogenomic and comparative genomic analyses. Results The plastid genome size of Linderniaceae ranged from 152,386 bp to 154,402 bp, exhibiting a typical quartile structure. All plastomes encoded 114 unique genes, comprising 80 protein-coding genes, 30 tRNA genes, and four rRNA genes. The inverted repeat regions were more conserved compared with the single-copy regions. A total of 1803 microsatellites and 1909 long sequence repeats were identified, and five hypervariable regions (petN-psbM, rps16-trnQ, rpl32-trnL, rpl32, and ycf1) were screened out. Most protein-coding genes were relatively conserved, with only the ycf2 gene found under positive selection in a few species. Phylogenomic analyses confirmed that Linderniaceae was a distinctive lineage and revealed that the presently circumscribed Vandellia and Torenia were non-monophyletic. Discussion Comparative analyses showed the Linderniaceae plastomes were highly conservative in terms of structure, gene order, and gene content. Combining morphological and molecular evidence, we supported the newly established Yamazakia separating from Vandellia and the monotypic Picria as a separate genus. These findings provide further evidence to recognize the phylogenetic relationships among Linderniaceae and new insights into the evolution of the plastid genomes.
Collapse
Affiliation(s)
- Rongrong Yan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Yanfei Geng
- College of Tea Science, Guizhou University, Guiyang, Guizhou, China
| | - Yuhuan Jia
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Chunlei Xiang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xinxin Zhou
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Guoxiong Hu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
8
|
Xia Q, Zhang H, Lv D, El-Kassaby YA, Li W. Insights into phylogenetic relationships in Pinus inferred from a comparative analysis of complete chloroplast genomes. BMC Genomics 2023; 24:346. [PMID: 37349702 DOI: 10.1186/s12864-023-09439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Pinus is the largest genus of Pinaceae and the most primitive group of modern genera. Pines have become the focus of many molecular evolution studies because of their wide use and ecological significance. However, due to the lack of complete chloroplast genome data, the evolutionary relationship and classification of pines are still controversial. With the development of new generation sequencing technology, sequence data of pines are becoming abundant. Here, we systematically analyzed and summarized the chloroplast genomes of 33 published pine species. RESULTS Generally, pines chloroplast genome structure showed strong conservation and high similarity. The chloroplast genome length ranged from 114,082 to 121,530 bp with similar positions and arrangements of all genes, while the GC content ranged from 38.45 to 39.00%. Reverse repeats showed a shrinking evolutionary trend, with IRa/IRb length ranging from 267 to 495 bp. A total of 3,205 microsatellite sequences and 5,436 repeats were detected in the studied species chloroplasts. Additionally, two hypervariable regions were assessed, providing potential molecular markers for future phylogenetic studies and population genetics. Through the phylogenetic analysis of complete chloroplast genomes, we offered novel opinions on the genus traditional evolutionary theory and classification. CONCLUSION We compared and analyzed the chloroplast genomes of 33 pine species, verified the traditional evolutionary theory and classification, and reclassified some controversial species classification. This study is helpful in analyzing the evolution, genetic structure, and the development of chloroplast DNA markers in Pinus.
Collapse
Affiliation(s)
- Qijing Xia
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongbin Zhang
- Gansu Province Academy of Qilian Water Resource Conservation Forests Research Institute, Zhangye, 734031, China
| | - Dong Lv
- Gansu Province Academy of Qilian Water Resource Conservation Forests Research Institute, Zhangye, 734031, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, Canada
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
9
|
Xu Q, Li Z, Wu N, Yang J, Yuan L, Zhao T, Sima Y, Xu T. Comparitive Analysis of the Chloroplast Genomes of Three Houpoea Plants. Genes (Basel) 2023; 14:1262. [PMID: 37372442 DOI: 10.3390/genes14061262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The genus Houpoea belongs to the family Magnoliaceae, and the species in this genus have important medicinal values. However, the investigation of the correlation between the evolution of the genus and its phylogeny has been severely hampered by the unknown range of species within the genus and the paucity of research on its chloroplast genome. Thus, we selected three species of Houpoea: Houpoea officinalis var officinalis (OO), Houpoea officinalis var. biloba (OB), and Houpoea rostrata (R). With lengths of 160,153 bp (OO), 160,011 bp (OB), and 160,070 bp (R), respectively, the whole chloroplast genomes (CPGs) of these three Houpoea plants were acquired via Illumina sequencing technology, and the findings were annotated and evaluated. These three chloroplast genomes were revealed by the annotation findings to be typical tetrads. A total of 131, 132, and 120 different genes were annotated. The CPGs of the three species had 52, 47, and 56 repeat sequences, which were primarily found in the ycf2 gene. A useful tool for identifying species is the approximately 170 simple sequence repeats (SSRs) that have been found. The border area of the reverse repetition region (IR) was studied, and it was shown that across the three Houpoea plants, it is highly conservative, with only changes between H. rostrata and the other two plants observed. Numerous highly variable areas (rps3-rps19, rpl32-trnL, ycf1, ccsA, etc.) have the potential to serve as the barcode label for Houpoea, according to an examination of mVISTA and nucleotide diversity (Pi). Phylogenetic relation indicates that Houpoea is a monophyletic taxon, and its genus range and systematic position are consistent with the Magnoliaceae system of Sima Yongkang-Lu Shugang, including five species and varieties of H. officinalis var. officinalis, H. rostrata, H. officinalis var. biloba, Houpoea obovate, and Houpoea tripetala, which evolved and differentiated from the ancestors of Houpoea to the present Houpoea in the above order. This study provides valuable information on the genus Houpoea, enriches the CPG information on Houpoea genus, and provides genetic resources for the further classification of and phylogenetic research on Houpoea.
Collapse
Affiliation(s)
- Qinbin Xu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Zhuoran Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Nannan Wu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Jing Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Lang Yuan
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Tongxing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yongkang Sima
- Kunming Arboretum, Yunnan Academy of Forestry & Grassland Science, Kunming 650201, China
| | - Tao Xu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| |
Collapse
|
10
|
Zhang D, Ren J, Jiang H, Wanga VO, Dong X, Hu G. Comparative and phylogenetic analysis of the complete chloroplast genomes of six Polygonatum species (Asparagaceae). Sci Rep 2023; 13:7237. [PMID: 37142659 PMCID: PMC10160070 DOI: 10.1038/s41598-023-34083-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Polygonatum Miller belongs to the tribe Polygonateae of Asparagaceae. The horizontal creeping fleshy roots of several species in this genus serve as traditional Chinese medicine. Previous studies have mainly reported the size and gene contents of the plastomes, with little information on the comparative analysis of the plastid genomes of this genus. Additionally, there are still some species whose chloroplast genome information has not been reported. In this study, the complete plastomes of six Polygonatum were sequenced and assembled, among them, the chloroplast genome of P. campanulatum was reported for the first time. Comparative and phylogenetic analyses were then conducted with the published plastomes of three related species. Results indicated that the whole plastome length of the Polygonatum species ranged from 154,564 bp (P. multiflorum) to 156,028 bp (P. stenophyllum) having a quadripartite structure of LSC and SSC separated by two IR regions. A total of 113 unique genes were detected in each of the species. Comparative analysis revealed that gene content and total GC content in these species were highly identical. No significant contraction or expansion was observed in the IR boundaries among all the species except P. sibiricum1, in which the rps19 gene was pseudogenized owing to incomplete duplication. Abundant long dispersed repeats and SSRs were detected in each genome. There were five remarkably variable regions and 14 positively selected genes were identified among Polygonatum and Heteropolygonatum. Phylogenetic results based on chloroplast genome strongly supported the placement of P. campanulatum with alternate leaves in sect. Verticillata, a group characterized by whorled leaves. Moreover, P. verticillatum and P. cyrtonema were displayed as paraphyletic. This study revealed that the characters of plastomes in Polygonatum and Heteropolygonatum maintained a high degree of similarity. Five highly variable regions were found to be potential specific DNA barcodes in Polygonatum. Phylogenetic results suggested that leaf arrangement was not suitable as a basis for delimitation of subgeneric groups in Polygonatum and the definitions of P. cyrtonema and P. verticillatum require further study.
Collapse
Affiliation(s)
- Dongjuan Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Ren
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Hui Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Vincent Okelo Wanga
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangwan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Characterization of the Plastid Genome of the Vulnerable Endemic Indosasa lipoensis and Phylogenetic Analysis. DIVERSITY 2023. [DOI: 10.3390/d15020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Indosasa lipoensis, an ornamental garden plant, belongs to the Indosasa genus of the subfamily Bambooaceae within Poaceae. Indosasa lipoensis is endangered and requires protection owing to its relatively narrow distribution area. Chloroplast (cp) genome offers a novel awareness of the evolutionary and genetic variation of higher plants. Herein, we assembled and elucidated the complete cp genome of I. lipoensis, and compared it with four previously published cp genomes from this genus. The I. lipoensis cp genome was 139,655 bp in size, with a typical quadripartite structure, encompassing a large single-copy region (LSC, 83,256 bp), a small single-copy region (SSC, 12,809 bp), and a pair of inverted repeat regions (IR, 21,795 bp). The cp genome consisted of 130 genes with 84 protein-coding genes (CDS), 38 tRNA genes, and 8 rRNA genes. The plastomes were highly conservative, compared to other bamboo species, and exhibited similar patterns of codon usage, number of repeat sequences, and expansion and contraction of the IR boundary. Five hypervariable hotspots were identified as potential DNA barcodes, namely rbcL, petA, petB, trnL-UAG, and ndhE-ndhI, respectively. Phylogenetic analysis based on the complete cp genomes revealed, with high resolution, that I. lipoensis and I. gigantea were most closely related. Overall, these results provided valuable characterization for the future conservation, genetic evaluation, and the breeding of I. lipoensis.
Collapse
|
12
|
Qiu H, Zhang ZH, Wang MZ, Jin XJ, Lin JD, Comes HP, Chen JX, Cui RN, Duan RQ, Li P. Plastome evolution and phylogenomics of Impatiens (Balsaminaceae). PLANTA 2023; 257:45. [PMID: 36695892 DOI: 10.1007/s00425-023-04078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
This study reported seven new plastomes from Impatiens and observed three highly variable regions for phylogeny and DNA barcoding, which resolved the relationships among sections of subgenus Impatiens. Impatiens L. (Balsaminaceae, Ericales) is one of the largest and most diverse genera of angiosperms, widely known for its taxonomic difficulty. In this study, we reevaluated the infrageneric relationships within the genus Impatiens, using complete plastome sequence data. Seven complete plastomes of Impatiens (representing 6 species) were newly sequenced and characterized along with 20 previously published plastomes of other Impatiens species, plus 2 plastomes of outgroups (Hydrocera triflora, Balsaminaceae; Marcgravia coriacea, Marcgraviaceae). The total size of these 29 plastomes ranged from 151,538 bp to 152,917 bp, except 2 samples of Impatiens morsei, which exhibited a shorter length and lost some genes encoding NADH dehydrogenase subunits. Moreover, the number of simple sequence repeats (SSRs) ranged from 51 to 113, and the number of long repeats from 17 to 26. In addition, three highly variable regions were identified (trnG-GCC (The previous one), ndhF-rpl32-trnL-UGA-ccsA, and ycf1). Our phylogenomic analysis based on 80 plastome-derived protein-coding genes strongly supported the monophyly of Impatiens and its two subgenera (Clavicarpa and Impatiens), and fully resolved relationships among the six (out of seven) sampled sections of subgenus Impatiens. Overall, the plastome DNA markers and phylogenetic results reported in this study will facilitate future identification, taxonomic and DNA barcoding studies in Impatiens as well as evolutionary studies in Balsaminaceae.
Collapse
Affiliation(s)
- He Qiu
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Hui Zhang
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mei-Zhen Wang
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Jie Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Jie-Dong Lin
- Zhangzhou Huaqiao Middle School, Zhangzhou, 363030, China
| | - Hans Peter Comes
- Department of Environment and Biodiversity, Salzburg University, 5020, Salzburg, Austria
| | - Jing-Xuan Chen
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rui-Ning Cui
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ru-Qing Duan
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Pan Li
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
The development of SSR markers from the endangered plant Tetracentron sinense Oliv. (Tetracentraceae) based on RAD–seq technique. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
14
|
Xie H, Zhang L, Zhang C, Chang H, Xi Z, Xu X. Comparative analysis of the complete chloroplast genomes of six threatened subgenus Gynopodium (Magnolia) species. BMC Genomics 2022; 23:716. [PMID: 36261795 PMCID: PMC9583488 DOI: 10.1186/s12864-022-08934-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The subgenus Gynopodium belonging to genus Magnolia have high ornamental, economic, and ecological value. Subgenus Gynopodium contains eight species, but six of these species are threatened. No studies to date have characterized the characteristics of the chloroplast genomes (CPGs) within subgenus Gynopodium species. In this study, we compared the structure of CPGs, identified the mutational hotspots and resolved the phylogenetic relationship of subgenus Gynopodium. RESULTS The CPGs of six subgenus Gynopodium species ranged in size from 160,027 bp to 160,114 bp. A total of 131 genes were identified, including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. We detected neither major expansions or contractions in the inverted repeat region, nor rearrangements or insertions in the CPGs of six subgenus Gynopodium species. A total of 300 large repeat sequences (forward, reverse, and palindrome repeats), 847 simple sequence repeats, and five highly variable regions were identified. One gene (ycf1) and four intergenic regions (psbA-trnH-GUG, petA-psbJ, rpl32-trnL-UAG, and ccsA-ndhD) were identified as mutational hotspots by their high nucleotide diversity (Pi) values (≥ 0.004), which were useful for species discrimination. Maximum likelihood and Bayesian inference trees were concordant and indicated that Magnoliaceae consisted of two genera Liriodendron and Magnolia. Six species of subgenus Gynopodium clustered as a monophyletic clade, forming a sister clade with subgenus Yulania (BS = 100%, PP = 1.00). Due to the non-monophyly of subgenus Magnolia, subgenus Gynopodium should be treated as a section of Magnolia. Within section Gynopodium, M. sinica diverged first (posterior probability = 1, bootstrap = 100), followed by M. nitida, M. kachirachirai and M. lotungensis. M. omeiensis was sister to M. yunnanensis (posterior probability = 0.97, bootstrap = 50). CONCLUSION The CPGs and characteristics information provided by our study could be useful in species identification, conservation genetics and resolving phylogenetic relationships of Magnoliaceae species.
Collapse
Affiliation(s)
- Huanhuan Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lei Zhang
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin National Ethnic Affairs Commission of the People's Republic of China, College of Biological Science & Engineering, North Minzu University, Yinchuan, 750021, China
| | - Cheng Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hong Chang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Xiaoting Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|