1
|
Lebedev E, Smutin D, Timkin P, Kotelnikov D, Taldaev A, Panushev N, Adonin L. The eusocial non-code: Unveiling the impact of noncoding RNAs on Hymenoptera eusocial evolution. Noncoding RNA Res 2025; 11:48-59. [PMID: 39736856 PMCID: PMC11683303 DOI: 10.1016/j.ncrna.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 01/01/2025] Open
Abstract
Eusociality, characterized by reproductive division of labor, cooperative brood care, and multi-generational cohabitation, represents a pinnacle of complex social evolution, most notably manifested within the Hymenoptera order including bees, ants, and wasps. The molecular underpinnings underlying these sophisticated social structures remain an enigma, with noncoding RNAs (ncRNAs) emerging as crucial regulatory players. This article delves into the roles of ncRNAs in exerting epigenetic control during the development and maintenance of Hymenopteran eusociality. We consolidate current findings on various classes of ncRNAs, underscoring their influence on gene expression regulation pertinent to caste differentiation, developmental plasticity, and behavioral modulation. Evidence is explored supporting the hypothesis that ncRNAs contribute to epigenetic landscapes fostering eusocial traits through genomic regulation. They are likely to play an important role in eusociality "point of no return". Critical analysis is provided on the functional insights garnered from ncRNA profiles correlated with caste-specific phenotypes, specifical for phylogenetic branches and transitional sociality models, drawing from comparative genomics and transcriptomics studies. Overall, ncRNA provides a missed understanding of both "genetic toolkit" and "unique genes" hypotheses of eusociality development. Moreover, it points to gaps in current knowledge, advocating for integrative approaches combining genomics, proteomics, and epigenetics to decipher the complexity of eusociality. Understanding the ncRNA contributions offers not only a window into the molecular intricacies of Hymenoptera sociality but also extends our comprehension of how complex biological systems evolve and function.
Collapse
Affiliation(s)
- Egor Lebedev
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003, Tyumen, Russia
| | - Daniil Smutin
- Faculty of Information Technology and Programming, ITMO University, St.-Petersburg, 197101, Russia
| | - Pavel Timkin
- All-russian Research Institute of Soybean, 675027, Blagoveschensk, Russia
| | - Danil Kotelnikov
- All-russian Research Institute of Soybean, 675027, Blagoveschensk, Russia
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - Amir Taldaev
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Nick Panushev
- Bioinformatics Institute, 197342, St.-Petersburg, Russia
| | - Leonid Adonin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003, Tyumen, Russia
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
- Federal State Budget-Financed Educational Institution of Higher Education The Bonch-Bruevich Saint Petersburg State University of Telecommunications, Saint-Petersburg, 193232, Russia
| |
Collapse
|
2
|
Luo S, Zhou X. Post-transcriptional regulation of behavior plasticity in social insects. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101329. [PMID: 39708917 DOI: 10.1016/j.cois.2024.101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Social insects often show remarkable behavioral plasticity, which is closely associated with their respective castes. The underpinnings of this plasticity are complex, involving genetic differences among individuals within a colony and regulation of gene expression at multiple levels. Post-transcriptional regulation, which increases the complexity of the transcriptome, plays a crucial role in the multilayer regulatory network that influences social insect behavior. We provide an overview of the impact of three post-transcriptional regulatory processes on the reproductive division of labor and worker division of labor in social insects: alternative splicing, RNA modifications, and noncoding RNAs. We also discuss the relationship between post-transcriptional regulation and chromatin modification.
Collapse
Affiliation(s)
- Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China.
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Huang Z, Chen Q, Mu X, An Z, Xu Y. Elucidating the Functional Roles of Long Non-Coding RNAs in Alzheimer's Disease. Int J Mol Sci 2024; 25:9211. [PMID: 39273160 PMCID: PMC11394787 DOI: 10.3390/ijms25179211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder characterized by cognitive decline and neuronal loss, representing a most challenging health issue. We present a computational analysis of transcriptomic data of AD tissues vs. healthy controls, focused on the elucidation of functional roles played by long non-coding RNAs (lncRNAs) throughout the AD progression. We first assembled our own lncRNA transcripts from the raw RNA-Seq data generated from 527 samples of the dorsolateral prefrontal cortex, resulting in the identification of 31,574 novel lncRNA genes. Based on co-expression analyses between mRNAs and lncRNAs, a co-expression network was constructed. Maximal subnetworks with dense connections were identified as functional clusters. Pathway enrichment analyses were conducted over mRNAs and lncRNAs in each cluster, which served as the basis for the inference of functional roles played by lncRNAs involved in each of the key steps in an AD development model that we have previously built based on transcriptomic data of protein-encoding genes. Detailed information is presented about the functional roles of lncRNAs in activities related to stress response, reprogrammed metabolism, cell polarity, and development. Our analyses also revealed that lncRNAs have the discerning power to distinguish between AD samples of each stage and healthy controls. This study represents the first of its kind.
Collapse
Affiliation(s)
- Zhenyu Huang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China;
- Systems Biology Lab for Metabolic Reprogramming, Department of Human Genetics and Cell Biology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.C.); (X.M.)
| | - Qiufen Chen
- Systems Biology Lab for Metabolic Reprogramming, Department of Human Genetics and Cell Biology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.C.); (X.M.)
| | - Xuechen Mu
- Systems Biology Lab for Metabolic Reprogramming, Department of Human Genetics and Cell Biology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.C.); (X.M.)
- School of Mathematics, Jilin University, Changchun 130012, China
| | - Zheng An
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
| | - Ying Xu
- Systems Biology Lab for Metabolic Reprogramming, Department of Human Genetics and Cell Biology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.C.); (X.M.)
| |
Collapse
|
4
|
Kang J, Chung A, Suresh S, Bonzi LC, Sourisse JM, Ramirez‐Calero S, Romeo D, Petit‐Marty N, Pegueroles C, Schunter C. Long non-coding RNAs mediate fish gene expression in response to ocean acidification. Evol Appl 2024; 17:e13655. [PMID: 38357358 PMCID: PMC10866067 DOI: 10.1111/eva.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
The majority of the transcribed genome does not have coding potential but these non-coding transcripts play crucial roles in transcriptional and post-transcriptional regulation of protein-coding genes. Regulation of gene expression is important in shaping an organism's response to environmental changes, ultimately impacting their survival and persistence as population or species face global change. However, the roles of long non-coding RNAs (lncRNAs), when confronted with environmental changes, remain largely unclear. To explore the potential role of lncRNAs in fish exposed to ocean acidification (OA), we analyzed publicly available brain RNA-seq data from a coral reef fish Acanthochromis polyacanthus. We annotated the lncRNAs in its genome and examined the expression changes of intergenic lncRNAs (lincRNAs) between A. polyacanthus samples from a natural CO2 seep and a nearby control site. We identified 4728 lncRNAs, including 3272 lincRNAs in this species. Remarkably, 93.03% of these lincRNAs were species-specific. Among the 125 highly expressed lincRNAs and 403 differentially expressed lincRNAs in response to elevated CO2, we observed that lincRNAs were either neighboring or potentially trans-regulating differentially expressed coding genes associated with pH regulation, neural signal transduction, and ion transport, which are known to be important in the response to OA in fish. In summary, lncRNAs may facilitate fish acclimation and mediate the responses of fish to OA by modulating the expression of crucial coding genes, which offers insight into the regulatory mechanisms underlying fish responses to environmental changes.
Collapse
Affiliation(s)
- Jingliang Kang
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Arthur Chung
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Sneha Suresh
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Lucrezia C. Bonzi
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Jade M. Sourisse
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Sandra Ramirez‐Calero
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Daniele Romeo
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Natalia Petit‐Marty
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Cinta Pegueroles
- Department of Genetics, Microbiology and Statistics, Institute for Research on Biodiversity (IRBio)University of BarcelonaBarcelonaSpain
| | - Celia Schunter
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
- State Key Laboratory of Marine Pollution and Department of ChemistryCity University of Hong KongHong Kong SARChina
| |
Collapse
|
5
|
Kim JY, Lee J, Kang MH, Trang TTM, Lee J, Lee H, Jeong H, Lim PO. Dynamic landscape of long noncoding RNAs during leaf aging in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1068163. [PMID: 36531391 PMCID: PMC9753222 DOI: 10.3389/fpls.2022.1068163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Leaf senescence, the last stage of leaf development, is essential for whole-plant fitness as it marks the relocation of nutrients from senescing leaves to reproductive or other developing organs. Temporally coordinated physiological and functional changes along leaf aging are fine-tuned by a highly regulated genetic program involving multi-layered regulatory mechanisms. Long noncoding RNAs (lncRNAs) are newly emerging as hidden players in many biological processes; however, their contribution to leaf senescence has been largely unknown. Here, we performed comprehensive analyses of RNA-seq data representing all developmental stages of leaves to determine the genome-wide lncRNA landscape along leaf aging. A total of 771 lncRNAs, including 232 unannotated lncRNAs, were identified. Time-course analysis revealed 446 among 771 developmental age-related lncRNAs (AR-lncRNAs). Intriguingly, the expression of AR-lncRNAs was regulated more dynamically in senescing leaves than in growing leaves, revealing the relevant contribution of these lncRNAs to leaf senescence. Further analyses enabled us to infer the function of lncRNAs, based on their interacting miRNA or mRNA partners. We considered functionally diverse lncRNAs including antisense lncRNAs (which regulate overlapping protein-coding genes), competitive endogenous RNAs (ceRNAs; which regulate paired mRNAs using miRNAs as anchors), and mRNA-interacting lncRNAs (which affect the stability of mRNAs). Furthermore, we experimentally validated the senescence regulatory function of three novel AR-lncRNAs including one antisense lncRNA and two mRNA-interacting lncRNAs through molecular and phenotypic analyses. Our study provides a valuable resource of AR-lncRNAs and potential regulatory networks that link the function of coding mRNA and AR-lncRNAs. Together, our results reveal AR-lncRNAs as important elements in the leaf senescence process.
Collapse
Affiliation(s)
- Jung Yeon Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Juhyeon Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Myeong Hoon Kang
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Tran Thi My Trang
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Jusung Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Heeho Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Hyobin Jeong
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, Heidelberg, Germany
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Pyung Ok Lim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|