1
|
Lins LC, DE-Meira JEC, Pereira CW, Crispim AC, Gischewski MDR, Lins-Neto MÁDF, Moura FA. FECAL CALPROTECTIN AND INTESTINAL METABOLITES: WHAT IS THEIR IMPORTANCE IN THE ACTIVITY AND DIFFERENTIATION OF PATIENTS WITH INFLAMMATORY BOWEL DISEASES? ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA : ABCD = BRAZILIAN ARCHIVES OF DIGESTIVE SURGERY 2025; 38:e1870. [PMID: 40052996 PMCID: PMC11870234 DOI: 10.1590/0102-6720202500001e1870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 09/01/2024] [Indexed: 03/10/2025]
Abstract
BACKGROUND Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), lacks a known etiology. Although clinical symptoms, imaging, and colonoscopy are common diagnostic tools, fecal calprotectin (FC) serves as a widely used biomarker to track disease activity. Metabolomics, within the omics sciences, holds promise for identifying disease progression biomarkers. This approach involves studying metabolites in biological media to uncover pathological factors. AIMS The purpose of this study was to explore fecal metabolomics in IBD patients, evaluate its potential in differentiating subtypes, and assess disease activity using FC. METHODS Cross-sectional study including IBD patients, clinical data, and FC measurements (=200 μg/g as an indicator of active disease). RESULTS Fecal metabolomics utilized chromatography mass spectrometry/solid phase microextraction with MetaboAnalyst 5.0 software for analysis. Of 52 patients (29 UC, 23 CD), 36 (69.2%) exhibited inflammatory activity. We identified 56 fecal metabolites, with hexadecanoic acid, squalene, and octadecanoic acid notably distinguishing CD from UC. For UC, octadecanoic and hexadecanoic acids correlated with disease activity, whereas octadecanoic acid was most relevant in CD. CONCLUSIONS These findings highlight the potential of metabolomics as a noninvasive complement for evaluating IBD, aiding diagnosis, and assessing disease activity.
Collapse
Affiliation(s)
- Lucas Correia Lins
- Universidade Federal de Alagoas, Postgraduate Program in Medical Sciences - Maceió (AL), Brazil
| | | | | | - Alessandre Carmo Crispim
- Universidade Federal de Alagoas, Postgraduate Program in Chemistry and Biotechnology - Maceió (AL), Brazil
| | | | | | - Fabiana Andréa Moura
- Universidade Federal de Alagoas, Postgraduate Program in Medical Sciences - Maceió (AL), Brazil
| |
Collapse
|
2
|
Sun Y, Guo J, Liu Y, Wang N, Xu Y, Wu F, Xiao J, Li Y, Wang X, Hu Y, Zhou Y. METnet: A novel deep learning model predicting MET dysregulation in non-small-cell lung cancer on computed tomography images. Comput Biol Med 2024; 171:108136. [PMID: 38367451 DOI: 10.1016/j.compbiomed.2024.108136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Mesenchymal epithelial transformation (MET) is a key molecular target for diagnosis and treatment of non-small cell lung cancer (NSCLC). The corresponding molecularly targeted therapeutics have been approved by Food and Drug Administration (FDA), achieving promising results. However, current detection of MET dysregulation requires biopsy and gene sequencing, which is invasive, time-consuming and difficult to obtain tumor samples. METHODS To address the above problems, we developed a noninvasive and convenient deep learning (DL) model based on Computed tomography (CT) imaging data for prediction of MET dysregulation. We introduced the unsupervised algorithm RK-net for automated image processing and utilized the MedSAM large model to achieve automated tissue segmentation. Based on the processed CT images, we developed a DL model (METnet). The model based on the grouped convolutional block. We evaluated the performance of the model over the internal test dataset using the area under the receiver operating characteristic curve (AUROC) and accuracy. We conducted subgroup analysis on the basis of clinical data of the lung cancer patients and compared the performance of the model in different subgroups. RESULTS The model demonstrated a good discriminative ability over the internal test dataset. The accuracy of METnet was 0.746 with an AUC value of 0.793 (95% CI 0.714-0.871). The subgroup analysis revealed that the model exhibited similar performance across different subgroups. CONCLUSIONS METnet realizes prediction of MET dysregulation in NSCLC, holding promise for guiding precise tumor diagnosis and treatment at the molecular level.
Collapse
Affiliation(s)
- Yige Sun
- Department of Radiology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150010, Heilongjiang, P.R. China; Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jirui Guo
- Center for Bioinformatics, Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Yang Liu
- Department of Radiology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150010, Heilongjiang, P.R. China
| | - Nan Wang
- Beidahuang Industry Group General Hospital, Harbin, 150088, China
| | - Yanwei Xu
- Beidahuang Group Neuropsychiatric Hospital, Jiamusi, 154000, China
| | - Fei Wu
- The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, 150001, Harbin, Heilongjiang, China
| | - Jianxin Xiao
- Department of Radiology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150010, Heilongjiang, P.R. China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, 150000, China
| | - Xinxin Wang
- Department of Radiology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150010, Heilongjiang, P.R. China
| | - Yang Hu
- Center for Bioinformatics, Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
| | - Yang Zhou
- Department of Radiology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150010, Heilongjiang, P.R. China.
| |
Collapse
|
3
|
Bi X, Liang W, Zhao Q, Wang J. SSLpheno: a self-supervised learning approach for gene-phenotype association prediction using protein-protein interactions and gene ontology data. Bioinformatics 2023; 39:btad662. [PMID: 37941450 PMCID: PMC10666204 DOI: 10.1093/bioinformatics/btad662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023] Open
Abstract
MOTIVATION Medical genomics faces significant challenges in interpreting disease phenotype and genetic heterogeneity. Despite the establishment of standardized disease phenotype databases, computational methods for predicting gene-phenotype associations still suffer from imbalanced category distribution and a lack of labeled data in small categories. RESULTS To address the problem of labeled-data scarcity, we propose a self-supervised learning strategy for gene-phenotype association prediction, called SSLpheno. Our approach utilizes an attributed network that integrates protein-protein interactions and gene ontology data. We apply a Laplacian-based filter to ensure feature smoothness and use self-supervised training to optimize node feature representation. Specifically, we calculate the cosine similarity of feature vectors and select positive and negative sample nodes for reconstruction training labels. We employ a deep neural network for multi-label classification of phenotypes in the downstream task. Our experimental results demonstrate that SSLpheno outperforms state-of-the-art methods, especially in categories with fewer annotations. Moreover, our case studies illustrate the potential of SSLpheno as an effective prescreening tool for gene-phenotype association identification. AVAILABILITY AND IMPLEMENTATION https://github.com/bixuehua/SSLpheno.
Collapse
Affiliation(s)
- Xuehua Bi
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
- Medical Engineering and Technology College, Xinjiang Medical University, Urumqi 830017, China
| | - Weiyang Liang
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
| | - Qichang Zhao
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jianxin Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
4
|
Wan H, Zhang Y, Huang S. Prediction of thermophilic protein using 2-D general series correlation pseudo amino acid features. Methods 2023; 218:141-148. [PMID: 37604248 DOI: 10.1016/j.ymeth.2023.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/08/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023] Open
Abstract
The demand for thermophilic protein has been increasing in protein engineering recently. Many machine-learning methods for identifying thermophilic proteins have emerged during this period. However, most machine learning-based thermophilic protein identification studies have only focused on accuracy. The relationship between the features' meaning and the proteins' physicochemical properties has yet to be studied in depth. In this article, we focused on the relationship between the features and the thermal stability of thermophilic proteins. This method used 2-D general series correlation pseudo amino acid (SC-PseAAC-General) features and realized accuracy of 82.76% using the J48 classifier. In addition, this research found the presence of higher frequencies of glutamic acid in thermophilic proteins, which help thermophilic proteins maintain their thermal stability by forming hydrogen bonds and salt bridges that prevent denaturation at high temperatures.
Collapse
Affiliation(s)
- Hao Wan
- College of Life Science, Qingdao University, Qingdao 266071, China.
| | - Yanan Zhang
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Shibo Huang
- Beidahuang Industry Group General Hospital, Harbin 150001, China
| |
Collapse
|