1
|
Tang X, Xia X, Liu Y, Hong X, Huang Y, Li G, Liang Y, Wang X, Pang H, Yang Y. Alternative splicing fine-tunes prey shift of Coccinellini lady beetles to non-target insect. BMC Genomics 2025; 26:472. [PMID: 40355858 PMCID: PMC12067713 DOI: 10.1186/s12864-025-11641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Coccinellini lady beetles have been applied as biological control agent of aphids, however, not all of these species are obligately aphidophagous. Thus, a comprehensive understanding of the molecular mechanisms behind predaceous specificity of Coccinellini lady beetles can provide important clues for evaluating their performance and ecological risk assessment in biological control. Post-transcriptional regulations act a key role in shaping organisms' rapid adaptation to changing environment, yet, little is known about their role in the acclimation of Coccinellini lady beetles to non-target preys. RESULTS In this study, we conducted a genome-wide investigation to alternative splicing (AS) dynamics in three Coccinellini species Propylea japonica, Coccinella septempunctata and Harmonia axyridis in response to feeding shift from natural prey bean aphids (Megoura japonica) to non-target insect citrus mealybugs (Planococcus citri). Compared to aphid-feeding, all three lady beetles were subject to substantial splicing changes when preying on mealybugs. Most of these differentially spliced genes (DSGs) were not differentially expressed, and regulated different pathways from differentially expressed genes, indicating the functionally nonredundant role of AS. The DSGs were primarily associated with energy derivation, organ formation and development, chemosensation and immune responses, which may promote tolerance of lady beetles to nutrient deprivation and pathogen challenges induced by prey shift. The lady beetles feeding on mealybugs moreover downregulated the generation of splicing products containing premature termination codons (PTCs) for the genes involved in energy derivation and stimulus responses, to fine-tune their protein expression and rationalize energy allocation. CONCLUSION These findings unraveled the functional significance of AS reprogramming in modulating acclimation of Coccinellini lady beetles to prey shift from aphids to non-target insects and provided new genetic clues for evaluating their ecological safety as biological control agents.
Collapse
Affiliation(s)
- Xuefei Tang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xinhui Xia
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yuqi Liu
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xiyao Hong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yuhao Huang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Guannan Li
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yuansen Liang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xueqing Wang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Hong Pang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Yuchen Yang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
2
|
Huang YH, Escalona HE, Sun YF, Zhang PF, Du XY, Gong SR, Tang XF, Liang YS, Yang D, Chen PT, Yang HY, Chen ML, Hüttel B, Hlinka O, Wang X, Meusemann K, Ślipiński A, Zwick A, Waterhouse RM, Misof B, Niehuis O, Li HS, Pang H. Molecular evolution of dietary shifts in ladybird beetles (Coleoptera: Coccinellidae): from fungivory to carnivory and herbivory. BMC Biol 2025; 23:67. [PMID: 40022128 PMCID: PMC11871716 DOI: 10.1186/s12915-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Dietary shifts are major evolutionary steps that shape ecological niches and biodiversity. The beetle family Coccinellidae, commonly known as ladybirds, first transitioned from a fungivorous to an insectivorous and subsequently a plant diet. However, the molecular basis of this dietary diversification remained unexplored. RESULTS We investigated the molecular evolution of dietary shifts in ladybirds, focusing on the transitions from fungivory to carnivory (Coccinellidae) and from carnivory to herbivory (Epilachnini), by comparing 25 genomes and 62 transcriptomes of beetles. Our analysis shows that chemosensory gene families have undergone significant expansions at both nodes of diet change and were differentially expressed in feeding experiments, suggesting that they may be related to foraging. We found expansions of digestive and detoxifying gene families and losses of chitin-related digestive genes in the herbivorous ladybirds, and absence of most plant cell wall-degrading enzymes in the ladybirds dating from the transition to carnivory, likely indicating the effect of different digestion requirements on the gene repertoire. Immunity effector genes tend to emerge or have specific amino acid sequence compositions in carnivorous ladybirds and are downregulated under suboptimal dietary treatments, suggesting a potential function of these genes related to microbial symbionts in the sternorrhynchan prey. CONCLUSIONS Our study provides a comprehensive comparative genomic analysis to address evolution of chemosensory, digestive, detoxifying, and immune genes associated with dietary shifts in ladybirds. Ladybirds can be considered a ubiquitous example of dietary shifts in insects, and thus a promising model system for evolutionary and applied biology.
Collapse
Affiliation(s)
- Yu-Hao Huang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Hermes E Escalona
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Yi-Fei Sun
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Pei-Fang Zhang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xue-Yong Du
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Sen-Rui Gong
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xue-Fei Tang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuan-Sen Liang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Dan Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Pei-Tao Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Huan-Ying Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Mei-Lan Chen
- School of Environmental and Life Sciences, Nanning Normal University, Nanning, 530001, China
| | - Bruno Hüttel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ondrej Hlinka
- CSIRO Information, Management and Technology, Pullenvale, QLD, Australia
| | - Xingmin Wang
- College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Karen Meusemann
- Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, Bonn, 53113, Germany
| | - Adam Ślipiński
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Andreas Zwick
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Bernhard Misof
- Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, Bonn, 53113, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, Freiburg, 79104, Germany
| | - Hao-Sen Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Hong Pang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
3
|
Huang YH, Sun YF, Li H, Li HS, Pang H. PhyloAln: A Convenient Reference-Based Tool to Align Sequences and High-Throughput Reads for Phylogeny and Evolution in the Omic Era. Mol Biol Evol 2024; 41:msae150. [PMID: 39041199 PMCID: PMC11287380 DOI: 10.1093/molbev/msae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/15/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
The current trend in phylogenetic and evolutionary analyses predominantly relies on omic data. However, prior to core analyses, traditional methods typically involve intricate and time-consuming procedures, including assembly from high-throughput reads, decontamination, gene prediction, homology search, orthology assignment, multiple sequence alignment, and matrix trimming. Such processes significantly impede the efficiency of research when dealing with extensive data sets. In this study, we develop PhyloAln, a convenient reference-based tool capable of directly aligning high-throughput reads or complete sequences with existing alignments as a reference for phylogenetic and evolutionary analyses. Through testing with simulated data sets of species spanning the tree of life, PhyloAln demonstrates consistently robust performance compared with other reference-based tools across different data types, sequencing technologies, coverages, and species, with percent completeness and identity at least 50 percentage points higher in the alignments. Additionally, we validate the efficacy of PhyloAln in removing a minimum of 90% foreign and 70% cross-contamination issues, which are prevalent in sequencing data but often overlooked by other tools. Moreover, we showcase the broad applicability of PhyloAln by generating alignments (completeness mostly larger than 80%, identity larger than 90%) and reconstructing robust phylogenies using real data sets of transcriptomes of ladybird beetles, plastid genes of peppers, or ultraconserved elements of turtles. With these advantages, PhyloAln is expected to facilitate phylogenetic and evolutionary analyses in the omic era. The tool is accessible at https://github.com/huangyh45/PhyloAln.
Collapse
Affiliation(s)
- Yu-Hao Huang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| | - Yi-Fei Sun
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| | - Hao-Sen Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| | - Hong Pang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
4
|
Tang XF, Sun YF, Liang YS, Yang KY, Chen PT, Li HS, Huang YH, Pang H. Metabolism, digestion, and horizontal transfer: potential roles and interaction of symbiotic bacteria in the ladybird beetle Novius pumilus and their prey Icerya aegyptiaca. Microbiol Spectr 2024; 12:e0295523. [PMID: 38497713 PMCID: PMC11064573 DOI: 10.1128/spectrum.02955-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
In this study, we first time sequenced and analyzed the 16S rRNA gene data of predator ladybird beetles Novius pumilus and globally distributed invasive pest Icerya aegyptiaca at different stages, and combined data with bacterial genome sequences in N. pumilus to explored the taxonomic distribution, alpha and beta diversity, differentially abundant bacteria, co-occurrence network, and putative functions of their microbial community. Our finding revealed that Candidatus Walczuchella, which exhibited a higher abundance in I. aegyptiaca, possessed several genes in essential amino acid biosynthesis and seemed to perform roles in providing nutrients to the host, similar to other obligate symbionts in scale insects. Lactococcus, Serratia, and Pseudomonas, more abundant in N. pumilus, were predicted to have genes related to hydrocarbon, fatty acids, and chitin degradation, which may assist their hosts in digesting the wax shell covering the scale insects. Notably, our result showed that Lactococcus had relatively higher abundances in adults and eggs compared to other stages in N. pumilus, indicating potential vertical transmission. Additionally, we found that Arsenophonus, known to influence sex ratios in whitefly and wasp, may also function in I. aegyptiaca, probably by influencing nutrient metabolism as it similarly had many genes corresponding to vitamin B and essential amino acid biosynthesis. Also, we observed a potential horizontal transfer of Arsenophonus between the scale insect and its predator, with a relatively high abundance in the ladybirds compared to other bacteria from the scale insects.IMPORTANCEThe composition and dynamic changes of microbiome in different developmental stages of ladybird beetles Novius pumilus with its prey Icerya aegyptiaca were detected. We found that Candidatus Walczuchella, abundant in I. aegyptiaca, probably provide nutrients to their host based on their amino acid biosynthesis-related genes. Abundant symbionts in N. pumilus, including Lactococcus, Serratia, and Pseudophonus, may help the host digest the scale insects with their hydrocarbon, fatty acid, and chitin degrading-related genes. A key endosymbiont Arsenophonus may play potential roles in the nutrient metabolisms and sex determination in I. aegyptiaca, and is possibly transferred from the scale insect to the predator.
Collapse
Affiliation(s)
- Xue-Fei Tang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yi-Fei Sun
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yuan-Sen Liang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Kun-Yu Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Pei-Tao Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Hao-Sen Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yu-Hao Huang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Hong Pang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
5
|
Otero-Ruiz A, Rodriguez-Anaya LZ, Lares-Villa F, Lozano Aguirre Beltrán LF, Lares-Jiménez LF, Gonzalez-Galaviz JR, Cruz-Mendívil A. Functional annotation and comparative genomics analysis of Balamuthia mandrillaris reveals potential virulence-related genes. Sci Rep 2023; 13:14318. [PMID: 37653073 PMCID: PMC10471605 DOI: 10.1038/s41598-023-41657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Balamuthia mandrillaris is a pathogenic protozoan that causes a rare but almost always fatal infection of the central nervous system and, in some cases, cutaneous lesions. Currently, the genomic data for this free-living amoeba include the description of several complete mitochondrial genomes. In contrast, two complete genomes with draft quality are available in GenBank, but none of these have a functional annotation. In the present study, the complete genome of B. mandrillaris isolated from a freshwater artificial lagoon was sequenced and assembled, obtaining an assembled genome with better assembly quality parameter values than the currently available genomes. Afterward, the genome mentioned earlier, along with strains V039 and 2046, were subjected to functional annotation. Finally, comparative genomics analysis was performed, and it was found that homologous genes in the core genome potentially involved in the virulence of Acanthamoeba spp. and Trypanosoma cruzi. Moreover, eleven of fifteen genes were identified in the three strains described as potential target genes to develop new treatment approaches for B. mandrillaris infections. These results describe proteins in this protozoan's complete genome and help prioritize which target genes could be used to develop new treatments.
Collapse
Affiliation(s)
- Alejandro Otero-Ruiz
- Programa de Doctorado en Ciencias Especialidad en Biotecnología, Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 85000, Ciudad Obregón, Sonora, Mexico
| | | | - Fernando Lares-Villa
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, 85000, Ciudad Obregón, Sonora, Mexico
| | - Luis Fernando Lozano Aguirre Beltrán
- Unidad de Análisis Bioinformáticos, Centro de Ciencias Genómicas de la Universidad Nacional Autónoma de México (UNAM), 62210, Cuernavaca, Morelos, Mexico
| | - Luis Fernando Lares-Jiménez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, 85000, Ciudad Obregón, Sonora, Mexico
| | | | - Abraham Cruz-Mendívil
- CONAHCYT-Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, 81101, Guasave, Sinaloa, Mexico
| |
Collapse
|
6
|
Poorani J. A review of the tribe Noviini (Coleoptera: Coccinellidae) of the Indian subcontinent. Zootaxa 2023; 5311:1-47. [PMID: 37518657 DOI: 10.11646/zootaxa.5311.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Indexed: 08/01/2023]
Abstract
The tribe Noviini (Coleoptera: Coccinellidae) is economically important as its members are mainly predators of giant scales belonging to the family Monophlebidae and occasionally, mealybugs (Pseudococcidae). At present, 17 species of the tribe, all belonging to the sole recognized genus Novius Mulsant, are known from the Indian region. An illustrated account of the Indian species of Novius is presented here with brief diagnostic accounts, illustrations of the genitalia and details on the distribution, host insects and associated host plants. Life stages of the species are also illustrated wherever available. An updated checklist of Novius species of the Indian subcontinent is provided.
Collapse
Affiliation(s)
- J Poorani
- ICAR-National Research Centre for Banana; Thogamalai Road; Thayanur Post; Trichy 620102; Tamil Nadu; India.
| |
Collapse
|
7
|
Tang XF, Huang YH, Sun YF, Zhang PF, Huo LZ, Li HS, Pang H. The transcriptome of Icerya aegyptiaca (Hemiptera: Monophlebidae) and comparison with neococcoids reveal genetic clues of evolution in the scale insects. BMC Genomics 2023; 24:231. [PMID: 37138224 PMCID: PMC10158165 DOI: 10.1186/s12864-023-09327-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Scale insects are worldwide sap-sucking parasites, which can be distinguished into neococcoids and non-neococcoids. Neococcoids are monophyletic with a peculiar reproductive system, paternal genome elimination (PGE). Different with neococcoids, Iceryini, a tribe in non-neococcoids including several damaging pests, has abdominal spiracles, compound eyes in males, relatively abundant wax, unique hermaphrodite system, and specific symbionts. However, the current studies on the gene resources and genomic mechanism of scale insects are mainly limited in the neococcoids, and lacked of comparison in an evolution frame. RESULT We sequenced and de novo assembled a transcriptome of Icerya aegyptiaca (Douglas), a worldwide pest of Iceryini, and used it as representative of non-neococcoids to compare with the genomes or transcriptomes of other six species from different families of neococcoids. We found that the genes under positive selection or negative selection intensification (simplified as "selected genes" below) in I. aegyptiaca included those related to neurogenesis and development, especially eye development. Some genes related to fatty acid biosynthesis were unique in its transcriptome with relatively high expression and not detected in neococcoids. These results may indicate a potential link to the unique structures and abundant wax of I. aegyptiaca compared with neococcoids. Meanwhile, genes related to DNA repair, mitosis, spindle, cytokinesis and oogenesis, were included in the selected genes in I. aegyptiaca, which is possibly associated with cell division and germ cell formation of the hermaphrodite system. Chromatin-related process were enriched from selected genes in neococcoids, along with some mitosis-related genes also detected, which may be related to their unique PGE system. Moreover, in neococcoid species, male-biased genes tend to undergo negative selection relaxation under the PGE system. We also found that the candidate horizontally transferred genes (HTGs) in the scale insects mainly derived from bacteria and fungi. bioD and bioB, the two biotin-synthesizing HTGs were exclusively found in the scale insects and neococcoids, respectively, which possibly show potential demand changes in the symbiotic relationships. CONCLUSION Our study reports the first I. aegyptiaca transcriptome and provides preliminary insights for the genetic change of structures, reproductive systems and symbiont relationships at an evolutionary aspect. This will provide a basis for further research and control of scale insects.
Collapse
Affiliation(s)
- Xue-Fei Tang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, China
| | - Yu-Hao Huang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, China
| | - Yi-Fei Sun
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, China
| | - Pei-Fang Zhang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, China
| | - Li-Zhi Huo
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China
| | - Hao-Sen Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, China
| | - Hong Pang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|